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A note on Dunford-Pettis like properties

and complemented spaces of operators

Ioana Ghenciu

Abstract. Equivalent formulations of the Dunford-Pettis property of order p

(DPPp), 1 < p < ∞, are studied. Let L(X, Y ), W(X, Y ), K(X,Y ), U(X,Y ),
and Cp(X, Y ) denote respectively the sets of all bounded linear, weakly compact,
compact, unconditionally converging, and p-convergent operators from X to Y .
Classical results of Kalton are used to study the complementability of the spaces
W(X, Y ) and K(X, Y ) in the space Cp(X, Y ), and of Cp(X, Y ) in U(X, Y ) and
L(X, Y ).
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1. Introduction

In this paper we study equivalent formulations of the DPPp, 1 < p < ∞. We
give a characterization of dual Banach spaces with the DPPp. We show that X∗

has the DPPp if and only if every operator T : X → Y with weakly p-compact
adjoint has a completely continuous bitranspose, 1 < p < ∞. Our results are
motivated by results in [3].

For many years mathematicians have been interested in the problem of whether
an operator ideal is complemented in the space L(X,Y ) of all bounded linear
operators between X and Y , e.g. see [10], [9], [17], [12], and [11]. In [1] the
authors studied the complementability of the space W(X, ℓ∞) in L(X, ℓ∞). It
was shown that if X is not reflexive, then W(X, ℓ∞) is not complemented in
L(X, ℓ∞), see [1, Theorem 3]. Let CC(X,Y ), Lcc(X,Y ), or LCp(X,Y ) denote
the set of all completely continuous, limited completely continuous, or limited
p-convergent, respectively, operators from X to Y . We use classical results of
Kalton to study the complementability of W(X,Y ), K(X,Y ), and CC(X,Y ) in
Cp(X,Y ), and of Cp(X,Y ) in U(X,Y ). Further, we study the complementability
of Cp(X,Y ), Lcc(X,Y ), and LCp(X,Y ) in L(X,Y ).
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2. Definitions and notation

Throughout this paper, X , Y , E and F denote Banach spaces. The unit ball of
X is denoted by BX and X∗ denotes the continuous linear dual of X . The space
X embeds in Y (in symbols X →֒ Y ) if X is isomorphic to a closed subspace
of Y . An operator T : X → Y is a continuous and linear function. The set of
all operators, weakly compact operators, and compact operators from X to Y is
denoted by L(X,Y ), W(X,Y ), and K(X,Y ).

A subset S of X is said to be weakly precompact provided that every sequence
from S has a weakly Cauchy subsequence. An operator T : X → Y is called
weakly precompact (or almost weakly compact) if T (BX) is weakly precompact.

An operator T : X → Y is called completely continuous (or Dunford-Pettis) if
T maps weakly convergent sequences to norm convergent sequences.

For 1 ≤ p <∞, p∗ denotes the conjugate of p. If p = 1, ℓp∗ plays the role of c0.
The unit vector basis of ℓp is denoted by (en).

Let 1 ≤ p ≤ ∞. A sequence (xn) in X is called weakly p-summable sequence
if (x∗(xn)) ∈ ℓp for each x∗ ∈ X∗ [6, page 32]. Let ℓwp (X) denote the set of all
weakly p-summable sequences in X . The space ℓwp (X) is a Banach space with the
norm

‖(xn)‖wp = sup

{( ∞
∑

n=1

|〈x∗, xn〉|
p

)1/p

: x∗ ∈ BX∗

}

.

We recall the following isometries: L(ℓp∗ , X) ≃ ℓwp (X) for 1 < p < ∞;
L(c0, X) ≃ ℓwp (X) for p = 1; T → (T (en)), see [6, Proposition 2.2, page 36].

A series
∑

xn in X is said to be weakly unconditionally convergent if for ev-
ery x∗ ∈ X∗ the series

∑

|x∗(xn)| is convergent. An operator T : X → Y is
unconditionally converging if it maps weakly unconditionally convergent series to
unconditionally convergent ones.

Let 1 ≤ p ≤ ∞. An operator T : X → Y is called p-convergent if T maps
weakly p-summable sequences into norm null sequences, see [3]. The set of all
p-convergent operators is denoted by Cp(X,Y ).

The 1-convergent operators are precisely the unconditionally converging ope-
rators and the ∞-convergent operators are precisely the completely continuous
operators. If p < q, then Cq(X,Y ) ⊆ Cp(X,Y ).

A sequence (xn) in X is called weakly p-convergent to x ∈ X if the sequence
(xn − x) is weakly p-summable, see [3]. Weakly ∞-convergent sequences are
precisely the weakly convergent sequences.

Let 1 ≤ p ≤ ∞. A bounded subset K of X is relatively weakly p-compact if
every sequence in K has a weakly p-convergent subsequence. An operator T :
X → Y is weakly p-compact if T (BX) is relatively weakly p-compact, see [3].

