A note on Dunford-Pettis like properties and complemented spaces of operators

IOANA GHENCIU

Abstract. Equivalent formulations of the Dunford-Pettis property of order p (DPP_p), 1 , are studied. Let <math>L(X, Y), W(X, Y), K(X, Y), U(X, Y), and $C_p(X, Y)$ denote respectively the sets of all bounded linear, weakly compact, compact, unconditionally converging, and p-convergent operators from X to Y. Classical results of Kalton are used to study the complementability of the spaces W(X, Y) and K(X, Y) in the space $C_p(X, Y)$, and of $C_p(X, Y)$ in U(X, Y) and L(X, Y).

Keywords: Dunford-Pettis property of order p; p-convergent operator; complemented spaces of operators

Classification: Primary 46B20; Secondary 46B25, 46B28

1. Introduction

In this paper we study equivalent formulations of the DPP_p , $1 . We give a characterization of dual Banach spaces with the <math>DPP_p$. We show that X^* has the DPP_p if and only if every operator $T: X \to Y$ with weakly *p*-compact adjoint has a completely continuous bitranspose, 1 . Our results are motivated by results in [3].

For many years mathematicians have been interested in the problem of whether an operator ideal is complemented in the space L(X, Y) of all bounded linear operators between X and Y, e.g. see [10], [9], [17], [12], and [11]. In [1] the authors studied the complementability of the space $W(X, \ell_{\infty})$ in $L(X, \ell_{\infty})$. It was shown that if X is not reflexive, then $W(X, \ell_{\infty})$ is not complemented in $L(X, \ell_{\infty})$, see [1, Theorem 3]. Let CC(X, Y), Lcc(X, Y), or $LC_p(X, Y)$ denote the set of all completely continuous, limited completely continuous, or limited *p*-convergent, respectively, operators from X to Y. We use classical results of Kalton to study the complementability of W(X, Y), K(X, Y), and CC(X, Y) in $C_p(X, Y)$, and of $C_p(X, Y)$ in U(X, Y). Further, we study the complementability of $C_p(X, Y)$, Lcc(X, Y), and $LC_p(X, Y)$ in L(X, Y).

DOI 10.14712/1213-7243.2015.238

2. Definitions and notation

Throughout this paper, X, Y, E and F denote Banach spaces. The unit ball of X is denoted by B_X and X^* denotes the continuous linear dual of X. The space X embeds in Y (in symbols $X \hookrightarrow Y$) if X is isomorphic to a closed subspace of Y. An operator $T: X \to Y$ is a continuous and linear function. The set of all operators, weakly compact operators, and compact operators from X to Y is denoted by L(X, Y), W(X, Y), and K(X, Y).

A subset S of X is said to be weakly precompact provided that every sequence from S has a weakly Cauchy subsequence. An operator $T: X \to Y$ is called weakly precompact (or almost weakly compact) if $T(B_X)$ is weakly precompact.

An operator $T: X \to Y$ is called *completely continuous* (or *Dunford-Pettis*) if T maps weakly convergent sequences to norm convergent sequences.

For $1 \leq p < \infty$, p^* denotes the conjugate of p. If p = 1, ℓ_{p^*} plays the role of c_0 . The unit vector basis of ℓ_p is denoted by (e_n) .

Let $1 \leq p \leq \infty$. A sequence (x_n) in X is called *weakly p-summable sequence* if $(x^*(x_n)) \in \ell_p$ for each $x^* \in X^*$ [6, page 32]. Let $\ell_p^w(X)$ denote the set of all weakly *p*-summable sequences in X. The space $\ell_p^w(X)$ is a Banach space with the norm

$$||(x_n)||_p^w = \sup\left\{\left(\sum_{n=1}^\infty |\langle x^*, x_n \rangle|^p\right)^{1/p} \colon x^* \in B_{X^*}\right\}.$$

We recall the following isometries: $L(\ell_{p^*}, X) \simeq \ell_p^w(X)$ for 1 ; $<math>L(c_0, X) \simeq \ell_p^w(X)$ for $p = 1; T \to (T(e_n))$, see [6, Proposition 2.2, page 36].

A series $\sum x_n$ in X is said to be weakly unconditionally convergent if for every $x^* \in X^*$ the series $\sum |x^*(x_n)|$ is convergent. An operator $T: X \to Y$ is unconditionally converging if it maps weakly unconditionally convergent series to unconditionally convergent ones.

Let $1 \leq p \leq \infty$. An operator $T: X \to Y$ is called *p*-convergent if T maps weakly *p*-summable sequences into norm null sequences, see [3]. The set of all *p*-convergent operators is denoted by $C_p(X, Y)$.

The 1-convergent operators are precisely the unconditionally converging operators and the ∞ -convergent operators are precisely the completely continuous operators. If p < q, then $C_q(X, Y) \subseteq C_p(X, Y)$.

A sequence (x_n) in X is called *weakly p-convergent* to $x \in X$ if the sequence $(x_n - x)$ is weakly *p*-summable, see [3]. Weakly ∞ -convergent sequences are precisely the weakly convergent sequences.

Let $1 \leq p \leq \infty$. A bounded subset K of X is relatively weakly p-compact if every sequence in K has a weakly p-convergent subsequence. An operator T: $X \to Y$ is weakly p-compact if $T(B_X)$ is relatively weakly p-compact, see [3].

The set of weakly *p*-compact operators $T: X \to Y$ is denoted by $W_p(X, Y)$. If p < q, then $W_p(X, Y) \subseteq W_q(X, Y)$. A Banach space $X \in C_p$ (or $X \in W_p$) if $id(X) \in C_p(X, X)$ (or $id(X) \in W_p(X, X)$, respectively), see [3], where id(X) is the identity map on X. A sequence (x_n) in X is called *weakly* p-Cauchy if $(x_{n_k} - x_{m_k})$ is weakly p-summable for any increasing sequences (n_k) and (m_k) of positive integers.

Every weakly *p*-convergent sequence is weakly *p*-Cauchy, and the weakly ∞ -Cauchy sequences are precisely the weakly Cauchy sequences.

Let $1 \leq p \leq \infty$. We say that a subset S of X is called *weakly p-precompact* if every sequence from S has a weakly p-Cauchy subsequence. The weakly ∞ -precompact sets are precisely the weakly precompact sets.

Let $1 \leq p \leq \infty$. An operator $T: X \to Y$ is called *weakly p-precompact* (or *almost weakly p-compact*) if $T(B_X)$ is weakly *p*-precompact. The set of all weakly *p*-precompact operators is denoted by $WPC_p(X, Y)$. We say that $X \in WPC_p$ if $id(X) \in WPC_p(X, X)$.

The weakly ∞ -precompact operators are precisely the weakly precompact operators. If p < q, then $\ell_p^w(X) \subseteq \ell_q^w(X)$, thus $\operatorname{WPC}_p(X,Y) \subseteq \operatorname{WPC}_q(X,Y)$.

