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Medial quasigroups of prime square order

David Stanovský

Abstract. We prove that, for any prime p, there are precisely 2p4
−p3

−p2
−3p−1

medial quasigroups of order p2, up to isomorphism.

Keywords: medial quasigroup; quasigroup affine over abelian group; classifica-
tion of quasigroups; enumeration of quasigroups

Classification: 20N05, 05A15

1. Introduction

Medial quasigroups, i.e., quasigroups satisfying the medial law

(x ∗ y) ∗ (u ∗ v) = (x ∗ u) ∗ (y ∗ v),

are one of the classical subjects of quasigroup theory. Yet there are very few
enumeration results in literature. The aim of the present paper is to extend
earlier results of [4], [7], [9], by enumerating medial quasigroups of prime square
order.

The fundamental tool to study medial quasigroups (and many other classes
of quasigroups), is affine representation. Given an abelian group G = (G,+),
automorphisms ϕ, ψ of G, and an element c ∈ G, define a new operation ∗ on the
set G by

x ∗ y = ϕ(x) + ψ(y) + c.

The resulting quasigroup (G, ∗) is said to be affine over the group G, and it will be
denoted by Q(G,+, ϕ, ψ, c); the quintuple (G,+, ϕ, ψ, c) is called an affine form

of (G, ∗). The fundamental Toyoda-Bruck theorem [8, Theorem 3.1] states that a
quasigroup is medial if and only if there is an abelian group G = (G,+), a pair of
commuting automorphisms ϕ, ψ of G, and c ∈ G such that Q = Q(G,+, ϕ, ψ, c).
We refer to [8] for a detailed account on various kinds of affine representations of
quasigroups.

Let mq(n) denote the number of medial quasigroups of order n, and mq(G)
the number of medial quasigroups that admit an affine form over a group G, up
to isomorphism. It follows from the classification of finite abelian groups that
mq(G×H) = mq(G) ·mq(H) whenever G,H are abelian groups of coprime order.
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Therefore, the function mq(n) is multiplicative. In particular, if n = pk11 · . . . · pkm

m

is a prime factorization of n, then mq(n) = mq(pk11 ) · . . . ·mq(pkm

m ). Since isotopic
groups are isomorphic, a medial quasigroup cannot admit affine forms over two
non-isomorphic groups, and thus mq(n) =

∑

mq(G) where the sum runs over all
isomorphism representatives of abelian groups of order n. For details, we refer
to [9].

Quasigroups affine over a cyclic group were enumerated in [4], [9], obtaining
an explicit formula

mq(Zpk) = p2k + p2k−2 − pk−1 −

2k−1
∑

i=k−1

pi

for every prime p. In particular, we have

mq(p) = mq(Zp) = p2 − p− 1

mq(Zp2) = p4 − p3 − 2p.

The main result of the present paper is:

Theorem 1.1. mq(Z2
p) = p4 − p2 − p− 1 for every prime p.

Corollary 1.2. mq(p2) = mq(Zp2 ) +mq(Z2
p) = 2p4 − p3 − p2 − 3p− 1 for every

prime p.

The proof of Theorem 1.1 occupies the whole Section 2. The affine forms of
the quasigroups are explicitly expressed in Table 2. Our formula agrees with the
computer calculations of [9] which presents enumeration of all quasigroups affine
over an abelian group of order < 64 (of order < 128 with a few exceptions).

An important special case, the idempotent medial quasigroups (or latin affine

quandles , in the quandle terminology [3]), has been studied earlier extensively.
The enumeration problem is significantly simpler, since the parameters in the
affine form can be taken c = 0 and ψ = id − ϕ. Therefore, the enumeration of
idempotent medial quasigroups up to isomorphism reduces to the enumeration of
fixpoint free automorphisms of abelian groups up to conjugacy (cf. Theorem 2.1).
The strongest results were obtained by Hou [2], providing explicit formulas for
orders pk with k ≤ 4. More information about the idempotent case can be found
also in [6].

2. Proof of Theorem 1.1

We will follow the enumeration procedure described in detail in [9]. It is based
on the following theorem, originally proposed by Drápal [1].