The set of weakly p-compact operators T : X → Y is denoted by Wp(X,Y ).
If p < q, then Wp(X,Y ) ⊆ Wq(X,Y ). A Banach space X ∈ Cp (or X ∈ Wp) if
id(X) ∈ Cp(X,X) (or id(X) ∈ Wp(X,X), respectively), see [3], where id(X) is
the identity map on X .
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A sequence (xn) in X is called weakly p-Cauchy if (xnk
− xmk

) is weakly p-
summable for any increasing sequences (nk) and (mk) of positive integers.

Every weakly p-convergent sequence is weakly p-Cauchy, and the weakly ∞-
Cauchy sequences are precisely the weakly Cauchy sequences.

Let 1 ≤ p ≤ ∞. We say that a subset S of X is called weakly p-precompact
if every sequence from S has a weakly p-Cauchy subsequence. The weakly ∞-
precompact sets are precisely the weakly precompact sets.

Let 1 ≤ p ≤ ∞. An operator T : X → Y is called weakly p-precompact (or
almost weakly p-compact) if T (BX) is weakly p-precompact. The set of all weakly
p-precompact operators is denoted by WPCp(X,Y ). We say that X ∈ WPCp if
id(X) ∈ WPCp(X,X).

The weakly ∞-precompact operators are precisely the weakly precompact ope-
rators. If p < q, then ℓwp (X) ⊆ ℓwq (X), thus WPCp(X,Y ) ⊆ WPCq(X,Y ).

A Banach space X has the Dunford-Pettis property (DPP) if every weakly
compact operator T : X → Y is completely continuous for any Banach space Y .
Equivalently, X has the DPP if and only if x∗n(xn) → 0 whenever (x∗n) is weakly
null in X∗ and (xn) is weakly null in X , see [4, Theorem 1]. If X is a C(K)-space
or an L1-space, then X has the DPP. The reader can check [5], [4], and [7] for
results related to the DPP.

The bounded subset A of X is called a Dunford-Pettis (or limited) subset of
X if each weakly null (or w∗-null, respectively) sequence (x∗n) in X∗ tends to 0
uniformly on A; i.e.

sup
x∈A

|x∗n(x)| → 0.

The bounded subset A of X∗ is called an L-subset of X∗ if each weakly null
sequence (xn) in X tends to 0 uniformly on A; i.e.

sup
x∗∈A

|x∗(xn)| → 0.

A bounded subset A of X∗ is called a V -subset of X∗ provided that

sup
x∗∈A

|x∗(xn)| → 0

for each weakly unconditionally convergent series
∑

xn in X .
The Banach space X has property (V) if every V -subset of X∗ is relatively

weakly compact. The following results were established in [21]: C(K) spaces
and reflexive spaces have property (V); X has property (V) if and only if every
unconditionally converging operator T from X to any Banach space Y is weakly
compact.

Let 1 ≤ p ≤ ∞. A Banach space X has the Dunford-Pettis property of order p
(DPPp) if every weakly compact operator T : X → Y is p-convergent for any
Banach space Y , see [3].

If X has the DPPp, then it has the DPPq, if q < p. Also, the DPP∞ is precisely
the DPP, and every Banach space X has the DPP1. C(K) spaces and L1 have
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the DPP, and thus the DPPp for all p. If 1 < r < ∞, then ℓr has the DPPp for
p < r∗. If 1 < r < ∞, then Lr(µ) has the DPPp for p < min(2, r∗). Tsirelson’s
space T has the DPPp for all p < ∞. Since T is reflexive, it does not have the
DPP. Tsirelson’s dual space T ∗ does not have the DPPp, if p > 1, see [3].

Let 1 ≤ p < ∞. We say that a bounded subset A of X∗ is called a weakly
p-L-set if for all weakly p-summable sequences (xn) in X ,

sup
x∗∈A

|x∗(xn)| → 0.

The weakly 1-L-subsets of X∗ are precisely the V -subsets. If p < q, then
a weakly q-L-subset is a weakly p-L-subset, since ℓwp (X) ⊆ ℓwq (X).

The Banach space X has the reciprocal Dunford-Pettis (RDP) property if ev-
ery completely continuous operator T from X to any Banach space Y is weakly
compact, see [16, page 153]. The space X has the RDP property if and only if
every L-subset of X∗ is relatively weakly compact, see [15]. Banach spaces with
property (V ) of Pe lczyński, in particular reflexive spaces and C(K) spaces, have
the RDP property, see [21].

Let 1 ≤ p < ∞. We say that the space X has the reciprocal Dunford-Pettis of
order p or RDPp property if every weakly p-L-subset of X∗ is relatively weakly
compact.

If X has the RDPp property, then X has the RDP property (since any L-subset
of X∗ is a weakly p-L-set). If p < q and X has the RDPp property, then X has
the RDPq property.

The space X has the Gelfand-Phillips (GP) property (or is a Gelfand-Phillips
space) if every limited subset of X is relatively compact. Schur spaces and sepa-
rable spaces have the Gelfand-Phillips property, see [2].

The sequence (xn) in X is called limited if the corresponding set of its terms is
a limited set. If the sequence (xn) is also weakly null (or weakly p-summable), then
(xn) is called a limited weakly null (or limited weakly p-summable, respectively)
sequence in X .

