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The commingling of commutativity

and associativity in Bol loops

J.D. Phillips

Abstract. Commutative Moufang loops were amongst the first (nonassociative)
loops to be investigated; a great deal is known about their structure. More
generally, the interplay of commutativity and associativity in (not necessarily
commutative) Moufang loops is well known, e.g., the many associator identities
and inner mapping identities involving commutant elements, especially those
involving the exponent three. Here, we investigate all of this in the variety of
Bol loops.
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1. Introduction and a note on Prover9

A loop is a set with a single binary operation such that in x · y = z, knowledge
of any two of x, y, and z specifies the third uniquely, and with a unique two-sided
identity element, denoted by 1. We usually write xy instead of x · y, and reserve
· to have lower priority than juxtaposition among factors to be multiplied; for
instance, x · yz stands for x(yz). A left Bol loop is a loop satisfying the identity
x(y · xz) = (x · yx)z; right Bol loops satisfy the mirror identity. A left Bol loop
that is also a right Bol loop is a Moufang loop. There are many well known
equivalent loop identities that axiomatize the variety of Moufang loops. We use
these without mention in this paper. We refer to left Bol loops simply as Bol

loops for the balance of the paper. We use the notation x−1 to denote the unique
2-sided inverse of x, whose existence is guaranteed in Bol loops.

The commutant, C(L), of a loop L is the set of those elements which com-
mute with each element in the loop. That is, C(L) = {c : ∀x ∈ L, cx = xc}; it
need not be a subloop, even in Bol loops [3]. We define the associator, (x, y, z)
of x, y, and z, as follows: xy · z = (x · yz)(x, y, z). We say that the set {a, b, c}
associates if the elements a, b, and c associate in any order, that is, if each of
the six associators (a, b, c), (a, c, b), (b, a, c), (b, c, a), (c, a, b), and (c, b, a) vanishes.
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In Moufang loops there are many well known identities involving associators and
commutant elements. We compile some of these identities in this paper. We then
investigate settings in which these identities hold in the variety of Bol loops.

We use the standard notation for the right and left translations: xR(y) =
yL(x) = xy. The multiplication group, Mlt(L), of a loop L is the subgroup of
the group of all bijections on L generated by right and left translations. Clearly
Mlt(L) acts as a permutation group on L. The subgroup of Mlt(L) which fixes
1 is called the inner mapping group, is denoted by I(L), and is generated by the
following three families of mappings [1]:

T (x) = L(x)−1R(x)

R(x, y) = R(x)R(y)R(xy)−1

L(x, y) = L(x)L(y)L(yx)−1.

If L is Moufang, then I(L) is generated by the first two of these three families [1].
Our investigations were aided by the automated reasoning tool Prover9 [4]

and by the finite model builder Mace4 [5]. Many authors simply use the Prover9
output file as the proof of a theorem; it is common practice to publish untranslated
Prover9 proofs [6]. This is mathematically sound since the program can be made
to output a simple proof object, which can be independently verified by a short
lisp program. You may find Prover9 output files (proofs) for each of the theorems
that appears without proof in this paper, here:
http://euclid.nmu.edu/ jophilli/paper-supplements.html.

2. Commutativity and Moufang loops

We record the following well known, fundamental facts about commutative
Moufang loops.

Theorem 2.1.

(1) The left semi-medial law, xx · yz = xy · xz, axiomatizes — in the variety

of loops — the (sub)variety of commutative Moufang loops.

(2) Let L be a commutative Moufang loop. For all x, y and z ∈ L:

(a) if any one of x, y or z is a cube, then {x, y, z} associates,

(b) (x, y, z)3 vanishes,

(c) R(x, y)3 = 1, and

(d) R(x, y) is an automorphism.
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The aim of this paper is to generalize this theorem to the variety of Bol loops.
This will require “localizing” both the Moufang law and the commutative law.
A careful investigation, in the variety of Bol loops, of the local versions of the
Moufang laws will lead us to a useful definition of “Moufang subset” (given in the
final section). The local version of the commutative law gives the commutant,
which in turn gives the following generalization of Theorem 2.1 (we believe that
some of these identities have not yet appeared in the literature).

Theorem 2.2. Let L be a Moufang loop. Then ∀x, y ∈ L,

(1) for c ∈ L the following are equivalent:

(a) c ∈ C(L),

(b) c2 · xy = cx · cy,

(c) x2 · cy = xc · xy.