Theorem 2.1 ([1, Theorem 3.2], [9, Theorem 2.5]). Let G be an abelian group.

The isomorphism classes of medial quasigroups affine over G are in one-to-one

correspondence with the elements of the set

{(ϕ, ψ, c) : ϕ ∈ X, ψ ∈ Yϕ, c ∈ Gϕ,ψ},
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where

• X is a set of conjugacy class representatives of the group Aut(G);
• Yϕ is a set of conjugacy class representatives of the centralizer subgroup

CAut(G)(ϕ), for every ϕ ∈ X (here we consider conjugation inside the

group CAut(G)(ϕ), not conjugation by all elements of Aut(G));
• Gϕ,ψ is a set of orbit representatives of the natural action of CAut(G)(ϕ)∩
CAut(G)(ψ) on G/Im(1 − ϕ− ψ).

Indeed, a triple (ϕ, ψ, c) corresponds to the quasigroup Q(G,ϕ, ψ, c), hence, an
explicit construction of the sets X,Yϕ, Gϕ,ψ provides an explicit construction of
the quasigroups.

In the rest of the section, we apply Theorem 2.1 on the group G = Z
2
p. We

will identify automorphisms with their matrices, considering Aut(G) = GL(2, p).
Most of the proof is a bit sketchy and many sentences could have started with the
“it is easy to check that” statement; yet we think that adding more details would
not improve readability of the proof.

ϕ C(ϕ)
(

a 0
0 a

)

, a 6= 0 GL(2, p)
(

a 0
0 b

)

, 0 < a < b

{(

u 0
0 v

)

: u, v 6= 0

}

(

a 1
0 a

)

, a 6= 0

{(

u v
0 u

)

: u 6= 0

}

(

0 1
a b

)

, x2 − bx− a irreducible

{(

u v
av u+ bv

)

: u 6= 0 or v 6= 0

}

.

Table 1. Conjugacy class representatives in GL(2, p) and their
centralizer subgroups.

Proof of Theorem 1.1: Let G = Z
2
p. The set X of conjugacy class repre-

sentatives in Aut(G) = GL(2, p) can be chosen as in Table 1. The four types
of representatives correspond to the diagonalizable matrices with one eigenvalue,
the diagonalizable matrices with two distinct eigenvalues, the non-diagonalizable
matrices with an eigenvalue in Fp, and the non-diagonalizable matrices with eigen-
values in the quadratic extension, respectively. The last case is represented by
matrices ( 0 1

a b ) such that the polynomial x2 − bx− a is irreducible over Fp.
The centralizer subgroups are also displayed in Table 1 (here and later on, we

will omit the index in the centralizer notation). In the first case, we can take
Yϕ = X and we have C(ϕ) ∩ C(ψ) = C(ψ) for every ψ ∈ Yϕ. In the remaining
three cases, the key observation is that the centralizer subgroups are commutative,
hence we can take Yϕ = C(ϕ), and we have C(ϕ)∩C(ψ) = C(ϕ) for every ψ ∈ Yϕ.
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The size of Gϕ,ψ will be determined by the following procedure: if 1 − ϕ − ψ
is a regular matrix, then |G/Im(1 − ϕ− ψ)| = 1, and thus also |Gϕ,ψ| = 1. If the
rank of the matrix 1 − ϕ − ψ is one, then G/Im(1 − ϕ − ψ) ≃ Zp, and since all
of the centralizer subgroups contain all scalar matrices ( u 0

0 u ), we can always take
Gϕ,ψ = {0,w} where w is any non-zero vector. If the rank of the matrix 1−ϕ−ψ
is zero, then G/Im(1 − ϕ − ψ) ≃ G, and the situation depends on C(ϕ) ∩ C(ψ),
to be discussed below in each particular case.

The results are summarized in Table 2. Below we give comments on how the
table is calculated.

