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Invariant symbolic calculus for semidirect products

Benjamin Cahen

To the memory of my father, Alfred Cahen

Abstract. Let G be the semidirect product V ⋊ K where K is a connected semi-
simple non-compact Lie group acting linearly on a finite-dimensional real vector
space V . Let π be a unitary irreducible representation of G which is associated
by the Kirillov-Kostant method of orbits with a coadjoint orbit of G whose little
group is a maximal compact subgroup of K. We construct an invariant sym-
bolic calculus for π, under some technical hypothesis. We give some examples
including the Poincaré group.
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1. Introduction

In the context of covariant quantization, an important tool is the notion of
invariant symbolic calculus, see [1], [3]. Various invariant symbolic calculi were
introduced and intensively studied, in particular

(1) the Berezin symbolic calculus, see [6], [7];
(2) the Weyl calculus for symmetric domains, see [29], [2];
(3) the Stratonovich-Weyl correspondence, see [27], [30], [16], [18], [8], [15].

The following definition is adapted from [3] and [18].

Definition 1.1 ([18]). Let G be a Lie group and π a unitary representation of
G on a Hilbert space H. Let M be a homogeneous G-space and µ a (suitably
normalized) G-invariant measure on M . Then an invariant symbolic calculus for
the triple (G, π,M) is a linear map S from a vector space of operators on H to
a vector space of (generalized) functions on M satisfying the following properties:

(1) S is one-to-one;
(2) reality: the function S(A∗) is the complex conjugate of S(A);
(3) invariance: we have S(π(g)Aπ(g)−1)(x) = S(A)(g−1x).

If, moreover, S is unitary in the sense that we have
∫

M

S(A)(x)S(B)(x)dµ(x) = Tr(AB)

DOI 10.14712/1213-7243.2015.244



254 Cahen B.

for each Hilbert-Schmidt operators A and B in the domain of S, then S is called
a Stratonovich-Weyl correspondence, see [18].

Note that, in Definition 1.1, M is generally taken to be a coadjoint orbit
of G which is associated with π by the Kirillov-Kostant method of orbits, see
[21], [22]. A simple illustration is given by the case when G is the (2n + 1)-
dimensional Heisenberg group. Each non-degenerate coadjoint orbit M of G is
diffeomorphic to R2n and is associated with a unitary irreducible representation
π of G on L2(Rn). In this case, the classical Weyl correspondence provides an
invariant symbolic calculus for the triple (G, π,M) (which is also a Stratonovich-
Weyl correspondence) [17], [18].

More sophisticated examples, involving some generalized Weyl correspon-
dences, can be found in [3] and [29]. On the other hand, the Berezin calculus
on integral coadjoint orbits is, in general, an invariant symbolic calculus, see [25],
[4], and [12].

Most of the results on invariant symbolic calculi concern semisimple Lie groups.
For semidirect products, the more remarkable result is the construction of a Strato-
novich-Weyl correspondence for the unitary irreducible representations of the
Poincaré group R

4
⋊SO0(3, 1) corresponding to the massive particules with spin,

see [16]. Moreover, in paper in preparation, we extended this construction to
unitary irreducible representations of G = Rn+1 ⋊ SO0(n, 1) whose associated
coadjoint orbits have little group SO(n).

Here we consider the case when G := V ⋊K where K is a non-compact semi-
simple Lie group acting linearly on a finite-dimensional real vector space V and
π is a unitary irreducible representation of G associated with a coadjoint orbit O
of G whose little group K0 is a maximal compact subgroup of K.

This is the direct generalization of the massive coadjoint orbits (and represen-
tations) of the Poincaré group, see [23], Chapter IV, Section 3, [26], Chapter 8.

In the present paper, we aim to combine some ideas from [16], [10], [5], in order
to get an invariant symbolic calculus for (G, π,O).

Let us briefly describe the method we use here. Let g, k and k0 be the Lie
algebras of G, K andK0. Consider the Cartan decomposition k = k0⊕p. Then we
can realize π on a Hilbert space H of square-integrable functions on p. Moreover,
O is diffeomorphic to p2 × o where o is a coadjoint orbit of K0, see [10]. Thus
we fix ξ0 ∈ O and we choose a suitable operator Ω(ξ0) on H which, in particular,
commutes to π(g) for each g in the stabilizer of ξ0 in G. As pointed out in [5],
this choice is crucial for the success of the method. Hence we define a quantizer

Ω: O → End(H) by

Ω(g · ξ0) := π(g)Ω(ξ0)π(g)
−1

for each g ∈ G and a symbolic calculus S by the formula

S(A)(ξ) = Tr(AΩ(ξ))

for A operator on H and ξ ∈ O.
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Then S is clearly invariant and, at this step, the main difficulty is to prove
that S is injective (on a suitable space of operators on H), since the explicit
computations of [16] cannot be performed in our general situation.