An operator T : X → Y is called limited completely continuous (lcc) if it maps
limited weakly null sequences to norm null sequences, see [22].

Let 1 ≤ p <∞. A Banach space X has the p-Gelfand-Phillips(p-GP ) property
(or is a p-Gelfand-Phillips space) if every limited weakly p-summable sequence in
X is norm null, see [13]. If X has the GP property, then X has the p-GP property
for any 1 ≤ p <∞.

3. The Dunford-Pettis property of order p

The following theorem gives equivalent conditions for a Banach space X to
have the DPPp. We note that an operator T : X → Y is p-convergent if and only
if T takes weakly p-compact subsets of X into norm compact subsets of Y .
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Theorem 1. Let 1 < p < ∞. The following statements are equivalent about
a Banach space X .

(1) X has the DPPp.
(2) If (xn) is a weakly p-summable sequence in X and (x∗n) is a weakly null

sequence in X∗, then x∗n(xn) → 0.
(3) For all Banach spaces Y , every weakly compact operator T : X → Y is

p-convergent.
(4) Every weakly compact operator T : X → c0 is p-convergent.
(5) If (xn) is a weakly p-summable sequence inX and (x∗n) is a weakly Cauchy

sequence in X∗, then x∗n(xn) → 0.
(6) For all Banach spaces Y , every operator T : X → Y with weakly precom-

pact adjoint is p-convergent.
(7) Every operator T : X → c0 with weakly precompact adjoint is p-conver-

gent.
(8) If (xn) is a weakly p-Cauchy sequence in X and (x∗n) is a weakly null

sequence in X∗, then x∗n(xn) → 0.
(9) If T : Y → X is a weakly p-precompact operator, then T ∗ : X∗ → Y ∗ is

completely continuous for all Banach spaces Y .
(10) If T : ℓp∗ → X is an operator, then T ∗ : X∗ → ℓp is completely continu-

ous.

Proof: The statements (1), (2), and (3) are equivalent by [3, Proposition 3.2].
(2) ⇒ (5) Suppose (xn) is a weakly p-summable sequence in X and (x∗n) is

a weakly Cauchy sequence in X∗, but x∗n(xn) 6→ 0. By passing to a subsequence
if necessary, assume that |x∗n(xn)| > ǫ for each n ∈ N, for some ǫ > 0. Let n1 = 1
and choose n2 > n1 so that |x∗n1

(xn2
)| < ǫ/2. We can do this since (xn) is weakly

null. Continue inductively. Choose nk+1 > nk so that |x∗nk
(xnk+1

)| < ǫ/2. By
hypothesis, (x∗nk+1

− x∗nk
)(xnk+1

) → 0. Since

|(x∗nk+1
− x∗nk

)(xnk+1
)| ≥ |x∗nk+1

(xnk+1
)| − |x∗nk

(xnk+1
)| >

ǫ

2
,

we have a contradiction.
(5) ⇒ (6) Let T : X → Y be an operator with weakly precompact adjoint such

that T is not p-convergent. Let (xn) be a weakly p-summable sequence in X so
that ‖T (xn)‖ > ǫ. Let (y∗n) be a sequence in BY ∗ such that y∗n(T (xn)) > ǫ and let
x∗n = T ∗(y∗n). Since T ∗ is weakly precompact, we can assume that (x∗n) is weakly
Cauchy. By assumption, x∗n(xn) = T ∗(y∗n)(xn) → 0, a contradiction.

(3) ⇒ (4), (6) ⇒ (7), and (7) ⇒ (4) are obvious.
(4) ⇒ (2) Let (xn) be a weakly p-summable sequence in X and (x∗n) be a weakly

null sequence in X∗. Define T : X → c0, T (x) = (x∗i (x)). Note that T ∗ : ℓ1 → X∗,
T ∗(b) =

∑

bix
∗
i , b = (bi) ∈ ℓ1. Note that T ∗ takes Bℓ1 into the closed and

absolutely convex hull of {x∗i : i ∈ N}, which is a relatively weakly compact set,
see [7, page 51]. Then T ∗, hence T , is weakly compact. By assumption, T is
p-convergent. Thus |x∗n(xn)| ≤ ‖T (xn)‖ = supi |x

∗
i (xn)| → 0.
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Thus (1)–(7) are equivalent.
(2) ⇒ (8) Let (xn) be weakly p-Cauchy in X and (x∗n) be weakly null in X∗.