(2) if c ∈ C(L), then

(a) {c3, x, y} and {c, x3, y} associate,

(b) each of (c, x, y)3, (x, c, y)3, and (x, y, c)3 vanishes,

(c) cR(x, y)3 = c and R(x, c)3 = R(c, x)3 = 1, and

(d) R(x, c) and R(c, x) are automorphisms.

Proof: The equivalence of (1a) and (1b) is straightforward. For (1a) implies
(1c) we note that if c is in C(L) then x2 · cy = cx2c−1 · yc = c(x2c−1 · y)c =
c(xc−1x · y)c = c(x[c−1 ·xy])c = (cx)([c−1 ·xy] · c) = xc ·xy. For (1c) implies (1a),
take y = 1.

(2a) and (2b) are widely known. The first equality in (2c) is (probably) implicit
in Chapter 7 in [1]; a proof also may be found at the website listed above. Proofs
of the remaining two equalities in (2c) may be found at the website listed above.

(2d) is trivial (since each of R(x, c) and R(c, x) is a pseudoautomorphism with
trivial companion (see [1])). �

The parallel statement to (1c) in Theorem 2.2 if c is in “the third slot” does not
hold. To see this, let L be an arbitrary noncommutative Moufang loop, let c be
an arbitrary commutant element, and assume that x2 ·yc = xy ·xc for all x, y ∈ L.
In this case we would have x2 · yc = xy · cx = x(yc · x), that is, x · yc = yc · x.
Replacing y with yc−1, we would have xy = yx; that is, L would be commutative.

3. Bol loops

Most of Theorem 2.2 does not hold for Bol loops. It is straightforward to con-
struct examples. For instance, the following example is of a 16 element Bol loop in
which 1 is a commutant element, but in which none of the following six associators
vanishes: (13, 4, 8), (4, 13, 8), (4, 1, 83), (83, 1, 4), (1, 4, 83), and (1, 83, 4).
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Example 3.1.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 3 0 2 5 7 4 6 9 11 8 10 14 12 15 13
2 0 3 1 6 4 7 5 10 8 11 9 13 15 12 14
3 2 1 0 7 6 5 4 11 10 9 8 15 14 13 12
4 5 6 7 0 1 2 3 12 14 13 15 8 10 9 11
5 7 4 6 1 3 0 2 13 12 15 14 10 11 8 9
6 4 7 5 2 0 3 1 14 15 12 13 9 8 11 10
7 6 5 4 3 2 1 0 15 13 14 12 11 9 10 8
8 9 10 11 12 14 13 15 0 1 2 3 4 6 5 7
9 11 8 10 13 12 15 14 1 3 0 2 6 7 4 5
10 8 11 9 14 15 12 13 2 0 3 1 5 4 7 6
11 10 9 8 15 13 14 12 3 2 1 0 7 5 6 4
12 14 13 15 8 9 10 11 4 5 6 7 0 2 1 3
13 12 15 14 9 11 8 10 5 7 4 6 2 3 0 1
14 15 12 13 10 8 11 9 6 4 7 5 1 0 3 2
15 13 14 12 11 10 9 8 7 6 5 4 3 1 2 0

We do not know what happens with the final three cases of (2a) in Theorem 2.2:
(x, y, c3), (x3, y, c), and (x, y3, c). Since, in a Bol loop, L, for c ∈ C(L) and ∀x, y ∈
L, an easy Prover9 check shows that (x, y, c3) = 1 if and only if (x3, y, c) = 1 if
and only if (x, y3, c) = 1, we really have only one unresolved case, which we state
as an open problem.

Problem 3.2. If L is a Bol loop and c is a commutant element, must (x, y, c3)
vanish for each x and y in L?

A lengthy Mace4 search shows that a counterexample, should one exist, must
have order at least 42.

Now, consider the following eight element Bol loop in which 1 is a commutant
element, but (1, 2, 3)3 = 6 = (2, 1, 3)3. Thus, (2b) in Theorem 2.2 fails for Bol
loops. This counterexample is of minimal order.

Example 3.3.

0 1 2 3 4 5 6 7
1 0 3 2 7 6 5 4
2 3 0 1 5 4 7 6
3 2 5 6 0 7 4 1
4 7 1 0 6 2 3 5
5 6 4 7 2 0 1 3
6 5 7 4 3 1 0 2
7 4 6 5 1 3 2 0

Problem 3.4. If L is a Bol loop and c is a commutant element, must (x, y, c)3

vanish for each x and y in L?
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A Mace4 search shows that a counterexample, should one exist, must have
order at least 28.

The next lemma and example together show that only part of (1) from Theo-
rem 2.2 pushes through to Bol loops.