A Banach space X has the Dunford-Pettis property (DPP) if every weakly compact operator $T: X \to Y$ is completely continuous for any Banach space Y. Equivalently, X has the DPP if and only if $x_n^*(x_n) \to 0$ whenever (x_n^*) is weakly null in X^* and (x_n) is weakly null in X, see [4, Theorem 1]. If X is a C(K)-space or an L_1 -space, then X has the DPP. The reader can check [5], [4], and [7] for results related to the DPP.

The bounded subset A of X is called a *Dunford-Pettis* (or *limited*) subset of X if each weakly null (or w*-null, respectively) sequence (x_n^*) in X* tends to 0 uniformly on A; i.e.

$$\sup_{x \in A} |x_n^*(x)| \to 0.$$

The bounded subset A of X^* is called an *L*-subset of X^* if each weakly null sequence (x_n) in X tends to 0 uniformly on A; i.e.

$$\sup_{x^* \in A} |x^*(x_n)| \to 0.$$

A bounded subset A of X^* is called a V-subset of X^* provided that

$$\sup_{x^* \in A} |x^*(x_n)| \to 0$$

for each weakly unconditionally convergent series $\sum x_n$ in X.

The Banach space X has property (V) if every V-subset of X^* is relatively weakly compact. The following results were established in [21]: C(K) spaces and reflexive spaces have property (V); X has property (V) if and only if every unconditionally converging operator T from X to any Banach space Y is weakly compact.

Let $1 \le p \le \infty$. A Banach space X has the Dunford-Pettis property of order p (DPP_p) if every weakly compact operator $T: X \to Y$ is p-convergent for any Banach space Y, see [3].

If X has the DPP_p, then it has the DPP_q, if q < p. Also, the DPP_{∞} is precisely the DPP, and every Banach space X has the DPP₁. C(K) spaces and L_1 have

the DPP, and thus the DPP_p for all p. If $1 < r < \infty$, then ℓ_r has the DPP_p for $p < r^*$. If $1 < r < \infty$, then $L_r(\mu)$ has the DPP_p for $p < \min(2, r^*)$. Tsirelson's space T has the DPP_p for all $p < \infty$. Since T is reflexive, it does not have the DPP. Tsirelson's dual space T^* does not have the DPP_p, if p > 1, see [3].

Let $1 \leq p < \infty$. We say that a bounded subset A of X^* is called a *weakly* p-L-set if for all weakly p-summable sequences (x_n) in X,

$$\sup_{x^* \in A} |x^*(x_n)| \to 0.$$

The weakly 1-*L*-subsets of X^* are precisely the *V*-subsets. If p < q, then a weakly *q*-*L*-subset is a weakly *p*-*L*-subset, since $\ell_p^w(X) \subseteq \ell_q^w(X)$.

The Banach space X has the reciprocal Dunford-Pettis (RDP) property if every completely continuous operator T from X to any Banach space Y is weakly compact, see [16, page 153]. The space X has the RDP property if and only if every L-subset of X^* is relatively weakly compact, see [15]. Banach spaces with property (V) of Pełczyński, in particular reflexive spaces and C(K) spaces, have the RDP property, see [21].

Let $1 \leq p < \infty$. We say that the space X has the *reciprocal Dunford-Pettis of* order p or RDP_p property if every weakly p-L-subset of X^{*} is relatively weakly compact.

If X has the RDP_p property, then X has the RDP property (since any L-subset of X^* is a weakly p-L-set). If p < q and X has the RDP_p property, then X has the RDP_q property.

The space X has the *Gelfand-Phillips (GP) property* (or is a *Gelfand-Phillips space*) if every limited subset of X is relatively compact. Schur spaces and separable spaces have the Gelfand-Phillips property, see [2].

The sequence (x_n) in X is called limited if the corresponding set of its terms is a limited set. If the sequence (x_n) is also weakly null (or weakly *p*-summable), then (x_n) is called a limited weakly null (or limited weakly *p*-summable, respectively) sequence in X.

An operator $T: X \to Y$ is called *limited completely continuous* (lcc) if it maps limited weakly null sequences to norm null sequences, see [22].

Let $1 \leq p < \infty$. A Banach space X has the *p*-Gelfand-Phillips(*p*-GP) property (or is a *p*-Gelfand-Phillips space) if every limited weakly *p*-summable sequence in X is norm null, see [13]. If X has the GP property, then X has the *p*-GP property for any $1 \leq p < \infty$.

3. The Dunford-Pettis property of order p

The following theorem gives equivalent conditions for a Banach space X to have the DPP_p. We note that an operator $T: X \to Y$ is p-convergent if and only if T takes weakly p-compact subsets of X into norm compact subsets of Y.

Theorem 1. Let 1 . The following statements are equivalent about a Banach space X.

- (1) X has the DPP_p .
- (2) If (x_n) is a weakly p-summable sequence in X and (x_n^*) is a weakly null sequence in X^* , then $x_n^*(x_n) \to 0$.
- (3) For all Banach spaces Y, every weakly compact operator $T: X \to Y$ is p-convergent.
- (4) Every weakly compact operator $T: X \to c_0$ is p-convergent.
- (5) If (x_n) is a weakly p-summable sequence in X and (x_n^*) is a weakly Cauchy sequence in X^* , then $x_n^*(x_n) \to 0$.
- (6) For all Banach spaces Y, every operator $T: X \to Y$ with weakly precompact adjoint is p-convergent.
- (7) Every operator $T: X \to c_0$ with weakly precompact adjoint is p-convergent.
- (8) If (x_n) is a weakly p-Cauchy sequence in X and (x_n^*) is a weakly null sequence in X^* , then $x_n^*(x_n) \to 0$.
- (9) If $T: Y \to X$ is a weakly *p*-precompact operator, then $T^*: X^* \to Y^*$ is completely continuous for all Banach spaces Y.
- (10) If $T: \ell_{p^*} \to X$ is an operator, then $T^*: X^* \to \ell_p$ is completely continuous.

PROOF: The statements (1), (2), and (3) are equivalent by [3, Proposition 3.2].

 $(2) \Rightarrow (5)$ Suppose (x_n) is a weakly *p*-summable sequence in X and (x_n^*) is a weakly Cauchy sequence in X^* , but $x_n^*(x_n) \neq 0$. By passing to a subsequence if necessary, assume that $|x_n^*(x_n)| > \epsilon$ for each $n \in \mathbb{N}$, for some $\epsilon > 0$. Let $n_1 = 1$ and choose $n_2 > n_1$ so that $|x_{n_1}^*(x_{n_2})| < \epsilon/2$. We can do this since (x_n) is weakly null. Continue inductively. Choose $n_{k+1} > n_k$ so that $|x_{n_k}^*(x_{n_{k+1}})| < \epsilon/2$. By hypothesis, $(x_{n_{k+1}}^* - x_{n_k}^*)(x_{n_{k+1}}) \to 0$. Since

$$|(x_{n_{k+1}}^* - x_{n_k}^*)(x_{n_{k+1}})| \ge |x_{n_{k+1}}^*(x_{n_{k+1}})| - |x_{n_k}^*(x_{n_{k+1}})| > \frac{\epsilon}{2},$$

we have a contradiction.