Suppose by contradiction that x∗n(xn) 6→ 0. Without loss of generality assume
that |x∗n(xn)| > ǫ for each n ∈ N, for some ǫ > 0. Let n1 = 1 and choose
n2 > n1 so that |x∗n2

(xn1
)| < ǫ/2. We can do this since (x∗n) is w∗-null. Continue

inductively. Choose nk > nk−1 so that |x∗nk
(xnk−1

)| < ǫ/2. By hypothesis,
x∗nk

(xnk
− xnk−1

) → 0. However,

|x∗nk
(xnk

− xnk−1
)| ≥ |x∗nk

(xnk
)| − |x∗nk

(xnk−1
)| >

ǫ

2
,

a contradiction.
(8) ⇒ (2) is obvious, since every weakly p-summable sequence in X is weakly

p-Cauchy.
(8) ⇒ (9) Suppose T : Y → X is a weakly p-precompact operator. Suppose

T ∗ : X∗ → Y ∗ is not completely continuous. Let (x∗n) be a weakly null sequence
in X∗ such that ‖T ∗(x∗n)‖ > ǫ for some ǫ > 0. Choose (yn) in BY such that
〈T ∗(x∗n), yn〉 > ǫ. Without loss of generality we can assume that (T (yn)) is weakly
p-Cauchy. Hence 〈T (yn), x∗n〉 → 0, a contradiction.

(9) ⇒ (10) Suppose T : ℓp∗ → X is an operator. Since 1 < p∗ < ∞, ℓp∗ ∈ Wp,
see [3, Proposition 1.4]. Then T is weakly p-compact. Thus T ∗ is completely
continuous.

(10) ⇒ (2) Suppose (xn) is a weakly p-summable sequence in X and (x∗n)
is a weakly null sequence in X∗. Define T : ℓp∗ → X by T (b) =

∑

bixi, b =
(bi) ∈ ℓp∗ . Note that T ∗ : X∗ → ℓp, T ∗(x∗) = (x∗(xi)). Since T ∗ is completely
continuous, |x∗n(xn)|p ≤ ‖T ∗(x∗n)‖p =

∑

i |x
∗
n(xi)|

p → 0. �

Corollary 2. Let 1 < p <∞. If X has the DPPp and Y is complemented in X ,
then Y has the DPPp.

Proof: Suppose X has the DPPp and let P : X → Y be a projection. Let (yn)
be a weakly p-summable sequence in Y and (y∗n) be a weakly null sequence in Y ∗.
Since (P ∗y∗n) is weakly null in X∗, by Theorem 1, 〈y∗n, P (yn)〉 = 〈P ∗y∗n, yn〉 → 0.
Thus Y has the DPPp. �

Corollary 3. Let 1 < p <∞. Then the following are equivalent:

(i) X has the DPPp;
(ii) every weakly precompact subset of X∗ is a weakly p-L-set;

(iii) every weakly p-precompact subset of X is a DP set.

Proof: (i) ⇒ (ii) Suppose X has the DPPp. Let A be weakly precompact subset
of X∗ and let (x∗n) be a sequence in A. By passing to a subsequence, we may
suppose that (x∗n) is weakly Cauchy. Let (xn) be a weakly p-summable sequence
in X . By Theorem 1, x∗n(xn) → 0. Hence A is a weakly p-L-set.

(ii) ⇒ (i) Let (x∗n) be a weakly Cauchy sequence in X∗ and (xn) be a weakly
p-summable sequence in X . Since {x∗n : n ∈ N} is a weakly p-L-subset of X∗,
x∗n(xn) → 0. By Theorem 1, X has the DPPp.
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(i) ⇒ (iii) Suppose X has the DPPp. Let A be a weakly p-precompact subset
of X and let (xn) be a sequence in A. By passing to a subsequence, we may
suppose that (xn) is weakly p-Cauchy. Suppose (x∗n) is a weakly null sequence
in X∗. By Theorem 1, x∗n(xn) → 0. Hence A is a DP set.

(iii) ⇒ (i) Let (xn) be a weakly p-summable sequence in X and (x∗n) be a weakly
null sequence in X∗. Since {xn : n ∈ N} is a weakly p-precompact subset of X , it
is a DP set. Then x∗n(xn) → 0 and X has the DPPp by Theorem 1. �

We note that an operator T : X → Y is p-convergent if and only if T takes
weakly p-precompact subsets of X into norm compact subsets of Y .

Corollary 4. Let 1 < p <∞.

(i) Suppose S : X → Y is weakly p-precompact and T : Y → Z is weakly
compact. If Y has the DPPp, then TS is compact.

(ii) Suppose X has the DPPp. If T : X → X is a weakly p-compact operator,
then T 2 is compact.

Proof: (i) Suppose S : X → Y is weakly p-precompact and T : Y → Z is weakly
compact. Since Y has the DPPp, T is p-convergent. Then TS is compact.

(ii) Suppose X has the DPPp and T : X → X is a weakly p-compact operator.
Since T is weakly compact, T 2 is compact by (i). �

Corollary 5. Let 1 < p <∞.

(i) Suppose X has the DPPp. If Y ∈ Wp and Y is complemented in X , then
Y is finite dimensional.

(ii) If Y is infinite dimensional and Y ∈Wp, then Y does not have the DPPp.

Proof: (i) Let P : X → Y be a projection of X onto Y . Since Y ∈ Wp, P is
weakly p-compact. By Corollary 4, P = P 2 is compact. Since BY ⊂ P (BX),
BY is relatively compact. Thus Y is finite dimensional.

(ii) Apply (i). �

The following result gives a characterization of dual spaces with the DPPp.

Theorem 6. Let 1 < p < ∞. Let X be a Banach space. The following are
equivalent.