This paper is organized as follows. Section 2 contains some generalities on
semidirect products. In Section 3, we introduce the unitary irreducible represen-
tations of G and the corresponding coadjoint orbits. In Section 4, we recall the
construction of the Berezin calculus for a unitary irreducible representation of K0.
The quantizer Ω is introduced in Section 5. In Section 6, the invariant symbolic
calculus S for π is defined and we prove that it is injective. In Section 7, we
discuss the problem of extending S to operators which are not Hilbert-Schmidt.
Finally, in Section 8, we consider two examples: the (generalized) Poincaré group
and the group su(n, 1)⋊ SU(n, 1).

2. Preliminaries

The material of this section and of the next section is essentially taken from [24],
see also [10].

We consider a connected, non-compact, semisimple real Lie groupK with finite
center. Let k be the Lie algebra of K. For k ∈ K and f ∈ k∗, we denote by k · f
the coadjoint action of k on f .

We assume that K acts linearly on a finite-dimensional real vector space V ,
and for k in K and v in V , we denote by k ·v the action of k on v. We also denote
by (k, p) → k · p the contragredient action of K on V ∗. Let (A, v) → A · v and
(A, p) → A · p be the corresponding representations of k on V and V ∗. For each
v in V and p in V ∗ we define v ∧ p ∈ k∗ by 〈v ∧ p,A〉 = 〈p,A · v〉 = −〈A · p, v〉 for
A ∈ k. Note that we have

k · (v ∧ p) = k · v ∧ k · p

for each k ∈ K, v ∈ V and p ∈ V ∗.
We can form the semidirect product G = V ⋊K. The multiplication of G is

(v, k)(v′, k′) = (v + k · v′, kk′)

for each v, v′ in V and k, k′ in K. The Lie algebra g of G is the vector space V × k

equipped with the Lie bracket

[(a,A), (a′, A′)] = (A · a′ −A′ · a, [A,A′])

for each a, a′ in V and A,A′ in k.
Then g∗ can be identified with V ∗× k∗. The coadjoint action of G on g∗ is thus

given by

(v, k) · (p, f) = (k · p, k · f + v ∧ k · p)

for each (v, k) ∈ G and (p, f) ∈ g∗. We can also identify K-equivariantly k to its
dual k∗ by using the Killing form of k. Hence g∗ can be identified with V ∗ × k.
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Let us consider the orbit O(ξ0) of the element ξ0 = (p0, f0) of g∗ ≃ V ∗ × k

under the coadjoint action of G on g∗. Henceforth we assume that the little group
K0 = {k ∈ K : k · p0 = p0} is a maximal compact subgroup of K. Then K0 is
a connected reductive subgroup of K, see [19], and denoting by k0 the Lie algebra
of K0, we have the Cartan decomposition k = k0 ⊕ p where p is the orthogonal
complement of k0 in k. Moreover, we can verify that p = {v ∧ p0 : v ∈ V }, see
[10] and [24], Lemma 1. From this, we see that, without loss of generality, we can
assume that ξ0 = (p0, ϕ0) with ϕ0 ∈ k0. We denote by o(ϕ0) ⊂ k0 the orbit of
ϕ0 ∈ k0 ≃ k∗0 under the (co)adjoint action of K0.

Let Z(p0) be the orbit of p0 under the action of K on V ∗. By [19], Chapter VI,
Theorem 1.1, the map e : T → expT ·p0 is a diffeomorphism from p onto Z(p0). For
p ∈ Z(p0) we denote byM(p) the unique element of exp p such thatM(p) ·p0 = p.
Consequently, if p = e(T ) then M(p) = expT .

Let V0 be a complement of {v ∈ V : v ∧ p0 = 0} in V . Then we have dimV0 =
dim p.

In Section 6, for some technical reasons we shall need to assume that the map

γ : T → (e(T )− e(−T ))|V0

is a diffeomorphism from p onto V ∗
0 . This assumption is satisfied, for example,

in the case of the massive coadjoint orbits of the Poincaré group, see Section 8.
However, it seems to be difficult to characterize precisely the orbits for which this
condition is fulfilled.

Let n be the dimension of p. We know that the restriction to p of the Killing
form 〈·, ·〉 of k is positive definite, see [19]. We fix an orthonormal basis (E1,
E2, . . . , En) for p and we denote by (t1, t2, . . . , tn) the coordinates of T ∈ p in this
basis.

Let dT = dt1dt2 . . . dtn be the Lebesgue measure on p. Then, the K-invariant
measure dµ on Z(p0) is given by dµ = e∗(δ(T )dT ) where δ(T ) := Det

(
sinh adT

adT |p
)
,

see [19].
Let us denote by dv a Lebesgue measure on V0. Also, let ν be an invariant

measure on o(ϕ0). We fix a section (defined on a dense open subset of o(ϕ0))
ϕ→ hϕ for the action of K0 on o(ϕ0). Such a section always exists, see [13]. The
following proposition can be proved easily.