 $(5) \Rightarrow (6)$ Let $T: X \to Y$ be an operator with weakly precompact adjoint such that T is not p-convergent. Let (x_n) be a weakly p-summable sequence in X so that $||T(x_n)|| > \epsilon$. Let (y_n^*) be a sequence in B_{Y^*} such that $y_n^*(T(x_n)) > \epsilon$ and let $x_n^* = T^*(y_n^*)$. Since T^* is weakly precompact, we can assume that (x_n^*) is weakly Cauchy. By assumption, $x_n^*(x_n) = T^*(y_n^*)(x_n) \to 0$, a contradiction.

 $(3) \Rightarrow (4), (6) \Rightarrow (7), \text{ and } (7) \Rightarrow (4) \text{ are obvious.}$

 $(4) \Rightarrow (2)$ Let (x_n) be a weakly *p*-summable sequence in *X* and (x_n^*) be a weakly null sequence in *X*^{*}. Define $T: X \to c_0, T(x) = (x_i^*(x))$. Note that $T^*: \ell_1 \to X^*,$ $T^*(b) = \sum b_i x_i^*, b = (b_i) \in \ell_1$. Note that T^* takes B_{ℓ_1} into the closed and absolutely convex hull of $\{x_i^*: i \in \mathbb{N}\}$, which is a relatively weakly compact set, see [7, page 51]. Then T^* , hence *T*, is weakly compact. By assumption, *T* is *p*-convergent. Thus $|x_n^*(x_n)| \leq ||T(x_n)|| = \sup_i |x_i^*(x_n)| \to 0$. Thus (1)–(7) are equivalent.

 $(2) \Rightarrow (8)$ Let (x_n) be weakly *p*-Cauchy in X and (x_n^*) be weakly null in X^* . Suppose by contradiction that $x_n^*(x_n) \not\rightarrow 0$. Without loss of generality assume that $|x_n^*(x_n)| > \epsilon$ for each $n \in \mathbb{N}$, for some $\epsilon > 0$. Let $n_1 = 1$ and choose $n_2 > n_1$ so that $|x_{n_2}^*(x_{n_1})| < \epsilon/2$. We can do this since (x_n^*) is w^* -null. Continue inductively. Choose $n_k > n_{k-1}$ so that $|x_{n_k}^*(x_{n_{k-1}})| < \epsilon/2$. By hypothesis, $x_{n_k}^*(x_{n_k} - x_{n_{k-1}}) \rightarrow 0$. However,

$$|x_{n_k}^*(x_{n_k} - x_{n_{k-1}})| \ge |x_{n_k}^*(x_{n_k})| - |x_{n_k}^*(x_{n_{k-1}})| > \frac{\epsilon}{2},$$

a contradiction.

 $(8) \Rightarrow (2)$ is obvious, since every weakly *p*-summable sequence in X is weakly *p*-Cauchy.

 $(8) \Rightarrow (9)$ Suppose $T: Y \to X$ is a weakly *p*-precompact operator. Suppose $T^*: X^* \to Y^*$ is not completely continuous. Let (x_n^*) be a weakly null sequence in X^* such that $||T^*(x_n^*)|| > \epsilon$ for some $\epsilon > 0$. Choose (y_n) in B_Y such that $\langle T^*(x_n^*), y_n \rangle > \epsilon$. Without loss of generality we can assume that $(T(y_n))$ is weakly *p*-Cauchy. Hence $\langle T(y_n), x_n^* \rangle \to 0$, a contradiction.

(9) \Rightarrow (10) Suppose $T: \ell_{p^*} \to X$ is an operator. Since $1 < p^* < \infty, \ell_{p^*} \in W_p$, see [3, Proposition 1.4]. Then T is weakly p-compact. Thus T^* is completely continuous.

 $(10) \Rightarrow (2)$ Suppose (x_n) is a weakly *p*-summable sequence in X and (x_n^*) is a weakly null sequence in X^* . Define $T: \ell_{p^*} \to X$ by $T(b) = \sum b_i x_i, b = (b_i) \in \ell_{p^*}$. Note that $T^*: X^* \to \ell_p, T^*(x^*) = (x^*(x_i))$. Since T^* is completely continuous, $|x_n^*(x_n)|^p \leq ||T^*(x_n^*)|^p = \sum_i |x_n^*(x_i)|^p \to 0$.

Corollary 2. Let 1 . If X has the DPP_p and Y is complemented in X, then Y has the DPP_p.

PROOF: Suppose X has the DPP_p and let $P: X \to Y$ be a projection. Let (y_n) be a weakly p-summable sequence in Y and (y_n^*) be a weakly null sequence in Y^* . Since $(P^*y_n^*)$ is weakly null in X^* , by Theorem 1, $\langle y_n^*, P(y_n) \rangle = \langle P^*y_n^*, y_n \rangle \to 0$. Thus Y has the DPP_p.

Corollary 3. Let 1 . Then the following are equivalent:

- (i) X has the DPP_p ;
- (ii) every weakly precompact subset of X^* is a weakly p-L-set;
- (iii) every weakly p-precompact subset of X is a DP set.

PROOF: (i) \Rightarrow (ii) Suppose X has the DPP_p. Let A be weakly precompact subset of X^* and let (x_n^*) be a sequence in A. By passing to a subsequence, we may suppose that (x_n^*) is weakly Cauchy. Let (x_n) be a weakly p-summable sequence in X. By Theorem 1, $x_n^*(x_n) \to 0$. Hence A is a weakly p-L-set.

(ii) \Rightarrow (i) Let (x_n^*) be a weakly Cauchy sequence in X^* and (x_n) be a weakly *p*-summable sequence in *X*. Since $\{x_n^*: n \in \mathbb{N}\}$ is a weakly *p*-*L*-subset of X^* , $x_n^*(x_n) \to 0$. By Theorem 1, *X* has the DPP_p.

(i) \Rightarrow (iii) Suppose X has the DPP_p. Let A be a weakly p-precompact subset of X and let (x_n) be a sequence in A. By passing to a subsequence, we may suppose that (x_n) is weakly p-Cauchy. Suppose (x_n^*) is a weakly null sequence in X^{*}. By Theorem 1, $x_n^*(x_n) \to 0$. Hence A is a DP set.