(i) X∗ has the DPPp.
(ii) If S : Y → X∗ is a weakly p-precompact operator, then S∗ : X∗∗ → Y ∗ is

completely continuous for all Banach spaces Y .
(iii) If S : ℓp∗ → X∗ is an operator, then S∗ : X∗∗ → ℓp is completely contin-

uous.
(iv) If T : X → Y is an operator such that T ∗ : Y ∗ → X∗ is weakly p-

precompact, then T ∗∗ : X∗∗ → Y ∗∗ is completely continuous for all Ba-
nach spaces Y .

(v) If T : X → Y is an operator such that T ∗ : Y ∗ → X∗ is weakly p-compact,
then T ∗∗ : X∗∗ → Y is completely continuous for all Banach spaces Y .
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(vi) If T : X → ℓp is an operator, then T ∗∗ : X∗∗ → ℓp is completely continu-
ous.

Proof: (i), (ii), and (iii) are equivalent by Theorem 1.
(ii) ⇒ (iv) is clear.
(iv) ⇒ (v) is clear. We note that since T ∗ is weakly p-compact, T ∗, thus T , is

weakly compact. Hence T ∗∗(X∗∗) ⊆ Y .
(v) ⇒ (vi) Suppose T : X → ℓp is an operator. Since 1 < p∗ < ∞, ℓp∗ ∈ Wp,

see [3, Proposition 1.4]. Then T ∗ is weakly p-compact. Thus T ∗∗ is completely
continuous.

(vi) ⇒ (i) Suppose (x∗n) is weakly p-summable in X∗ and (x∗∗n ) is weakly null in
X∗∗. Define T : X → ℓp by T (x) = (x∗n(x)). Then T ∗ : ℓp∗ → X∗, T ∗(b) =

∑

bix
∗
i ,

b = (bi) ∈ ℓp∗ . If x∗∗ ∈ X∗∗, then T ∗∗(x∗∗) = (x∗∗(x∗i )). Since T ∗∗ is completely
continuous,

|x∗∗n (x∗n)|p ≤ ‖T ∗∗(x∗∗n )‖p =
∑

i

|x∗∗n (x∗i )|p → 0,

and thus X∗ has the DPPp. �

In the following theorem we use a lifting result of Lohman.

Lemma 7 ([19]). Let X be a Banach space, Y a subspace not containing copies
of ℓ1, and Q : X → X/Y the quotient map. Let (xn) be a bounded sequence in X
such that (Q(xn)) is weakly Cauchy. Then (xn) has a weakly Cauchy subsequence.

Let E be a Banach space and F be a subspace of E∗. Let

⊥F = {x ∈ E : y∗(x) = 0 for all y∗ ∈ F}.

The space C[0, 1] has the DPP, and thus the DPPp for all p. The space
ℓ2 embeds in C[0, 1], but ℓ2 fails the DPPp for p ≥ 2 (since ℓ2 ∈ W2 by [3,
Proposition 1.4], it fails the DPP2, and thus the DPPp for p ≥ 2). Hence the
DPPp is not inherited by closed subspaces.

Theorem 8. Let 1 ≤ p < ∞. Suppose E has the DPPp and F is a w∗-closed
subspace of E∗ not containing ℓ1. Then

⊥F has the DPPp.

Proof: Suppose (xn) is weakly p-summable in ⊥F and (z∗n) is weakly Cauchy in
(⊥F )∗ ≃ E∗/F . Let Q : E∗ → E∗/F be the quotient map. By Lemma 7, we can
assume that z∗n = Q(x∗n), where (x∗n) is weakly Cauchy in E∗. Let i : ⊥F → E be
the isometric embedding. By [20, Theorem 1.10.16],

〈xn, Q(x∗n)〉 = 〈i(xn), x∗n〉.

Since E has the DPPp, 〈i(xn), x∗n〉 → 0 by Theorem 1. Hence 〈xn, z
∗
n〉 → 0, and

⊥F has the DPPp. �
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4. Complementability of spaces of operators

We begin by studying the complementability of W(X, ℓ∞) and K(X, ℓ∞) in
Cp(X, ℓ∞).

Lemma 9 ([18, Proposition 5]). LetX be a separable Banach space, and ϕ : ℓ∞ →
L(X, ℓ∞) be a bounded linear operator so that ϕ(en) = 0 for all n. Then there is
an infinite subset M of N such that for each b ∈ ℓ∞(M), ϕ(b) = 0, where ℓ∞(M)
is the set of all b = (bn) ∈ ℓ∞ with bn = 0 for each n /∈M .

Observation 1 ([1, Lemma 2.4]). If T : Y → X∗ is an operator such that T ∗|X
is weakly compact (or compact), then T is weakly compact (or compact, re-
spectively). To see this, let T : Y → X∗ be an operator such that T ∗|X is
weakly compact (or compact). Let S = T ∗|X . Suppose x∗∗ ∈ BX∗∗ and choose

a net (xα) in BX which is w∗-convergent to x∗∗. Then (T ∗(xα))
w

∗

−−→ T ∗(x∗∗).
Now, (T ∗(xα)) ⊆ S(BX), which is a relatively weakly compact (or relatively

compact) set. Then (T ∗(xα))
w
−→ T ∗(x∗∗) (or (T ∗(xα)) → T ∗(x∗∗)). Hence

T ∗(BX∗∗) ⊆ S(BX), which is relatively weakly compact (or relatively compact).
Therefore T ∗(BX∗∗) is relatively weakly compact (or relatively compact), and
thus T is weakly compact (or compact, respectively).