Proposition 2.1. Let Ψ be the map from Z(p0)× V0 × o(ϕ0) to g∗ defined by

Ψ(q, v, ϕ) = (q,M(q) · (ϕ+ v ∧ p0)).

Then we have

(1) Ψ is a diffeomorphism from Z(p0)× V0 × o(ϕ0) onto O(ξ0);
(2) the image by Ψ of the measure dµ(p)dvdν(ϕ) on Z(p0)×V0 × o(ϕ0) is an

invariant measure µ0 on O(ξ0);
(3) the map ξ = Ψ(q, v, ϕ) → gξ := (M(q) · v,M(q) · hϕ) is a section for the

action of G on O(ξ0), that is, we have gξ · ξ0 = ξ for each ξ ∈ O(ξ0).
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3. Representations

The material of this section is essentially taken from [10].
Henceforth we assume that o(ϕ0) is associated with the unitary irreducible

representation (̺,E) of K0 as in [33], Section 4. Let us describe this correspon-
dence. Let H be a maximal torus of K0 with Lie algebra h. We fix an ordering
on the root system ∆(gc, hc). Now, let λ ∈ (ih)∗ be the highest weight of (̺,E).
Then we define ϕ0 ∈ k∗0 by ϕ0(X) = −iλ(X) for X ∈ h and ϕ0(X) = 0 for X
in the orthogonal complement of h in k0 with respect to the Killing form of k0.
The orbit of ϕ0 under the coadjoint action of K0 is said to be associated with the
representation (̺,E).

It is well-known that O(ξ0) is integral since o(ϕ0) is assumed to be integral,
see [24]. Then O(ξ0) is associated with the unitarily induced representation

π = IndGV ⋊K0
(ei〈p0,·〉 ⊗ ̺).

By a result of G. Mackey, π is irreducible since ̺ is [28].
The representation π is usually realized on the Hilbert space L2(Z(p0), E)

which is the completion of the space of compactly supported smooth functions
ψ : Z(p0) → E with respect to the norm defined by

‖ψ‖2 =

∫

Z(p0)

〈ψ(p), ψ(p)〉E dµ(p).

Specifically, for each (v, k) ∈ G the action of the operator π(v, k) is given by

(π(v, k)ψ)(p) = ei〈p,v〉̺(M(p)−1kM(k−1 · p))ψ(k−1 · p).

However, it is convenient to realize π on the Hilbert space H := L2(p, E)
defined as the completion of the space C∞

0 (p, E) of compactly supported smooth
functions φ : p → E with respect to the norm given by

‖φ‖2 =

∫

p

〈φ(T ), φ(T )〉E dT.

Then we introduce the unitary operator φ→ ψ from H to L2(Z(p0), E) defined

by ψ(e(T )) = δ(T )
1/2
φ(T ). Let us denote by k · T the action of K on p which

corresponds to the action of K on Z(p0), that is, we have e(k · T ) = k · e(T ) for
k ∈ K and T ∈ p. Thus we obtain

(π(v, k)φ)(T ) =
( δ(T )

δ(k−1 · T )

)1/2
ei〈e(T ),v〉̺(M(e(T ))−1kM(k−1e(T )))φ(k−1 · T )

for each (v, k) ∈ G.
We recall now the explicit expression for the differential dπ of π given in [10].

We need some additional notation. First, we can differentiate the action of K on
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p and define for A ∈ k and T ∈ p,

A · T :=
d

dt
(exp tA) · T

∣∣
t=0

.

Furthermore, for p ∈ Z(p0) and A ∈ k we set

L(p,A) =
d

dt
(M(p)−1 exp(tA)M(exp(−tA) · p))|t=0.

Let pk0 and pp be the projections of k onto k0 and p associated with the direct
decomposition k = k0 ⊕ p.

Lemma 3.1 ([10]). (1) For A ∈ k and T ∈ p we have

A · T = − adT pk0(A) +
adT

tanh adT
pp (A).

(2) For p = e(T ) ∈ Z(p0) and A ∈ k we have

L(p,A) = pk0(A)− tanh
(1
2
adT

)
pp(A).

(3) For A ∈ k and T ∈ p we have

d

dt
δ(exp(tA) · T )

∣∣
t=0

= δ(T )Trp(γ(adT ) ad pp(A))

where the function γ is defined by γ(z) = (z cosh z − sinh z)/(z sinh z) if
z 6= 0 and by γ(0) = 0.

From this lemma, we deduce the following expression of dπ.

Proposition 3.2 ([10]). For each (w,A) ∈ g and φ ∈ C0(p, E), we have

(dπ(w,A)φ)(T ) = i〈e(T ), w〉φ(T ) + d̺
(
pk0(A)− tanh

(1
2
adT

)
pp(A)

)
φ(T )

+ dφ(T )
(
adTpk0(A)−

adT

tanh adT
pp(A)

)

+
1

2
Trp (γ(T ) adpp(A))φ(T ).

4. Berezin calculus on o(ϕ0)

Here we recall the Berezin correspondence associated with ̺, see for instance
[6], [7], [4], [33] and [11].