(iii) \Rightarrow (i) Let (x_n) be a weakly *p*-summable sequence in *X* and (x_n^*) be a weakly null sequence in *X*^{*}. Since $\{x_n : n \in \mathbb{N}\}$ is a weakly *p*-precompact subset of *X*, it is a DP set. Then $x_n^*(x_n) \to 0$ and *X* has the DPP_p by Theorem 1. \Box

We note that an operator $T: X \to Y$ is *p*-convergent if and only if T takes weakly *p*-precompact subsets of X into norm compact subsets of Y.

Corollary 4. Let 1 .

- (i) Suppose $S: X \to Y$ is weakly p-precompact and $T: Y \to Z$ is weakly compact. If Y has the DPP_p, then TS is compact.
- (ii) Suppose X has the DPP_p. If $T: X \to X$ is a weakly p-compact operator, then T^2 is compact.

PROOF: (i) Suppose $S: X \to Y$ is weakly *p*-precompact and $T: Y \to Z$ is weakly compact. Since Y has the DPP_p, T is *p*-convergent. Then TS is compact.

(ii) Suppose X has the DPP_p and $T: X \to X$ is a weakly p-compact operator. Since T is weakly compact, T^2 is compact by (i).

Corollary 5. Let 1 .

- (i) Suppose X has the DPP_p . If $Y \in W_p$ and Y is complemented in X, then Y is finite dimensional.
- (ii) If Y is infinite dimensional and $Y \in W_p$, then Y does not have the DPP_p.

PROOF: (i) Let $P: X \to Y$ be a projection of X onto Y. Since $Y \in W_p$, P is weakly p-compact. By Corollary 4, $P = P^2$ is compact. Since $B_Y \subset P(B_X)$, B_Y is relatively compact. Thus Y is finite dimensional.

(ii) Apply (i).

The following result gives a characterization of dual spaces with the DPP_p .

Theorem 6. Let 1 . Let X be a Banach space. The following are equivalent.

- (i) X^* has the DPP_p.
- (ii) If $S: Y \to X^*$ is a weakly *p*-precompact operator, then $S^*: X^{**} \to Y^*$ is completely continuous for all Banach spaces Y.
- (iii) If $S: \ell_{p^*} \to X^*$ is an operator, then $S^*: X^{**} \to \ell_p$ is completely continuous.
- (iv) If $T: X \to Y$ is an operator such that $T^*: Y^* \to X^*$ is weakly p-precompact, then $T^{**}: X^{**} \to Y^{**}$ is completely continuous for all Banach spaces Y.
- (v) If $T: X \to Y$ is an operator such that $T^*: Y^* \to X^*$ is weakly *p*-compact, then $T^{**}: X^{**} \to Y$ is completely continuous for all Banach spaces Y.

(vi) If $T: X \to \ell_p$ is an operator, then $T^{**}: X^{**} \to \ell_p$ is completely continuous.

PROOF: (i), (ii), and (iii) are equivalent by Theorem 1.

(ii) \Rightarrow (iv) is clear.

(iv) \Rightarrow (v) is clear. We note that since T^* is weakly *p*-compact, T^* , thus *T*, is weakly compact. Hence $T^{**}(X^{**}) \subseteq Y$.

(v) \Rightarrow (vi) Suppose $T: X \to \ell_p$ is an operator. Since $1 < p^* < \infty$, $\ell_{p^*} \in W_p$, see [3, Proposition 1.4]. Then T^* is weakly *p*-compact. Thus T^{**} is completely continuous.

(vi) \Rightarrow (i) Suppose (x_n^*) is weakly *p*-summable in X^* and (x_n^{**}) is weakly null in X^{**} . Define $T: X \to \ell_p$ by $T(x) = (x_n^*(x))$. Then $T^*: \ell_{p^*} \to X^*, T^*(b) = \sum b_i x_i^*, b = (b_i) \in \ell_{p^*}$. If $x^{**} \in X^{**}$, then $T^{**}(x^{**}) = (x^{**}(x_i^*))$. Since T^{**} is completely continuous,

$$|x_n^{**}(x_n^*)|^p \le ||T^{**}(x_n^{**})||^p = \sum_i |x_n^{**}(x_i^*)|^p \to 0,$$

and thus X^* has the DPP_p.

In the following theorem we use a lifting result of Lohman.

Lemma 7 ([19]). Let X be a Banach space, Y a subspace not containing copies of ℓ_1 , and $Q: X \to X/Y$ the quotient map. Let (x_n) be a bounded sequence in X such that $(Q(x_n))$ is weakly Cauchy. Then (x_n) has a weakly Cauchy subsequence.

Let E be a Banach space and F be a subspace of E^* . Let

$${}^{\perp}F = \{x \in E : y^*(x) = 0 \text{ for all } y^* \in F\}.$$

The space C[0,1] has the DPP, and thus the DPP_p for all p. The space ℓ_2 embeds in C[0,1], but ℓ_2 fails the DPP_p for $p \geq 2$ (since $\ell_2 \in W_2$ by [3, Proposition 1.4], it fails the DPP₂, and thus the DPP_p for $p \geq 2$). Hence the DPP_p is not inherited by closed subspaces.

Theorem 8. Let $1 \leq p < \infty$. Suppose *E* has the DPP_p and *F* is a *w*^{*}-closed subspace of *E*^{*} not containing ℓ_1 . Then ${}^{\perp}F$ has the DPP_p.

PROOF: Suppose (x_n) is weakly *p*-summable in ${}^{\perp}F$ and (z_n^*) is weakly Cauchy in $({}^{\perp}F)^* \simeq E^*/F$. Let $Q: E^* \to E^*/F$ be the quotient map. By Lemma 7, we can assume that $z_n^* = Q(x_n^*)$, where (x_n^*) is weakly Cauchy in E^* . Let $i: {}^{\perp}F \to E$ be the isometric embedding. By [20, Theorem 1.10.16],

$$\langle x_n, Q(x_n^*) \rangle = \langle i(x_n), x_n^* \rangle.$$

Since *E* has the DPP_p, $\langle i(x_n), x_n^* \rangle \to 0$ by Theorem 1. Hence $\langle x_n, z_n^* \rangle \to 0$, and $^{\perp}F$ has the DPP_p.

214

4. Complementability of spaces of operators

We begin by studying the complementability of $W(X, \ell_{\infty})$ and $K(X, \ell_{\infty})$ in $C_p(X, \ell_{\infty})$.

Lemma 9 ([18, Proposition 5]). Let X be a separable Banach space, and $\varphi \colon \ell_{\infty} \to L(X, \ell_{\infty})$ be a bounded linear operator so that $\varphi(e_n) = 0$ for all n. Then there is an infinite subset M of N such that for each $b \in \ell_{\infty}(M)$, $\varphi(b) = 0$, where $\ell_{\infty}(M)$ is the set of all $b = (b_n) \in \ell_{\infty}$ with $b_n = 0$ for each $n \notin M$.