Theorem 10. Let 1 < p < ∞. If X has the DPPp and X does not have the
RDPp property, then W(X, ℓ∞) is not complemented in Cp(X, ℓ∞).

Proof: Since X has the DPPp, every weakly compact operator T : X → ℓ∞ is
p-convergent. Let A be a weakly p-L-subset of X∗ which is not relatively weakly
compact. Let (x∗n) be a sequence in A with no weakly convergent subsequence.
Define S : X → ℓ∞ by S(x) = (x∗n(x))n, x ∈ X . Since S∗(e∗n) = x∗n, S∗, thus S,
is not weakly compact. Let (yn) be a sequence in BX such that (S(yn)) has
no weakly convergent subsequence. Let X0 = [yn] be the closed linear span
of {yn : n ∈ N}. Note that X0 is a separable subspace of X and L = S|X0

is not weakly compact. If y∗n = x∗n|X0
, then (y∗n) ⊆ X∗

0 is bounded and has
no weakly convergent subsequence. (If (y∗n) is weakly convergent, then L∗|ℓ1 is
weakly compact, since L∗(e∗n) = y∗n. By Observation 1, L is weakly compact.
This is a contradiction.)

Define T : ℓ∞ → L(X, ℓ∞) by T (b)(x) = (bn x
∗
n(x))n, b = (bn) ∈ ℓ∞, x ∈ X .

Note that the operator T is well-defined and T (en) = x∗n⊗ en for each n ∈ N. Let
b ∈ ℓ∞ and suppose that (xm) is a weakly p-summable sequence in X . Since (x∗n)
is a weakly p-L-set,

lim
m

‖T (b)(xm)‖ = lim
m

sup
n

|bn x
∗
n(xm)| = 0,

and thus T (b) is p-convergent.
Suppose that W (X, ℓ∞) is complemented in Cp(X, ℓ∞). Let P : Cp(X, ℓ∞) →

W(X, ℓ∞) be a projection, and let R : L(X, ℓ∞) → L(X0, ℓ∞) be the natural
restriction map. Define ϕ : ℓ∞ → Cp(X0, ℓ∞) by ϕ(b) = RT (b) and ψ : ℓ∞ →
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W(X0, ℓ∞) by ψ(b) = RPT (b). Since T (en) is a rank one operator, it is compact,
hence weakly compact. Thus

ψ(en) = RPT (en) = RT (en) = ϕ(en)

for each n ∈ N.
By Lemma 9, there is an infinite subset M of N such that ψ(χM ) = ϕ(χM ).

Hence ϕ(χM ) is weakly compact. However, ϕ(χM )∗(e∗n) = y∗n, n ∈ M . This
contradiction concludes the proof. �

We note that every compact operator is p-convergent.

Theorem 11. Let 1 < p < ∞. If X is a Banach space such that X∗ con-
tains a weakly p-L-subset which is not relatively compact, then K(X, ℓ∞) is not
complemented in Cp(X, ℓ∞).

Proof: The proof is similar to the proof of Theorem 10. �

Corollary 12. Let 1 < p <∞. Suppose ℓ∞ →֒ Y . Then the following assertions
hold.

(i) If X has the DPPp and does not have the RDPp property, then W(X,Y )
is not complemented in Cp(X,Y ).

(ii) If X∗ contains a weakly p-L-subset which is not relatively compact, then
K(X,Y ) is not complemented in Cp(X,Y ).

Proof: We only prove (i). The other proof is similar. Suppose that W(X,Y )

is complemented in Cp(X,Y ). Since ℓ∞ is injective and ℓ∞ →֒ Y , ℓ∞
c

−֒→ Y ,
see [5, page 71]. Then W(X, ℓ∞) is complemented in W(X,Y ), and thus in
Cp(X,Y ). Since W(X, ℓ∞) ⊆ Cp(X, ℓ∞) ⊆ Cp(X,Y ), it follows that W(X, ℓ∞) is
complemented in Cp(X, ℓ∞), a contradiction with Theorem 10. Hence W(X,Y )
is not complemented in Cp(X,Y ). �

In the next corollary we need the following result.

Theorem 13 ([14, Theorem 21]). Let 1 ≤ p < ∞. Suppose that X is a Banach
space. The following are equivalent.

(i) For every Banach space Y , if T : X → Y is a p-convergent operator, then
T ∗ : Y ∗ → X∗ is weakly compact (or compact).

(ii) The same as (i) with Y = ℓ∞.
(iii) Every weakly p-L-subset of X∗ is relatively weakly compact (or relatively

compact).

Corollary 14. Let 1 < p <∞. Suppose X and Y are Banach spaces.