Without loss of generality, we can assume that E is a space of holomorphic
sections of a complex line bundle over o(ϕ0), see [32]. Let ϕ ∈ o(ϕ0). For each
ϕ̂ 6= 0 in the fiber over ϕ, there exists a unique section eϕ̂ ∈ E (a coherent
state) such that a(ϕ) = 〈a, eϕ̂〉Eϕ̂ for each a ∈ V . The Berezin calculus on o(ϕ0)
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associates with each operator B on V the complex-valued function s(B) on o(ϕ0)
defined by

s(B)(ϕ) =
〈Beϕ̂, eϕ̂〉E
〈eϕ̂, eϕ̂〉E

which is called the symbol of B. We denote by Sy(o(ϕ0)) the space of all such
symbols.

In the following proposition, we recall some properties of s, see [25], [4] and [11].

Proposition 4.1. (1) The map B → s(B) from End(E) onto Sy(o(ϕ0)) is

a linear isomorphism.

(2) For each operator B on E, we have s(B∗) = s(B).
(3) For each ϕ ∈ o(ϕ0), h ∈ K0 and B ∈ End(E), we have

s(B)(h · ϕ) = s(̺(h)B̺(h)−1)(ϕ).

(4) For each U ∈ k0 and ϕ ∈ o(ϕ0), we have s(d̺(U))(ϕ) = i〈ϕ,U〉.

For each ϕ ∈ o(ϕ0), we denote by P (ϕ) the orthogonal projection operator of
E on the line generated by eϕ̂.

Proposition 4.2 ([6]). For each operator B on E and each ϕ ∈ o(ϕ0), we have

s(B)(ϕ) = Tr(BP (ϕ)).

In the terminology of [18] and [5], the map ϕ → P (ϕ) is called the quantizer

associated with s and the properties of s are reflected by similar properties of this
quantizer. In particular, the invariance property of s corresponds to the fact that
for each h ∈ K0 and ϕ ∈ o(ϕ0), we have

(4.1) P (h · ϕ) = ̺(h)P (ϕ)̺(h)−1.

5. The quantizer for π

In this section, we introduce a quantizer Ω which will give an invariant symbol
calculus for π in the next section. In order to motivate our choice for Ω(ξ0), we
will make a little digression about the classical Weyl correspondence based on
[17], [18], and [14].

The Weyl correspondence W0 on R2n is defined as follows. For each f ∈
L2(R2n), let W0(f) be the operator on L2(Rn) given by

(W0(f)φ)(x) = (2π)
−n

∫

R2n

ei〈y,z〉f
(
x+

1

2
y, z

)
φ(x + y) dy dz.

Now, letG0 be the Heisenberg group of dimension 2n+1. We write the elements
of G0 as [a, b, c] with a, b ∈ Rn and c ∈ R. The multiplication of G0 is given by

[a, b, c] · [a′, b′, c′] =
[
a+ a′, b+ b′, c+ c′ +

1

2
(〈a, b′〉 − 〈a′, b〉)

]
.
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Then G0 acts on R2n by

g · (p, q) = (p+ a, q + b), g = [a, b, c] ∈ G0.

Also, let σ be the unitary representation of G0 on L2(Rn) defined by

(σ(g)φ)(x) = exp
(
i
(
c− 〈b, x〉+

1

2
〈a, b〉

))
φ(x − a)

for g = [a, b, c] ∈ G0.
Consider the parity operator R0 on Rn defined by R0φ(x) = 2nφ(−x) and note

that R0 commute with σ(g) for each g = [0, 0, c] in the center of G0. Then, for
each g = [a, b, c] ∈ G0, we can define R(g ·(0, 0)) = σ(g)R0σ(g)

−1. More precisely,
for each (a, b) ∈ R2n, φ ∈ L2(Rn) and x ∈ Rn, we have

(R(a, b)φ)(x) = 2n exp(2i〈b, a− x〉)φ(2a− x).

Proposition 5.1 ([18]). (1) For each g ∈ G0 and each Hilbert-Schmidt op-

erator A on L2(Rn), we have

W−1
0 (σ(g)Aσ(g)−1)(x, y) = W−1

0 (A)(g−1 · (x, y)).

(2) For each trace class operator A on L2(Rn) and each (x, y) ∈ R2n, we have

Tr(AR(x, y)) = W−1
0 (A)(x, y).

This implies that W−1
0 is a Stratonovich-Weyl correspondence for (G0, σ,R

2n)
with quantizer R.

Now, we return to the construction of the quantizer for π. We begin with the
following lemma which is easy but useful.

Lemma 5.2. Let Ω(ξ0) be an operator on H. For each ξ ∈ O(ξ0), let

(5.1) Ω(ξ) := π(gξ)Ω(ξ0)π(gξ)
−1.