ϕ ψ c number
(

a 0
0 a

) (

u 0
0 u

) (

0
0

)

if u 6= 1 − a p2 − 3p + 3

a 6= 0 u 6= 0

(

0
0

)

,

(

1
0

)

if u = 1 − a 2(p − 2)
(

u 0
0 v

) (

0
0

)

if u, v 6= 1 − a 1

2
(p − 2)(p2 − 4p + 5)

0 < u < v

(

0
0

)

,

(

1
0

)

if u = 1 − a or v = 1 − a 2(p − 2)2

(

u 1
0 u

) (

0
0

)

if u 6= 1 − a p2 − 3p + 3

u 6= 0

(

0
0

)

,

(

1
0

)

if u = 1 − a 2(p − 2)
(

0 1
u v

) (

0
0

)

1

2
p(p − 1)2

x2 − vx− u irr.
(

a 0
0 b

) (

u 0
0 v

) (

0
0

)

if u 6= 1 − a, v 6= 1 − b 1

2
(p − 2)2(p2 − 3p + 4)

0 < a < b u, v 6= 0

(

0
0

)

,

(

1
0

)

if

{

u = 1 − a, v 6= 1 − b

u 6= 1 − a, v = 1 − b
2(p − 2)(p2 − 4p + 5)

(

0
0

)

,

(

1
0

)

,

(

0
1

)

,

(

1
1

)

if (u, v) = (1 − a, 1 − b) 2(p − 2)(p− 3)
(

a 1
0 a

) (

u v

0 u

) (

0
0

)

if u 6= 1 − a p(p2 − 3p + 3)

a 6= 0 u 6= 0

(

0
0

)

,

(

1
0

)

if u = 1 − a, v 6= −1 2(p − 1)(p− 2)
(

0
0

)

,

(

1
0

)

,

(

0
1

)

if u = 1 − a, v = −1 3(p − 2)
(

0 1
a b

) (

u v

av u + bv

) (

0
0

)

if (u, v) 6= (1,−1) 1

2
(p2 − p)(p2 − 2)

x2 − bx − a irr. u 6= 0 or v 6= 0

(

0
0

)

,

(

1
0

)

if u = 1, v = −1 p2 − p

Table 2. Affine forms of medial quasigroups over the group Z
2
p,

up to isomorphism.

Case ϕ = ( a 0
0 a ). Take Yϕ = X .

Subcase ψ = ( u 0
0 u ). The matrix 1 − ϕ − ψ is singular iff u = 1 − a. There

are p − 2 such pairs (ϕ, ψ), and since C(ϕ) ∩ C(ψ) = GL(2, p), we can choose
Gϕ,ψ = {0,w} with any w 6= 0. In the remaining (p− 1)2 − (p− 2) = p2 − 3p+ 3
cases, the matrix is regular and |Gϕ,ψ| = 1.

Subcase ψ = ( u 0
0 v ). The matrix 1− ϕ−ψ is singular iff u = 1− a or v = 1− a

(we cannot have both at the same time, since u 6= v). There are (p − 2)2 such
pairs (ϕ, ψ), and since the rank of 1 − ϕ − ψ is one, we have |Gϕ,ψ| = 2. In the
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remaining (p − 1) ·
(

p−1
2

)

− (p − 2)2 = 1
2 (p − 2)(p2 − 4p+ 5) cases, the matrix is

regular and |Gϕ,ψ| = 1.

Subcase ψ = ( u 1
0 u ). The matrix 1 − ϕ− ψ is singular iff u = 1 − a. There are

p−2 such pairs (ϕ, ψ), and since the rank of 1−ϕ−ψ is one, we have |Gϕ,ψ| = 2.
In the remaining (p− 1)2 − (p− 2) = p2 − 3p+ 3 cases, the matrix is regular and
|Gϕ,ψ| = 1.

Subcase ψ = ( 0 1
u v ). The matrix 1 − ϕ − ψ is always regular. Since there are

precisely 1
2 (p2−p) irreducible polynomials of degree 2 over Fp, this case contributes

1
2p(p− 1)2 triples (ϕ, ψ, c).