1. If X has the DPPp property and ℓ∞ →֒ Y , then the following are equiv-
alent:

(i) X has the RDPp property;
(ii) Cp(X,Y ) = W(X,Y );

(iii) W(X,Y ) is complemented in Cp(X,Y ).
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2. If ℓ∞ →֒ Y , then the following are equivalent:
(i) Cp(X,Y ) = K(X,Y );

(ii) K(X,Y ) is complemented in Cp(X,Y ).

Proof: 1. (i) ⇒ (ii) Since X has the RDPp property, Cp(X,Y ) ⊆ W(X,Y ) (by
Theorem 13). Since X also has the DPPp, Cp(X,Y ) = W(X,Y ).

(iii) ⇒ (i) by Corollary 12.
2. (ii) ⇒ (i) Suppose there is a p-convergent operator T : X → Y which is not

compact. By Theorem 13, X∗ contains a weakly p-L-subset which is not relatively
compact. Hence K(X,Y ) is not complemented in Cp(X,Y ) by Corollary 12. �

Theorem 15. Let 1 < p <∞. Suppose that U has an unconditional and seminor-

malized basis (ui) with biorthogonal coefficients (u∗i ), U
c

−֒→ X , and T : U → Y
is an operator such that (T (ui)) is not relatively weakly p-compact in Y . Let
S(X,Y ) be a closed linear subspace of L(X,Y ) which properly contains Wp(X,Y )
such that ϕ(b) ∈ S(U, Y ) for all b ∈ ℓ∞, where ϕ(b)(u) =

∑

biu
∗
i (u)T (ui), u ∈ U .

Then Wp(X,Y ) is not complemented in S(X,Y ).

Proof: The proof is similar to the proof of [1, Theorem 20], replacing “relatively
weakly p-compact” with “relatively compact”. �

Corollary 16. Let 1 < p < ∞. If ℓ1
c

−֒→ X and Y /∈ Wp, then Wp(X,Y ) is not
complemented in L(X,Y ).

Proof: Let (yn) be a sequence in BY with no weakly p-convergent subsequence
and S(X,Y ) = L(X,Y ). Define T : ℓ1 → Y by T (x) =

∑

xn yn, x = (xn) ∈ ℓ1.
Let ϕ : ℓ∞ → L(ℓ1, Y ), ϕ(b)(x) =

∑

bn xn yn, x = (xn) ∈ ℓ1. Apply Theorem 15.
�

We use the following notation. Let A : X → ℓ∞ be an operator and M be
a nonempty subset of N. We define AM : X → ℓ∞ by

AM (x) =
∑

n∈M

e∗n(A(x))en, x ∈ X.

A closed operator ideal O has property (∗) if whenever X is a Banach space and
A /∈ O(X, ℓ∞), then there is an infinite subset M0 of N such that AM /∈ O(X, ℓ∞)
for all infinite subsets M of M0, see [1].

Theorem 17. Let 1 < p < ∞. The ideal of p-convergent operators has pro-
perty (∗).

Proof: The idea for the proof comes from Theorem 2.17 in [1]. Let A : X → ℓ∞
be an operator which is not p-convergent. Let (xn) be a weakly p-summable
sequence in X and δ > 0 such that ‖A(xn)‖ > δ for each n ∈ N. Let n1 = 1
and choose N1 ∈ N such that |e∗N1

(A(xn1
))| > δ. Since (A(xn)) is weakly null,

limn e
∗
N1

(A(xn)) = 0. Choose n2 > n1 so that |e∗k(A(xn))| < δ for n ≥ n2 and 1 ≤
k ≤ N1. Choose N2 > N1 such that |e∗N2

(A(xn2
))| > δ. Continuing this process
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we obtain a subsequence (xni
) of (xn) and an increasing sequence (Ni) of natural

numbers such that |e∗Ni
(A(xni

))| > δ for each i ∈ N. Let M0 = {Ni : i = 1, 2, . . .}.
Note that M0 is an infinite subset of N and ‖AM0

(xni
)‖ ≥ δ for each i ∈ N. If M

is an infinite subset of M0, then AM is not p-convergent. Therefore the operator
ideal of p-convergent operators has property (∗). �

We note that every p-convergent operator is unconditionally converging.

Theorem 18. Let 1 < p < ∞. If X∗ contains a V -set which is not a weakly
p-L-set, then Cp(X, ℓ∞) is not complemented in U(X, ℓ∞).

Proof: Let A be a V -subset of X∗ which is not a weakly p-L-set. Let (x∗n)
be a sequence in A and (xn) be a weakly p-summable sequence in X such that
|x∗n(xn)| 6→ 0. Without loss of generality assume that for some ǫ > 0, |x∗n(xn)| > ǫ
for all n. Define S : X → ℓ∞ by S(x) = (x∗n(x))n, x ∈ X . Since ‖S(xn)‖ > ǫ,
S is not p-convergent. Let X0 = [xn] be the closed linear span of {xn : n ∈ N}.
Note that X0 is a separable subspace of X and S|X0

is not p-convergent. By
Theorem 17, there is an infinite subset M0 of N so that SM /∈ Cp(X0, ℓ∞) for all
infinite subsets M of M0.