Observation 1 ([1, Lemma 2.4]). If $T: Y \to X^*$ is an operator such that $T^*|_X$ is weakly compact (or compact), then T is weakly compact (or compact, respectively). To see this, let $T: Y \to X^*$ be an operator such that $T^*|_X$ is weakly compact (or compact). Let $S = T^*|_X$. Suppose $x^{**} \in B_{X^{**}}$ and choose a net (x_α) in B_X which is w*-convergent to x^{**} . Then $(T^*(x_\alpha)) \xrightarrow{w^*} T^*(x^{**})$. Now, $(T^*(x_\alpha)) \subseteq S(B_X)$, which is a relatively weakly compact (or relatively compact) set. Then $(T^*(x_\alpha)) \xrightarrow{w} T^*(x^{**})$ (or $(T^*(x_\alpha)) \to T^*(x^{**})$). Hence $T^*(B_{X^{**}}) \subseteq \overline{S(B_X)}$, which is relatively weakly compact (or relatively compact). Therefore $T^*(B_{X^{**}})$ is relatively weakly compact (or relatively compact), and thus T is weakly compact (or compact, respectively).

Theorem 10. Let $1 . If X has the DPP_p and X does not have the RDP_p property, then W(X, <math>\ell_{\infty}$) is not complemented in C_p(X, ℓ_{∞}).

PROOF: Since X has the DPP_p, every weakly compact operator $T: X \to \ell_{\infty}$ is p-convergent. Let A be a weakly p-L-subset of X^{*} which is not relatively weakly compact. Let (x_n^*) be a sequence in A with no weakly convergent subsequence. Define $S: X \to \ell_{\infty}$ by $S(x) = (x_n^*(x))_n, x \in X$. Since $S^*(e_n^*) = x_n^*, S^*$, thus S, is not weakly compact. Let (y_n) be a sequence in B_X such that $(S(y_n))$ has no weakly convergent subsequence. Let $X_0 = [y_n]$ be the closed linear span of $\{y_n: n \in \mathbb{N}\}$. Note that X_0 is a separable subspace of X and $L = S|_{X_0}$ is not weakly compact. If $y_n^* = x_n^*|_{X_0}$, then $(y_n^*) \subseteq X_0^*$ is bounded and has no weakly convergent subsequence. (If (y_n^*) is weakly convergent, then $L^*|_{\ell_1}$ is weakly compact, since $L^*(e_n^*) = y_n^*$. By Observation 1, L is weakly compact. This is a contradiction.)

Define $T: \ell_{\infty} \to L(X, \ell_{\infty})$ by $T(b)(x) = (b_n x_n^*(x))_n$, $b = (b_n) \in \ell_{\infty}$, $x \in X$. Note that the operator T is well-defined and $T(e_n) = x_n^* \otimes e_n$ for each $n \in \mathbb{N}$. Let $b \in \ell_{\infty}$ and suppose that (x_m) is a weakly *p*-summable sequence in X. Since (x_n^*) is a weakly *p*-*L*-set,

$$\lim_{m} ||T(b)(x_m)|| = \lim_{m} \sup_{n} |b_n x_n^*(x_m)| = 0,$$

and thus T(b) is *p*-convergent.

Suppose that $W(X, \ell_{\infty})$ is complemented in $C_p(X, \ell_{\infty})$. Let $P: C_p(X, \ell_{\infty}) \to W(X, \ell_{\infty})$ be a projection, and let $R: L(X, \ell_{\infty}) \to L(X_0, \ell_{\infty})$ be the natural restriction map. Define $\varphi: \ell_{\infty} \to C_p(X_0, \ell_{\infty})$ by $\varphi(b) = RT(b)$ and $\psi: \ell_{\infty} \to C_p(X_0, \ell_{\infty})$

 $W(X_0, \ell_\infty)$ by $\psi(b) = RPT(b)$. Since $T(e_n)$ is a rank one operator, it is compact, hence weakly compact. Thus

$$\psi(e_n) = RPT(e_n) = RT(e_n) = \varphi(e_n)$$

for each $n \in \mathbb{N}$.

By Lemma 9, there is an infinite subset M of \mathbb{N} such that $\psi(\chi_M) = \varphi(\chi_M)$. Hence $\varphi(\chi_M)$ is weakly compact. However, $\varphi(\chi_M)^*(e_n^*) = y_n^*, n \in M$. This contradiction concludes the proof.

We note that every compact operator is *p*-convergent.

Theorem 11. Let $1 . If X is a Banach space such that <math>X^*$ contains a weakly *p*-L-subset which is not relatively compact, then $K(X, \ell_{\infty})$ is not complemented in $C_p(X, \ell_{\infty})$.

PROOF: The proof is similar to the proof of Theorem 10.

Corollary 12. Let $1 . Suppose <math>\ell_{\infty} \hookrightarrow Y$. Then the following assertions hold.

(i) If X has the DPP_p and does not have the RDP_p property, then W(X, Y) is not complemented in $C_p(X, Y)$.

 \Box

 (ii) If X* contains a weakly p-L-subset which is not relatively compact, then K(X,Y) is not complemented in C_p(X,Y).

PROOF: We only prove (i). The other proof is similar. Suppose that W(X, Y) is complemented in $C_p(X, Y)$. Since ℓ_{∞} is injective and $\ell_{\infty} \hookrightarrow Y$, $\ell_{\infty} \stackrel{c}{\longrightarrow} Y$, see [5, page 71]. Then $W(X, \ell_{\infty})$ is complemented in W(X, Y), and thus in $C_p(X, Y)$. Since $W(X, \ell_{\infty}) \subseteq C_p(X, \ell_{\infty}) \subseteq C_p(X, Y)$, it follows that $W(X, \ell_{\infty})$ is complemented in $C_p(X, \ell_{\infty})$, a contradiction with Theorem 10. Hence W(X, Y) is not complemented in $C_p(X, Y)$.

In the next corollary we need the following result.

Theorem 13 ([14, Theorem 21]). Let $1 \le p < \infty$. Suppose that X is a Banach space. The following are equivalent.

- (i) For every Banach space Y, if T: X → Y is a p-convergent operator, then T*: Y* → X* is weakly compact (or compact).
- (ii) The same as (i) with $Y = \ell_{\infty}$.
- (iii) Every weakly *p*-*L*-subset of X^* is relatively weakly compact (or relatively compact).

Corollary 14. Let 1 . Suppose X and Y are Banach spaces.

- 1. If X has the DPP_p property and $\ell_{\infty} \hookrightarrow Y$, then the following are equivalent:
 - (i) X has the RDP_p property;
 - (ii) $C_p(X,Y) = W(X,Y);$
 - (iii) W(X, Y) is complemented in $C_p(X, Y)$.

A note on Dunford-Pettis like properties and complemented spaces of operators

- 2. If $\ell_{\infty} \hookrightarrow Y$, then the following are equivalent: (i) $C_p(X,Y) = K(X,Y);$
 - (ii) K(X, Y) is complemented in $C_p(X, Y)$.