Lemma 3.5. Let L be a Bol loop. For c ∈ L, the following are equivalent:

(1) c2 · xy = cx · cy, ∀x, y ∈ L,

(2) x2 · cy = xc · xy, ∀x, y ∈ L.

Both conditions imply that c ∈ C(L).

We note here that the first condition in Lemma 3.5 characterizes the so-called
Moufang center of an arbitrary loop; that is, it describes the set of all those
elements that are both in the commutant and Moufang elements (see next section
for definition). Thus, each of the equivalent conditions in Lemma 3.5 characterizes
the Moufang center in Bol loops.

The following example, of a Bol loop of order 8, shows that both conditions in
Lemma 3.5 are stronger than the condition that c be in the commutant. In this
Bol loop, 1 is a commutant element, but (1 · 1) · (2 · 3) 6= (1 · 2) · (1 · 3). We note
that this example is of minimal size.

Example 3.6.

0 1 2 3 4 5 6 7
1 0 3 2 7 6 5 4
2 3 0 1 5 4 7 6
3 2 5 6 0 7 4 1
4 7 1 0 6 2 3 5
5 6 4 7 2 0 1 3
6 5 7 4 3 1 0 2
7 4 6 5 1 3 2 0

4. Moufang elements in Bol loops

We begin by noting that in the variety of loops, each of the following four
identities implies the other three:

(A) : z(xy · z) = zx · yz (C) : z(x · zy) = (zx · z)y
(B) : (z · xy)z = zx · yz (D) : (xz · y)z = x(z · yz)

A loop that satisfies any one (hence, all four) of these identities is called a Mo-

ufang loop. Thus, there are (at least) 12 possible ways to “localize” the Moufang
laws:
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(A2) : a(xy · a) = ax · ya (C2) : a(x · ay) = (ax · a)y
(A1x) : z(ay · z) = za · yz (C1x) : z(a · zy) = (za · z)y
(A1y) : z(xa · z) = zx · az (C1y) : z(x · za) = (zx · z)a

(B2) : (a · xy)a = ax · ya (D2) : (xa · y)a = x(a · ya)
(B1x) : (z · ay)z = za · yz (D1x) : (az · y)z = a(z · yz)
(B1y) : (z · xa)z = zx · az (D1y) : (xz · a)z = x(z · az)

We will use (A1x)L to denote the set of elements in a given loop, L, that satisfy
A1x, and analogously for the other 11 identities. Thus, for a given loop, these 12
different “local Moufang laws” axiomatize 12 different “Moufang subsets” (and
indeed none of them has to be a subloop). See [7] for a full account of these in
arbitrary loops. In a Bol loop, however, there is more structure.

Theorem 4.1. Let L be a Bol loop. Then

(1) (A1y)L, (B1x)L, (C1y)L, (D1x)L and (D1y)L coincide, and

(2) (A2)L, (B2)L and (D2)L coincide.

Thus, there are at most six different subsets of L defined by one of the 12
localized Moufang laws: (A2)L, (A1x)L, (A1y)L, (B1y)L, (C2)L and (C1x)L.

Theorem 4.2. (A1y)L is either empty or it is all of L. The former case occurs

precisely when L is a proper (i.e., nonMoufang) Bol loop; the latter case occurs

precisely when L is Moufang.

Proof: If the identity element is in (A1y)L then clearly L is flexible, hence Mo-
ufang. That the identity element is in (A1y)L precisely when (A1y)L is nonempty,
follows from the proofs on the website listed above. �

Thus, we consider (A1y)L to be a “trivial” subset, and so in the balance of
this section, we consider the five nontrivial Moufang subsets of L: (A2)L, (A1x)L,
(B1y)L, (C2)L and (C1x)L.

Theorem 4.3. Let L be a Bol loop. Then (A2)L and (A1x)L are subloops.

In the following example, of a Bol loop of order 12, (C2)L is not a subloop,
since 1 and 2 are (C2)L-elements, but (1 · 2) · (6 · ((1 · 2) · 0)) = 3 · (6 · (3 · 0)) =
3 · (6 · 3) = 3 · 9 = 10 6= 6 = 9 · 3 = (3 · 6) · 3 = (((1 · 2) · 6) · (1 · 2)) · 0; that is 1 · 2
is not a (C2)L-element. This example is of minimal order.
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Example 4.4.