Case ϕ = ( a 0
0 b ). Take Yϕ = C(ϕ), the subgroup of diagonal matrices. The

total number of pairs (ϕ, ψ) is
(

p−1
2

)

(p−1)2. For ψ = ( u 0
0 v ), the rank of 1−ϕ−ψ

is

• zero iff u = 1 − a and v = 1 − b; there are
(

p−2
2

)

such pairs (ϕ, ψ), each

with |Gϕ,ψ| = 4, since there are four orbits of the action of C(ϕ) on Z
2
p;

• one iff u = 1− a or v 6= 1− b, or u 6= 1− a and v = 1− b; for a = 1, there
are p − 2 choices of b, p − 1 choices of u and one choice of v; for a 6= 1,
there are

(

p−2
2

)

choices of ϕ, and for each of them 2p− 4 choices of ψ; in

total, we have (p− 2)(p− 1) +
(

p−2
2

)

(2p− 4) = (p− 2)(p2 − 4p+ 5) such
pairs (ϕ, ψ), each with |Gϕ,ψ| = 2;

• two iff u 6= 1−a and v 6= 1−b; these are the remaining pairs (ϕ, ψ), hence,

there is
(

p−1
2

)

(p−1)2−
(

p−2
2

)

−(p−2)(p2−4p+5) = 1
2 (p−2)2(p2−3p+4)

of them, each with |Gϕ,ψ| = 1.

Case ϕ = ( a 1
0 a ). Take Yϕ = C(ϕ) = {( u v0 u ) : u 6= 0}. The total number of

pairs (ϕ, ψ) is p(p− 1)2. For ψ = ( u v0 u ), the rank of 1 − ϕ− ψ is

• zero iff u = 1− a and v = −1; there are p− 2 such pairs (ϕ, ψ), each with
|Gϕ,ψ| = 3, since there are three orbits of the action of C(ϕ) on Z

2
p;

• one iff u = 1 − a or v 6= −1; there are (p − 2)(p − 1) such pairs (ϕ, ψ),
each with |Gϕ,ψ| = 2;

• two iff u 6= 1 − a; these are the remaining pairs (ϕ, ψ), hence, there is
p(p− 1)2 − (p − 2) − (p− 2)(p− 1) = p(p2 − 3p+ 3) of them, each with
|Gϕ,ψ| = 1.

Case ϕ = ( 0 1
a b ). Take Yϕ = C(ϕ). For ψ = ( u v

av u+bv ) ∈ C(ϕ), the determinant
of the matrix 1 − ϕ − ψ is (1 − u)2 − b(1 − u)(1 + v) − a(1 + v)2. Assume the
determinant is 0. Then either 1 + v = 0, and thus also 1 − u = 0, or we can
divide by (1 + v)2 and obtain the equation (1−u

1−v )2 − b 1−u
1+v − a = 0, which has no

solution, because the polynomial x2 − bx− a is irreducible. Therefore, the matrix
1 − ϕ− ψ is singular if and only u = 1 and v = −1. Since C(ϕ) acts transitively
on Z

2
p − {0}, we have |Gϕ,ψ| = 2. There are 1

2 (p2 − p) irreducible polynomials

of degree 2, thus the singular case contributes p2 − p triples. The regular case
contributes 1

2 (p2 − p)(p2 − 2) triples.
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Summing up all the contributions (see the last column of Table 2), we obtain
that the total number is p4 − p2 − p− 1. �

3. Concluding remarks

In [9, Problem 3.4], we asked to calculate mq(Zkp) for any p, k. In theory,
using Macdonald’s classification of conjugacy classes in general linear groups [5],
one could continue in the fashion of Section 2 to higher dimensions. But the
complexity of such calculations would grow rapidly. As an alternative, we propose
the following idea.

Conjecture 3.1. Let k be any natural number.

(1) There is an integer polynomial fk of degree 2k such that mq(Zkp) = fk(p)
for every prime p.

(2) There is an integer polynomial gk of degree 2k such that mq(pk) = gk(p)
for every prime p.

If the conjecture was true, one could interpolate the polynomials from the
values of mq(Zkp) and mq(pk) for the first 2k + 1 primes.
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