Then we have that

Ω(g · ξ) := π(g)Ω(ξ)π(g)−1

for each g ∈ G and ξ ∈ O(ξ0), if and only if Ω(ξ0) commute with the operator

π(g) for each g in the stabilizer G(ξ0) of ξ0 in G.

In the following lemma, we collect some easy facts.

Lemma 5.3. (1) For each k ∈ K0 and p ∈ Z(p0), we have M(k · p) =
kM(p)k−1.

(2) For each k ∈ K0 and T ∈ p, we have k · T = Ad(k)T .
(3) For each T ∈ p, we have M(e(−T )) =M(e(T ))−1.

Now we define Ω(ξ0) from R0 and P (see Section 4) as follows. We take

(Ω(ξ0)φ)(T ) := 2nP (ϕ0)φ(−T )
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for each φ ∈ H and T ∈ p. Then we can easily verify that G(ξ0) consists of
all elements (v, k) such that v ∧ p0 = 0 and k lies in the stabilizer of ϕ0 in K0.
Moreover, by using Lemma 5.3, we see that for each g ∈ G(ξ0), π(g) commute
with Ω(ξ0). Hence Lemma 5.2 can be applied.

For each k ∈ K and T ∈ p we set

r(k, T ) := ̺(M(e(T ))−1kM(k−1 · e(T ))).

Proposition 5.4. (1) Let (v, k) ∈ G and ξ = (v, k) ·ξ0. Then for each ψ ∈ H
and T ∈ p we have

(Ω(ξ)φ)(T ) = 2n
( δ(T )

δ(k · (−k−1 · T ))

)1/2
ei〈e(T )−e(k·(−k−1·T )),v〉

× r(k, T )P (ϕ0)r(k
−1,−k−1 · T )φ(k · (−k−1 · T )).

(2) Let (p, v, ϕ) ∈ Z(p0)× V0 × o(ϕ0) and set ξ := Ψ(p, v, ϕ) and h :=M(p).
Then for each ψ ∈ H and T ∈ p we have

(Ω(ξ)φ)(T ) = 2n
( δ(T )

δ(h · (−h−1 · T ))

)1/2
ei〈e(h

−1·T )−e(−h−1·T ),v〉

× r(h, T )P (ϕ)r(h−1,−h−1 · T )φ(h · (−h−1 · T )).

Proof: (1) follows from a simple but tedious calculation based on equation (5.1).
Moreover, taking Proposition 2.1 and equation (4.1) into account, (2) follows from
(1) and equation (5.1). �

6. Invariant symbolic calculus for π

We aim to prove that the quantizer Ω introduced in the preceding section gives
an invariant symbolic calculus for π. To simplify writing of equations, for each
(p, v, ϕ) ∈ Z(p0)× V0 × o(ϕ0) and ξ = Ψ(p, v, ϕ) we set

β(ξ, T ) := 2n
( δ(T )

δ(M(p) · (−M(p)−1 · T ))

)1/2
ei〈e(M(p)−1·T )−e(−M(p)−1·T ),v〉

× r(M(p), T )P (ϕ)r(M(p)−1 ,−M(p)−1 · T ).

For k ∈ K, we also denote by sk the map from p to p defined by sk(T ) =
k · (−k−1 · T ). Note that we have sk ◦ sk = idp for each k ∈ K. Then for each
φ ∈ H and T ∈ p we can write

(6.1) (Ω(ξ)φ)(T ) = β(ξ, T )φ(sM(p)(T )).

Now, for each trace class operator A on H we define

S(A)(ξ) := Tr(AΩ(ξ))

and we aim to prove that S is an invariant symbolic calculus.
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For each trace class operator A on H, let us denote by kA : p2 → End(V ) the
kernel of A, that is, for each φ ∈ H and T ∈ p we have

(Aφ)(T ) =

∫

p

kA(T, S)φ(S) dS.

The following lemma is well-known, see for instance [21], page 342.

Lemma 6.1. (1) Let A and B be two Hilbert-Schmidt operators onH. Then

the kernel of AB is given by

kAB(T, S) =

∫

p

kA(T, Z)kB(Z, S) dZ.

(2) Let A be a trace-class operator on H. Then the function T → kA(T, T )
is integrable on p and we have

Tr(A) =

∫

p

kA(T, T ) dT.

Proposition 6.2. Let A be a trace class operator on H. Let ξ = Ψ(p, v, ϕ) where
(p, v, ϕ) ∈ Z(p0)× V0 × o(ϕ0). Then we have

S(A)(ξ) = 2n
∫

p

ei〈e(T )−e(−T ),v〉 Tr(kA(M(p) · (−T ),M(p) · T )

× r(M(p),M(p) · T )P (ϕ)r(M(p)−1,−T ))

×
δ(T )

δ(M(p) · T )1/2δ(M(p) · (−T ))1/2
dT.