PROOF: 1. (i) \Rightarrow (ii) Since X has the RDP_p property, $C_p(X, Y) \subseteq W(X, Y)$ (by Theorem 13). Since X also has the DPP_p, $C_p(X, Y) = W(X, Y)$.

(iii) \Rightarrow (i) by Corollary 12.

2. (ii) \Rightarrow (i) Suppose there is a *p*-convergent operator $T: X \to Y$ which is not compact. By Theorem 13, X^* contains a weakly *p*-*L*-subset which is not relatively compact. Hence K(X, Y) is not complemented in $C_p(X, Y)$ by Corollary 12. \Box

Theorem 15. Let 1 . Suppose that U has an unconditional and seminor $malized basis <math>(u_i)$ with biorthogonal coefficients (u_i^*) , $U \stackrel{c}{\longrightarrow} X$, and $T: U \rightarrow Y$ is an operator such that $(T(u_i))$ is not relatively weakly p-compact in Y. Let S(X,Y) be a closed linear subspace of L(X,Y) which properly contains $W_p(X,Y)$ such that $\varphi(b) \in S(U,Y)$ for all $b \in \ell_{\infty}$, where $\varphi(b)(u) = \sum b_i u_i^*(u)T(u_i), u \in U$. Then $W_p(X,Y)$ is not complemented in S(X,Y).

PROOF: The proof is similar to the proof of [1, Theorem 20], replacing "relatively weakly *p*-compact" with "relatively compact". \Box

Corollary 16. Let $1 . If <math>\ell_1 \stackrel{c}{\hookrightarrow} X$ and $Y \notin W_p$, then $W_p(X, Y)$ is not complemented in L(X, Y).

PROOF: Let (y_n) be a sequence in B_Y with no weakly *p*-convergent subsequence and S(X,Y) = L(X,Y). Define $T: \ell_1 \to Y$ by $T(x) = \sum x_n y_n, x = (x_n) \in \ell_1$. Let $\varphi: \ell_{\infty} \to L(\ell_1,Y), \varphi(b)(x) = \sum b_n x_n y_n, x = (x_n) \in \ell_1$. Apply Theorem 15.

We use the following notation. Let $A: X \to \ell_{\infty}$ be an operator and M be a nonempty subset of N. We define $A_M: X \to \ell_{\infty}$ by

$$A_M(x) = \sum_{n \in M} e_n^*(A(x))e_n, \qquad x \in X.$$

A closed operator ideal \mathcal{O} has property (*) if whenever X is a Banach space and $A \notin \mathcal{O}(X, \ell_{\infty})$, then there is an infinite subset M_0 of \mathbb{N} such that $A_M \notin \mathcal{O}(X, \ell_{\infty})$ for all infinite subsets M of M_0 , see [1].

Theorem 17. Let 1 . The ideal of*p*-convergent operators has property (*).

PROOF: The idea for the proof comes from Theorem 2.17 in [1]. Let $A: X \to \ell_{\infty}$ be an operator which is not *p*-convergent. Let (x_n) be a weakly *p*-summable sequence in X and $\delta > 0$ such that $||A(x_n)|| > \delta$ for each $n \in \mathbb{N}$. Let $n_1 = 1$ and choose $N_1 \in \mathbb{N}$ such that $|e_{N_1}^*(A(x_{n_1}))| > \delta$. Since $(A(x_n))$ is weakly null, $\lim_n e_{N_1}^*(A(x_n)) = 0$. Choose $n_2 > n_1$ so that $|e_k^*(A(x_n))| < \delta$ for $n \ge n_2$ and $1 \le k \le N_1$. Choose $N_2 > N_1$ such that $|e_{N_2}^*(A(x_{n_2}))| > \delta$. Continuing this process

we obtain a subsequence (x_{n_i}) of (x_n) and an increasing sequence (N_i) of natural numbers such that $|e_{N_i}^*(A(x_{n_i}))| > \delta$ for each $i \in \mathbb{N}$. Let $M_0 = \{N_i : i = 1, 2, ...\}$. Note that M_0 is an infinite subset of \mathbb{N} and $||A_{M_0}(x_{n_i})|| \ge \delta$ for each $i \in \mathbb{N}$. If Mis an infinite subset of M_0 , then A_M is not *p*-convergent. Therefore the operator ideal of *p*-convergent operators has property (*).

We note that every *p*-convergent operator is unconditionally converging.

Theorem 18. Let $1 . If <math>X^*$ contains a V-set which is not a weakly *p*-L-set, then $C_p(X, \ell_{\infty})$ is not complemented in $U(X, \ell_{\infty})$.

PROOF: Let A be a V-subset of X^* which is not a weakly p-L-set. Let (x_n^*) be a sequence in A and (x_n) be a weakly p-summable sequence in X such that $|x_n^*(x_n)| \neq 0$. Without loss of generality assume that for some $\epsilon > 0$, $|x_n^*(x_n)| > \epsilon$ for all n. Define $S: X \to \ell_{\infty}$ by $S(x) = (x_n^*(x))_n, x \in X$. Since $||S(x_n)|| > \epsilon$, S is not p-convergent. Let $X_0 = [x_n]$ be the closed linear span of $\{x_n: n \in \mathbb{N}\}$. Note that X_0 is a separable subspace of X and $S|_{X_0}$ is not p-convergent. By Theorem 17, there is an infinite subset M_0 of \mathbb{N} so that $S_M \notin C_p(X_0, \ell_{\infty})$ for all infinite subsets M of M_0 .

Define $T: \ell_{\infty} \to L(X, \ell_{\infty})$ by $T(b)(x) = (b_n x_n^*(x))_n$, $b = (b_n) \in \ell_{\infty}$, $x \in X$. Note that the operator T is well-defined and $T(e_n) = x_n^* \otimes e_n$ for each $n \in \mathbb{N}$. Let $b \in \ell_{\infty}$ and suppose that $\sum x_m$ is weakly unconditionally convergent in X. Since (x_n^*) is a V-set,

$$\lim_{m} ||T(b)(x_m)|| = \lim_{m} \sup_{n} |b_n x_n^*(x_m)| = 0,$$

and thus T(b) is unconditionally converging.

Suppose that $C_p(X, \ell_{\infty})$ is complemented in $U(X, \ell_{\infty})$. Let $P: U(X, \ell_{\infty}) \to C_p(X, \ell_{\infty})$ be a projection, and let $R: L(X, \ell_{\infty}) \to L(X_0, \ell_{\infty})$ be the natural restriction map. Define $\varphi: \ell_{\infty} \to U(X_0, \ell_{\infty})$ by $\varphi(b) = RT(b)$ and $\psi: \ell_{\infty} \to C_p(X_0, \ell_{\infty})$ by $\psi(b) = RPT(b)$. Since $T(e_n)$ is a rank one operator,

$$\psi(e_n) = RPT(e_n) = RT(e_n) = \varphi(e_n)$$

for each $n \in \mathbb{N}$. By Lemma 9, there is an infinite subset M of M_0 such that $\psi(\chi_M) = \varphi(\chi_M)$. Therefore $\varphi(\chi_M)$ is *p*-convergent. Nevertheless, $\varphi(\chi_M) = T(\chi_M)|_{X_0} = S_M$. This contradiction proves that $C_p(X, \ell_\infty)$ is not complemented in $U(X, \ell_\infty)$.