0 1 2 3 4 5 6 7 8 9 10 11
1 0 3 2 5 4 7 6 9 8 11 10
2 3 4 5 0 1 8 9 10 11 6 7
3 2 5 4 1 0 9 8 11 10 7 6
4 5 0 1 2 3 10 11 6 7 8 9
5 4 1 0 3 2 11 10 7 6 9 8
6 7 8 9 10 11 0 1 2 3 4 5
7 6 11 10 9 8 1 0 5 4 3 2
8 9 10 11 6 7 2 3 4 5 0 1
9 8 7 6 11 10 3 2 1 0 5 4
10 11 6 7 8 9 4 5 0 1 2 3
11 10 9 8 7 6 5 4 3 2 1 0

In the following example, of a Bol loop of order 16, (C1x)L is not a subloop,
since 1 and 2 are (C1x)L-elements, but ((4 · (1 · 2)) · 4) · 0 = (4 · 3) · 4 = 7 · 4 = 3 6=
15 = 4 · 7 = 4 · (3 · 4) = 4 · ((1 · 2) · (4 · 0)); that is, 1 · 2 is not a (C1x)L-element
This example is of minimal order.

Example 4.5.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 0 3 2 5 4 7 6 9 8 11 10 13 12 15 14
2 3 0 1 6 7 4 5 10 11 8 9 14 15 12 13
3 2 1 0 7 6 5 4 11 10 9 8 15 14 13 12
4 5 6 7 12 13 14 15 3 2 1 0 11 10 9 8
5 4 8 9 13 12 3 2 14 15 0 1 10 11 7 6
6 8 4 10 14 3 12 1 13 0 15 2 9 7 11 5
7 9 10 4 3 14 13 0 12 1 2 15 8 6 5 11
8 6 5 11 15 2 1 12 0 13 14 3 7 9 10 4
9 7 11 5 2 15 0 13 1 12 3 14 6 8 4 10
10 11 7 6 1 0 15 14 2 3 12 13 5 4 8 9
11 10 9 8 0 1 2 3 15 14 13 12 4 5 6 7
12 13 14 15 11 10 9 8 7 6 5 4 0 1 2 3
13 12 15 14 10 11 8 9 6 7 4 5 1 0 3 2
14 15 12 13 9 8 11 10 5 4 7 6 2 3 0 1
15 14 13 12 8 9 10 11 4 5 6 7 3 2 1 0

Problem 4.6. If L is a Bol loop, must (B1y)L be a subloop?

The remaining theorems and examples in this section address the containment
relationships between and among the five nontrivial Moufang subsets in a Bol
loop.

The following example, of a Bol loop of order 8, shows that (C2) is the weakest
of the five nontrivial, localized Moufang laws (again, in the variety of Bol loops).
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In this example, 1 is in (C2)L, but it is not in (A2)L, (A1x)L, (B1y)L or (C1x)L.
This example is of minimal order. (Note that an element a in a Bol loop is in
(C2)L if and only if it satisfies the following localized flexible law for all x in L:
ax · a = a · xa.)

Example 4.7.

0 1 2 3 4 5 6 7
1 0 3 2 5 4 7 6
2 4 0 6 1 7 3 5
3 5 6 0 7 1 2 4
4 2 1 7 0 6 5 3
5 3 7 1 6 0 4 2
6 7 4 5 2 3 0 1
7 6 5 4 3 2 1 0

Theorem 4.8. If L is a Bol loop, then (A2)L is contained in (A1x)L, and (A1x)L

is contained in both (C2)L and (C1x)L.

Theorem 4.9. If L is a Bol loop, then (B1y)L is contained in (C1x)L and (C2)L.

In the Bol loop in the next example, 1 is in (A1x)L but is not in (A2)L or
(B1y)L.

Example 4.10.

0 1 2 3 4 5 6 7 8 9 10 11
1 2 0 4 5 3 7 8 6 10 11 9
2 0 1 5 3 4 8 6 7 11 9 10
3 4 5 0 1 2 9 10 11 6 7 8
4 5 3 1 2 0 10 11 9 7 8 6
5 3 4 2 0 1 11 9 10 8 6 7
6 7 8 9 10 11 0 1 2 3 4 5
7 8 6 10 11 9 1 2 0 4 5 3
8 6 7 11 9 10 2 0 1 5 3 4
9 11 10 6 8 7 3 5 4 0 2 1
10 9 11 7 6 8 4 3 5 1 0 2
11 10 9 8 7 6 5 4 3 2 1 0