Proof: Let A be a trace class operator on H and ξ = Ψ(p, v, ϕ). Then for each
φ ∈ H and T ∈ p we have

(AΩ(ξ)φ)(T ) =

∫

p

kA(T, S)(Ω(ξ)φ)(S) dS

=

∫

p

kA(T, S)β(ξ, S)φ(sM(p)(S)) dS

=

∫

p

kA(T, sM(p)(S))β(ξ, sM(p)(S))φ(S)
δ(S)

δ(sM(p)(S))
dS

by the change of variables S → sM(p)(S) and K-invariance of δ(S)dS.
This shows that AΩ(ξ) has kernel

kAΩ(ξ)(T, S) = kA(T, sM(p)(S))β(ξ, sM(p)(S))
δ(S)

δ(sM(p)(S))
.
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Now, applying Lemma 6.1, we get

S(A)(ξ) =

∫

p

Tr(kA(T, sM(p)(T ))β(ξ, sM(p)(T )))
δ(T )

δ(sM(p)(T ))
dT

=

∫

p

Tr(kA(sM(p)(T ), T )β(ξ, T )) dT.

The desired result is then obtained by replacing β(ξ, T ) by its expression and
by performing the change of variables T →M(p) · T . �

Let p1 : K → exp p and p2 : K → K0 be the projections associated with the
Cartan decomposition K = (exp p)K0. We need the following lemma.

Lemma 6.3. The map j : (t, s) → (p1(st), p1(st
−1)) is a C1-diffeomorphism of

(exp p)2. The inverse diffeomorphism j−1 is given by

j−1(u, v) =
(
p2(vp1(v

−1u)1/2)p1(v
−1u)1/2p2(vp1(v

−1u)1/2)−1, p1(vp1(v
−1u)1/2)

)
.

Proof: Let (t, s) ∈ (exp p)2 and u = p1(st), v = p1(st
−1). Then we can write

st = uh, and st−1 = vh′ with h, h′ ∈ K0. From this, we deduce that t2 =
h′−1v−1uh and, writing also v−1u = wa with w ∈ exp p and a ∈ K0, we get
t2 = (h′−1wh′)(h′−1ah) which in turn implies that t2 = h′−1wh′ and h′−1ah = e
(the identity element of K) or, equivalently, t = h′−1w1/2h′ and h′ = ah.

Thus, substituting t and h′ in the equality st−1 = vh′, we find that s =
vw1/2ah. This gives on the one hand that s = p1(vw

1/2) and on the other hand
that h = a−1p2(vw

1/2)−1 and

t = h′−1w1/2h′ = h−1a−1w1/2ah = p2(vw
1/2)w1/2p2(vw

1/2)−1.

This shows that j : (exp p)2 → (exp p)2 is a bijection and gives the explicit
expression of j−1. Moreover, since the multiplication map exp p × K0 → K is
a C1-diffeomorphism, we see that p1 and p2 are C1-functions and consequently,
that j and j−1 are also C1-functions, hence the result. �

Now, we can remark that the expression of S(A)(ξ) given in Proposition 6.2
can be interpreted as the Fourier transform evaluated at v of some function of T .
Then, in order to prove that S is injective by using Fourier inversion, we are led
to introduce the assumption that the map γ : T → (e(T )− e(−T ))|V0

is a diffeo-
morphism from p onto V ∗

0 , as announced in Section 2.

Proposition 6.4. For each trace-class operator A on H, we have S(A) = 0 if

and only if A = 0.

Proof: Let A be a trace-class operator A on H such that S(A)(ξ) = 0 for each
ξ ∈ O(ξ0). By performing the change of variables q = γ(T ) in the integral
expression for S(A)(ξ) of Proposition 6.2 and by applying Fourier inversion we
get

Tr
(
kA(M(p) · (−T ),M(p) · T )r(M(p),M(p) · T )P (ϕ)r(M(p)−1,−T )

)
= 0
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for each p ∈ Z(p0), T ∈ p and ϕ ∈ o(ϕ0). Consequently, the Berezin symbol of
the operator

r(M(p)−1,−T )kA(M(p) · (−T ),M(p) · T )r(M(p),M(p) · T )

is zero hence the operator is zero and we obtain

kA(M(p) · (−T ),M(p) · T ) = 0

for each p ∈ Z(p0) and each T ∈ p.
Applying Lemma 6.3, we can conclude that kA = 0 hence A = 0. �

Proposition 6.5. The map S defined on trace-class operators on H is an invari-

ant symbolic calculus.

Proof: S is invariant by construction and also injective. We have just to verify

that for each trace-class operator A on H we have S(A∗) = S(A). But, for each
trace-class operator A on H we have

S(A∗)(ξ) = Tr(A∗Ω(ξ)) = Tr(Ω(ξ)A)∗ = Tr(Ω(ξ)A = S(A)(ξ).

The result hence follows. �

7. Extension of the invariant symbolic calculus

Here we aim to extend S to operators on H which are not of trace-class. Our
method is based on the Berezin-Weyl calculus on p2×o(ϕ0) obtained by combining
the Berezin calculus s with the usual Weyl correspondence W0 on p2 ≃ R2n. Let
us recall the definition of the Berezin-Weyl calculus, see [10].