Corollary 19. Let $1 . If X does not have the DPP_p, then <math>C_p(X, \ell_{\infty})$ is not complemented in $U(X, \ell_{\infty})$.

PROOF: Since X does not have the DPP_p, there exist a weakly p-summable sequence (x_n) in X and a weakly null sequence (x_n^*) in X^{*} such that $x_n^*(x_n) \not\rightarrow 0$. Since (x_n^*) is weakly null, it is a V-set, see [21]. Thus (x_n^*) is a V-subset of X^{*} which is not a weakly p-L-set. Apply Theorem 18. **Corollary 20.** Let $1 . If X does not have the DPP_p and <math>\ell_{\infty} \hookrightarrow Y$, then $C_p(X, Y)$ is not complemented in U(X, Y).

Corollary 21. Let $1 . Suppose X has property (V). If <math>\ell_{\infty} \hookrightarrow Y$, then the following are equivalent:

- (i) X has the DPP_p ;
- (ii) $C_p(X, Y) = U(X, Y);$
- (iii) $C_p(X, Y)$ is complemented in U(X, Y).

PROOF: (i) \Rightarrow (ii) Every unconditionally converging operator $T: X \to Y$ is *p*-convergent, since X has property (V) and the DPP_p. Since $C_p(X,Y) \subseteq U(X,Y)$, it follows that $C_p(X,Y) = U(X,Y)$.

(iii) \Rightarrow (i) by Corollary 20.

Theorem 22. Let $1 . If <math>X^*$ contains a weakly *p*-*L*-set which is not an *L*-set, then $CC(X, \ell_{\infty})$ is not complemented in $C_p(X, \ell_{\infty})$.

PROOF: Let A be a weakly p-L-set which is not an L-set. Let (x_n^*) be a sequence in A and (x_n) be a weakly null sequence in X such that for some $\epsilon > 0$, $|x_n^*(x_n)| > \epsilon$ for all n. Define $S: X \to \ell_{\infty}$ by $S(x) = (x_n^*(x))_n, x \in X$. Since $||S(x_n)|| > \epsilon$, S is not completely continuous. Let $X_0 = [x_n]$ be the closed linear span of $\{x_n: n \in \mathbb{N}\}$. Note that X_0 is a separable subspace of X and $S|_{X_0}$ is not completely continuous. By [1, Theorem 2.17], the ideal of completely continuous operators has property (*). Let M_0 be an infinite subset of \mathbb{N} so that $S_M \notin CC(X_0, \ell_{\infty})$ for all infinite subsets M of M_0 .

Define $T: \ell_{\infty} \to L(X, \ell_{\infty})$ by $T(b)(x) = (b_n x_n^*(x))_n$, $b = (b_n) \in \ell_{\infty}$, $x \in X$. Note that the operator T is well-defined and $T(e_n) = x_n^* \otimes e_n$ for each $n \in \mathbb{N}$. Since (x_n^*) is a weakly *p*-*L*-set, T(b) is *p*-convergent.

Suppose that $CC(X, \ell_{\infty})$ is complemented in $C_p(X, \ell_{\infty})$. Let $P: C_p(X, \ell_{\infty}) \to CC(X, \ell_{\infty})$ be a projection, and let $R: L(X, \ell_{\infty}) \to L(X_0, \ell_{\infty})$ be the natural restriction map. Define $\varphi: \ell_{\infty} \to C_p(X_0, \ell_{\infty})$ by $\varphi(b) = RT(b)$ and $\psi: \ell_{\infty} \to CC(X_0, \ell_{\infty})$ by $\psi(b) = RPT(b)$. Since $T(e_n)$ is a rank one operator,

$$\psi(e_n) = RPT(e_n) = RT(e_n) = \varphi(e_n)$$

for each $n \in \mathbb{N}$. By Lemma 9, there is an infinite subset M of M_0 such that $\psi(\chi_M) = \varphi(\chi_M)$. Hence $\varphi(\chi_M)$ is completely continuous. However, $\varphi(\chi_M) = T(\chi_M)|_{\chi_0} = S_M$. This is a contradiction that completes the proof. \Box

Corollary 23. Let $1 . If <math>X \in C_p$ and X does not have the Schur property, then $CC(X, \ell_{\infty})$ is not complemented in $C_p(X, \ell_{\infty})$.

PROOF: Since $X \in C_p$ and X does not have the Schur property, B_{X^*} is a weakly *p*-*L*-set which is not an *L*-set. Apply Theorem 22.

Tsirelson's space T is reflexive and $T \in C_p$ for all $p < \infty$, see [3]. Thus T satisfies the hypothesis of the previous corollary.

 \Box

Corollary 24. Let $1 . Suppose <math>X \in C_p$ and X does not have the Schur property. If $\ell_{\infty} \hookrightarrow Y$, then CC(X, Y) is not complemented in $C_p(X, Y)$.

Theorem 25. Let $1 . If <math>X \notin C_p$, then $C_p(X, \ell_\infty)$ is not complemented in $L(X, \ell_\infty)$.

PROOF: Suppose that (x_n) is a weakly *p*-summable normalized sequence in *X*. Since (x_n) is weakly null and normalized, we can assume that it is a basic sequence (by the Bessaga-Pełczynski selection principle, see [5]). Let $X_0 = [x_n]$ and let (x_n^*) be the associated sequence of coefficient functionals. For each $n \in \mathbb{N}$, let $f_n^* \in X^*$ be a Hahn-Banach extension of x_n^* . Define $T: \ell_{\infty} \to L(X, \ell_{\infty})$ by $T(b)(x) = (b_n f_n^*(x)), \ b = (b_n) \in \ell_{\infty}, \ x \in X$. Note that the operator *T* is well-defined and $T(e_n) = f_n^* \otimes e_n$ for each $n \in \mathbb{N}$.

Suppose that $C_p(X, \ell_{\infty})$ is complemented in $L(X, \ell_{\infty})$. Let $P: L(X, \ell_{\infty}) \to C_p(X, \ell_{\infty})$ be a projection, and let $R: L(X, \ell_{\infty}) \to L(X_0, \ell_{\infty})$ be the natural restriction map. Define $\varphi: \ell_{\infty} \to L(X_0, \ell_{\infty})$ by $\varphi(b) = RT(b)$ and $\psi: \ell_{\infty} \to C_p(X_0, \ell_{\infty})$ by $\psi(b) = RPT(b)$. Note that $\varphi(e_n) = x_n^* \otimes e_n = \psi(e_n)$ for each $n \in \mathbb{N}$. By Lemma 9, there is an infinite subset M of \mathbb{N} such that $\psi(\chi_M) = \varphi(\chi_M)$. Hence $\varphi(\chi_M)$ is *p*-convergent. However, $\varphi(\chi_M)(x_n) = e_n, n \in M$, a contradiction.