In the Bol loop in the next example, 1 is in (C1x)L but is not in (A1x)L, (A2)L

or (B1y)L.
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Example 4.11.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 0 3 2 5 4 7 6 9 8 11 10 13 12 15 14
2 3 0 1 6 7 4 5 10 11 8 9 14 15 12 13
3 2 1 0 7 6 5 4 11 10 9 8 15 14 13 12
4 5 6 7 12 13 14 15 3 2 1 0 11 10 9 8
5 4 8 9 13 12 3 2 14 15 0 1 10 11 7 6
6 7 4 5 2 3 0 1 13 12 15 14 9 8 11 10
7 6 5 4 3 2 1 0 12 13 14 15 8 9 10 11
8 9 10 11 15 14 13 12 0 1 2 3 7 6 5 4
9 8 11 10 14 15 12 13 1 0 3 2 6 7 4 5
10 11 7 6 1 0 15 14 2 3 12 13 5 4 8 9
11 10 9 8 0 1 2 3 15 14 13 12 4 5 6 7
12 13 14 15 11 10 9 8 7 6 5 4 0 1 2 3
13 12 15 14 10 11 8 9 6 7 4 5 1 0 3 2
14 15 12 13 9 8 11 10 5 4 7 6 2 3 0 1
15 14 13 12 8 9 10 11 4 5 6 7 3 2 1 0

There are four unresolved cases, which we state as open problems.

Problem 4.12. If L is a Bol loop, then:

(1) is (B1y)L is contained in (A1x)L?

(2) is (B1y)L is contained in (A2)L?

(3) is (A2)L contained in (B1y)L?

(4) is (C1x)L contained in (C2)L?

Regarding this problem, note two things.

(1) In a Bruck loop, the answer to each of these four questions is “yes.”
(A Bruck loop is a Bol loop in which the inverse mapping is an automor-
phism.) Hence, in Bruck loops, there are exactly five Moufang subsets,
and they form a chain.

(2) Four Mace4 searches show that counterexamples, should they exist, for
each of the four questions in the previous problem, must have orders at
least 24, 24, 24 and 20, respectively.

5. (A2)-elements in Bol loops

An element a in a loop L is called a Moufang element if the following two
equations are satisfied for each x and y in L: ax · ya = a(xy · a) and a(x · ay) =
(ax · a)y [7]. In Bol loops, these two equations are equivalent to each other [7],
and so in a Bol loop, an element a is a Moufang element precisely when it is an
(A2)-element; this coincides with Florja’s earlier definition of Moufang element
[2]. We have thus found a local condition that gives us the Bol version of the first
part of (2a) in Theorem 2.2:
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Theorem 5.1. Let L be a Bol loop, and let c be in C(L). If any one of a, b or c

is a Moufang element, then {c3, a, b} associates.

The next theorem generalizes the second part of (2a) in Theorem 2.2.

Theorem 5.2. Let L be a Bol loop, and let c be in C(L). If either of a or c is a

Moufang element, then {c, a3, b} associates.

Since Moufang loops have the inverse property, if cL(a, b)3 = c, then we also
have cR(a, b)3 = c. The next theorem, then, is a Bol version of (2c) and (2d) in
Theorem 2.2 (thus, it is necessary to check both right and left inner mappings).

Theorem 5.3. Let L be a Bol loop, and let c be in C(L). If any one of a, b or c

is a Moufang element, then

(1) cL(a, b)3 = cR(a, b)3 = c and R(a, c)3 = R(c, a)3 = L(a, c)3 = L(c, a)3 = 1,

(2) R(a, c), R(c, a), L(c, a) and L(a, c) are automorphisms.

The next theorem generalizes (1) in Theorem 2.2; also, cf: Lemma 3.5.

Theorem 5.4. Let L be a Bol loop, and let c be a Moufang element in L. Then

the following are equivalent:

(1) c ∈ C(L),
(2) c2 · xy = cx · xy ∀x, y ∈ L,

(3) x2 · cy = xc · xy ∀x, y ∈ L.

There are two unresolved cases, which we state as open problems, in our at-
tempt to generalize Theorem 2.2 to Bol loops.

Problem 5.5. If L is a Bol loop, if c is a commutant element, and if any one of

a, b and c is a Moufang element, then must each of (c, a, b)3, (a, c, b)3, and (a, b, c)3

vanish?

Acknowledgment. I thank Michael Kinyon for many stimulating conversations
on this topic. I thank the referee for his or her many valuable suggestions.

References

[1] Bruck R.H., A Survey of Binary Systems, Springer, Berlin-Göttingen-Heidelberg, 1971.
[2] Florja I.A., Loops with one-sided invertibility , Bul. Akad. Štiince RSS Moldoven (1965),
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