We say that a smooth function f : (T, S, ϕ) → f(T, S, ϕ) is a symbol on p2 ×
o(ϕ0) if for each (T, S) ∈ p2 the function ϕ → f(T, S, ϕ) is the symbol in the

Berezin calculus on o(ϕ0) of an operator f̂(T, S) on E. Moreover, a symbol f on

p2 × o(ϕ0) is called an S-symbol if the function f̂ belongs to the Schwartz space
of rapidly decreasing smooth functions on p2 with values in End(E).

For any S-symbol f on p2 × o(ϕ0) we define the operator W(f) on H by the
equation

(W(f)φ)(T ) = (2π)−n
∫

p2

ei〈S,Z〉f̂
(
T +

1

2
S,Z

)
φ(T + S) dS dZ

for each φ ∈ C∞
0 (p, E).

The Berezin-Weyl calculus can be extended to much larger classes of sym-
bols [20], in particular to polynomial symbols. We say that a symbol f on

p2 × o(ϕ0) is a P-symbol if the function f̂(T, S) is polynomial in S. Let f be
the P-symbol defined by f(T, S, ϕ) = u(T )Sα where u ∈ C∞(p, E) and with the
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usual notation Sα := sα1sα2 . . . sαn for each multi-index α = (α1, α2, . . . , αn).
Then, by [31], we have

(W(f)φ)(T ) =
(
i
∂

∂S

)α(
u
(
T +

1

2
S
)
φ(T + S)

)∣∣∣
S=0

.

In particular, if f(T, S, ϕ)=u(T ) then (W(f)φ)(T )=u(T )φ(T ) and if f(T, S, ϕ)=
u(T )sk then

(W(f)φ)(T ) = i
(1
2
∂ku(T )φ(T ) + u(T )∂kφ(T )

)

where ∂k denotes the partial derivative with respect to the variable tk.
From this, we can deduce the following result.

Proposition 7.1 ([10]). For each X = (w,A) ∈ g, the Berezin-Weyl symbol of

the operator −idπ(X) is the P-symbol fX on p2 × o(ϕ0) given by

fX(T, S, ϕ) = 〈e(T ), w〉+ 〈ϕ,L(e(T ), A)〉+ 〈A · T, S〉.

Let us introduce some additional notation. We have H = L2(p) ⊗ E. For
each φ0 ∈ L2(p) and each v ∈ E we denote by φ0 ⊗ v the function x → φ0(x)v.
Moreover, if A0 is an operator on L2(p) and A1 is an operator on E then we
denote by A0⊗A1 the operator on H defined by (A0⊗A1)(φ0⊗v) = A0φ0⊗A1v.

Also, if f0 is a complex valued function onR2n and f1 a complex valued function
on o(ϕ0), we denote by f0 ⊗ f1 the function on p2 × o(ϕ0) defined by

(f0 ⊗ f1)(T, S, ϕ) = f0(T, S)f1(ϕ)

for T, S ∈ p and ϕ ∈ o(ϕ0).
Note that if f is a function on p2 × o(ϕ0) of the form f = f0 ⊗ f1 with

f1 ∈ Sy(o(ϕ0)) (see Section 4) then it is clear that we have

W(f) = W0(f0)⊗ s−1(f1).

As in Section 5, we denote by R0 the parity operator on L2(p) defined by
(R0φ0)(T ) = 2nφ0(−T ).

Now, let A0 be a trace class operator on L2(p) and A1 an operator on E. Let
A = A0 ⊗A1. The we have

S(A)(ξ0) = Tr(AΩ(ξ0)) = Tr(A0R0 ⊗A1P (ϕ0)) = Tr(A0R0)Tr(A1P (ϕ0))

= W−1
0 (A0)(0, 0)s(A1)(ϕ0) = W−1(A)(0, 0, ϕ0).

In other words, S and W−1 coincide at base points. This naturally suggests
to extend S to differential operators on H by using the fact that W−1 can be
extended to differential operators and the invariance property. More precisely, we
set

S(A)(ξ) := W−1(π(gξ)Aπ(gξ)
−1)(0, 0, ϕ0)
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for each operator A on H such that W−1(π(g)Aπ(g)−1) is well-defined for each
g ∈ G. In the rest of this section, we give some simple examples of operators A
such that S(A) can be defined by this way.

Proposition 7.2. For each X1, X2, . . . , Xp ∈ g, S(dπ(X1X2 · · ·Xp)) is well-

defined.

Proof: Let X1, X2, . . . , Xp ∈ g. Let ξ ∈ O(ξ0). Let Yk := Ad(gξ)
−1Xk for

k = 1, 2, . . . , p. Then we have

π(gξ)
−1dπ(X1X2 · · ·Xp)π(gξ) = dπ(Y1Y2 · · ·Yp).