A Banach space X has the Gelfand-Phillips property if and only if every limited weakly null sequence in X is norm null, see [8].

Theorem 26. (i) If X does not have the Gelfand-Phillips property, then $Lcc(X, \ell_{\infty})$ is not complemented in $L(X, \ell_{\infty})$.

(ii) Let $1 . If X does not have the p-GP property, then <math>LC_p(X, \ell_{\infty})$ is not complemented in $L(X, \ell_{\infty})$.

PROOF: (i) Let (x_n) be a limited weakly null sequence in X of norm one. The proof is similar to that of Theorem 25.

(ii) Let (x_n) be a limited weakly *p*-summable sequence in X of norm one. The proof is similar to that of Theorem 25.

Corollary 27. Let $1 . Suppose <math>\ell_{\infty} \hookrightarrow Y$.

- (i) If $X \notin C_p$, then $C_p(X, Y)$ is not complemented in L(X, Y).
- (ii) If X does not have the Gelfand-Phillips property, then Lcc(X, Y) is not complemented in L(X, Y).
- (iii) If X does not have the p-GP property, then $LC_p(X,Y)$ is not complemented in L(X,Y).

Corollary 28. Suppose X and Y are Banach spaces, $\ell_{\infty} \hookrightarrow Y$, and 1 .Then the following are equivalent:

- (1) (i) $X \in C_p$; (ii) $C_p(X, Y) = L(X, Y)$;
 - (iii) $C_p(X, Y)$ is complemented in L(X, Y).

A note on Dunford-Pettis like properties and complemented spaces of operators

- (2) (i) X has the Gelfand-Phillips property;
 - (ii) $\operatorname{Lcc}(X, Y) = \operatorname{L}(X, Y);$
 - (iii) Lcc(X, Y) is complemented in L(X, Y).
- (3) (i) X has the p-GP property;
 - (ii) $\operatorname{LC}_p(X, Y) = \operatorname{L}(X, Y);$
 - (iii) $LC_p(X, Y)$ is complemented in L(X, Y).

PROOF: (i) \Rightarrow (ii) (1) If $X \in C_p$, then every operator $T: X \to Y$ is *p*-convergent. (2) If X has the Gelfand-Phillips property, then every operator $T: X \to Y$ is limited completely continuous. (3) If X has the *p*-GP property, then every operator $T: X \to Y$ is limited *p*-convergent.

(iii) \Rightarrow (i) by Corollary 27.

 \Box

References

- Bahreini M., Bator E., Ghenciu I., Complemented subspaces of linear bounded operators, Canad. Math. Bull. 55 (2012), no. 3, 449–461.
- [2] Bourgain J., Diestel J., Limited operators and strict cosingularity, Math. Nachr. 119 (1984), 55–58.
- [3] Castillo J. M. F., Sanchez F., Dunford-Pettis like properties of continuous vector function spaces, Rev. Mat. Univ. Complut. Madrid 6 (1993), no. 1, 43–59.
- [4] Diestel J., A survey of results related to the Dunford-Pettis property, Proc. of Conf. on Integration, Topology, and Geometry in Linear Spaces, Univ. North Carolina, Chapel Hill, 1979, Contemp. Math. 2 Amer. Math. Soc., Providence, 1980, pp. 15–60.
- [5] Diestel J., Sequences and Series in Banach Spaces, Graduate Texts in Mathematics, 92, Springer, New York, 1984.
- [6] Diestel J., Jarchow H., Tonge A., Absolutely Summing Operators, Cambridge Studies in Advanced Mathematics, 43, Cambridge University Press, Cambridge, 1995.
- [7] Diestel J., Uhl J.J. Jr., Vector Measures, Mathematical Surveys, 15, American Mathematical Society, Providence, 1977.
- [8] Drewnowski L., Emmanuele G., On Banach spaces with the Gelfand-Phillips property II, Rend. Circ. Mat. Palermo (2) 38 (1989), no. 3, 377–391.
- [9] Emmanuele G., Remarks on the uncomplemented subspace W(E, F), J. Funct. Anal. 99 (1991), no. 1, 125–130.
- [10] Emmanuele G., A remark on the containment of c₀ in spaces of compact operators, Math. Proc. Cambridge Philos. Soc. **111** (1992), no. 2, 331–335.
- [11] Emmanuele G., John K., Uncomplementability of spaces of compact operators in larger spaces of operators, Czechoslovak Math. J. 47(122) (1997), no. 1, 19–32.
- [12] Feder M., On subspaces of spaces with an unconditional basis and spaces of operators, Illinois J. Math. 24 (1980), no. 2, 196–205.
- [13] Fourie J. H., Zeekoei E. D., On weak-star p-convergent operators, Quaest. Math. 40 (2017), no. 5, 563–579.
- [14] Ghenciu I., The p-Gelfand Phillips property in spaces of operators and Dunford-Pettis like sets, available at arXiv:1803.00351v1 [math.FA] (2018), 16 pages.
- [15] Ghenciu I., Lewis P., The Dunford-Pettis property, the Gelfand-Phillips property, and Lsets, Colloq. Math. 106 (2006), no. 2, 311–324.
- [16] Grothendieck A., Sur les applications linéaires faiblement compactes d'espaces du type C(K), Canadian J. Math. 5 (1953), 129–173 (French).
- [17] John K., On the uncomplemented subspace K(X, Y), Czechoslovak Math. J. 42(117) (1992), no. 1, 167–173.

- [18] Kalton N. J., Spaces of compact operators, Math. Ann. 208 (1974), 267-278.
- [19] Lohman R. H., A note on Banach spaces containing l₁, Canad. Math. Bull. 19 (1976), no. 3, 365–367.
- [20] Megginson R. E., An Introduction to Banach Space Theory, Graduate Texts in Mathematics, 183, Springer, New York, 1998.
- [21] Pełczyński A., Banach spaces on which every unconditionally converging operator is weakly compact, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 10 (1962), 641–648.
- [22] Salimi M., Moshtaghiun S.M., The Gelfand-Phillips property in closed subspaces of some operator spaces, Banach J. Math. Anal. 5 (2011), no. 2, 84–92.

I. Ghenciu:

MATHEMATICS DEPARTMENT, UNIVERSITY OF WISCONSIN-RIVER FALLS, WISCONSIN, 54022, U.S.A.

E-mail: ioana.ghenciu@uwrf.edu

(Received November 27, 2017, revised December 18, 2017)