By induction from Proposition 3.2, we see that dπ(Y1Y2 · · ·Yp) is a sum of
operators of the form A0 ⊗ A1 where A0 is a differential operator on p with
polynomial coefficients and A1 an operator on E. Then S(dπ(Y1Y2 · · ·Yp))(ξ0) is
well-defined hence S(dπ(X1X2 · · ·Xp)) is. �

Let us remark that it is not clear whether this extension of S is still injective,
even on the class of operators on H considered in the preceding proposition.
However, we can compute S(dπ(X)) for X ∈ g.

Proposition 7.3. For each X ∈ g and ξ ∈ O(ξ0) we have S(dπ(X))(ξ) = i〈ξ,X〉.

Proof: Let X = (w,U) ∈ g. By Proposition 7.1, we have

S(dπ(X))(ξ0) = W−1(dπ(X))(0, 0, ϕ0)

= i〈p0, w〉+ i〈ϕ0, pk0(U)〉

= i〈ξ0, X〉.

Hence, for each ξ ∈ O(ξ0) we have

S(dπ(X))(ξ) = S(dπ(X))(gξ · ξ0) = S(dπ(Ad(g−1
ξ )X)(ξ0)

= i〈ξ0,Ad(g
−1
ξ )X〉 = i〈ξ,X〉.

�

8. Examples

8.1 The Poincaré group. Here we take V = R
n+1 and K = SO0(n, 1), the

identity component of SO(n, 1). Then G is the (generalized) Poincaré group. In
this case, the Berezin-Weyl calculus W was investigated in [9] and [10]. The usual
Poincaré group corresponds to the case n = 3.

We recall that SO(n, 1) is the group of all real (n + 1) × (n + 1) matrices of
determinant 1 leaving invariant the bilinear form on V defined by

〈p, p′〉 = −

( n∑

k=1

pi p
′
i

)
+ pn+1 p

′
n+1.
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We can identify V ∗ to V by using this bilinear form.
Denoting by (e1, e2, . . . , en+1) the standard basis of Rn+1, we take p0 = men+1

where m > 0. Then K0 is the subgroup of K consisting of all matrices of the
form

(
k0 0
0 1

)
for k0 ∈ SO(n,R) and the orbit Z(p0) is the sheet of the hyperboloid

〈p, p〉 = m2 defined by pn+1 > 0. On the other hand, p consists of all matrices of
the form

(
0 bt

b 0

)
for b ∈ Rn.

Also, we can take V0 to be the space generated by e1, e2, . . . , en since {v ∈ V :
v ∧ p0 = 0} is here the line generated by en+1.

We can verify that for each T =
(
0 bt

b 0

)
∈ p we have

e(T ) = m
(sinh |b|

|b|
b1, . . . ,

sinh |b|

|b|
bn, cosh |b|

)
.

Then, identifying V ∗
0 with V0 by using the restriction of 〈·, ·〉 to V0, we can write

γ(T ) = e(T )− e(−T )|V0
= 2m

sinh |b|

|b|
b.

Hence γ is clearly a diffeomorphism p → V ∗
0 whose inverse is given by p→ T =(

0 bt

b 0

)
with bk = sinh−1 |p|

|p| pk for k = 1, 2, . . . , n. Consequently, we see that the

hypothesis of Section 2 is satisfied and then our method applies in this case.
In fact, we can also obtain a Stratonovich-Weyl correspondence for π by mod-

ifying suitably Ω. However, this needs precise computations of some Jacobians
which are difficult to perform in the general situation considered in the present
paper.

8.2 The group su(n, 1) ⋊ SU(n, 1). Let K = SU(n, 1) and V = k = su(n, 1),
the action of K on V being the adjoint action. Then we can identify V ∗ to V by
using the bilinear form on V defined by 〈X,Y 〉 = 1

n+1 Tr(XY ).

We take p0 = im
(
−n 0
0 In

)
with m 6= 0. Then K0 = S(U(n) × U(1)) and p

consists of all matrices of the form
(
0 b∗

b 0

)
with b ∈ Cn.

A simple calculation shows that for each T ∈ p we have

e(T ) = im



−nIn − (n+ 1)

sinh2 |b|

|b|2
b∗b (n+ 1)

cosh |b| sinh |b|

|b|
b∗

−(n+ 1)
cosh |b| sinh |b|

|b|
b (n+ 1) cosh2 |b| − n


 .

On the other hand, for each v ∈ V and p ∈ V ∗ ∼= V one has v ∧ p = [v, p] and
then v ∧ p0 = 0 if and only if v ∈ k0. Thus we can take V0 = p and we have

γ(T ) = im




0 2(n+ 1)
cosh |b| sinh |b|

|b|
b∗

−2(n+ 1)
cosh |b| sinh |b|

|b|
b 0


 .
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Hence γ is a diffeomorphism of p, the hypothesis of Section 2 is fulfilled here
and our construction of the invariant symbolic calculus also works in this case.

Acknowledgment. The author would like to thank the referee for some valuable
comments.
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