Define T : ℓ∞ → L(X, ℓ∞) by T (b)(x) = (bn x
∗
n(x))n, b = (bn) ∈ ℓ∞, x ∈ X .

Note that the operator T is well-defined and T (en) = x∗n⊗ en for each n ∈ N. Let
b ∈ ℓ∞ and suppose that

∑

xm is weakly unconditionally convergent in X . Since
(x∗n) is a V -set,

lim
m

‖T (b)(xm)‖ = lim
m

sup
n

|bn x
∗
n(xm)| = 0,

and thus T (b) is unconditionally converging.
Suppose that Cp(X, ℓ∞) is complemented in U(X, ℓ∞). Let P : U(X, ℓ∞) →

Cp(X, ℓ∞) be a projection, and let R : L(X, ℓ∞) → L(X0, ℓ∞) be the natural
restriction map. Define ϕ : ℓ∞ → U(X0, ℓ∞) by ϕ(b) = RT (b) and ψ : ℓ∞ →
Cp(X0, ℓ∞) by ψ(b) = RPT (b). Since T (en) is a rank one operator,

ψ(en) = RPT (en) = RT (en) = ϕ(en)

for each n ∈ N. By Lemma 9, there is an infinite subset M of M0 such that
ψ(χM ) = ϕ(χM ). Therefore ϕ(χM ) is p-convergent. Nevertheless, ϕ(χM ) =
T (χM )|X0

= SM . This contradiction proves that Cp(X, ℓ∞) is not complemented
in U(X, ℓ∞). �

Corollary 19. Let 1 < p < ∞. If X does not have the DPPp, then Cp(X, ℓ∞)
is not complemented in U(X, ℓ∞).

Proof: Since X does not have the DPPp, there exist a weakly p-summable se-
quence (xn) in X and a weakly null sequence (x∗n) in X∗ such that x∗n(xn) 6→ 0.
Since (x∗n) is weakly null, it is a V -set, see [21]. Thus (x∗n) is a V -subset of X∗

which is not a weakly p-L-set. Apply Theorem 18. �
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Corollary 20. Let 1 < p < ∞. If X does not have the DPPp and ℓ∞ →֒ Y ,
then Cp(X,Y ) is not complemented in U(X,Y ).

Corollary 21. Let 1 < p < ∞. Suppose X has property (V). If ℓ∞ →֒ Y , then
the following are equivalent:

(i) X has the DPPp;
(ii) Cp(X,Y ) = U(X,Y );
(iii) Cp(X,Y ) is complemented in U(X,Y ).

Proof: (i) ⇒ (ii) Every unconditionally converging operator T : X → Y is p-
convergent, since X has property (V) and the DPPp. Since Cp(X,Y ) ⊆ U(X,Y ),
it follows that Cp(X,Y ) = U(X,Y ).

(iii) ⇒ (i) by Corollary 20. �

Theorem 22. Let 1 < p < ∞. If X∗ contains a weakly p-L-set which is not an
L-set, then CC(X, ℓ∞) is not complemented in Cp(X, ℓ∞).

Proof: Let A be a weakly p-L-set which is not an L-set. Let (x∗n) be a sequence in
A and (xn) be a weakly null sequence in X such that for some ǫ > 0, |x∗n(xn)| > ǫ
for all n. Define S : X → ℓ∞ by S(x) = (x∗n(x))n, x ∈ X . Since ‖S(xn)‖ >
ǫ, S is not completely continuous. Let X0 = [xn] be the closed linear span
of {xn : n ∈ N}. Note that X0 is a separable subspace of X and S|X0

is not
completely continuous. By [1, Theorem 2.17], the ideal of completely continuous
operators has property (∗). Let M0 be an infinite subset of N so that SM /∈
CC(X0, ℓ∞) for all infinite subsets M of M0.

Define T : ℓ∞ → L(X, ℓ∞) by T (b)(x) = (bn x
∗
n(x))n, b = (bn) ∈ ℓ∞, x ∈ X .

Note that the operator T is well-defined and T (en) = x∗n ⊗ en for each n ∈ N.
Since (x∗n) is a weakly p-L-set, T (b) is p-convergent.

Suppose that CC(X, ℓ∞) is complemented in Cp(X, ℓ∞). Let P : Cp(X, ℓ∞) →
CC(X, ℓ∞) be a projection, and let R : L(X, ℓ∞) → L(X0, ℓ∞) be the natural
restriction map. Define ϕ : ℓ∞ → Cp(X0, ℓ∞) by ϕ(b) = RT (b) and ψ : ℓ∞ →
CC(X0, ℓ∞) by ψ(b) = RPT (b). Since T (en) is a rank one operator,

ψ(en) = RPT (en) = RT (en) = ϕ(en)

for each n ∈ N. By Lemma 9, there is an infinite subset M of M0 such that
ψ(χM ) = ϕ(χM ). Hence ϕ(χM ) is completely continuous. However, ϕ(χM ) =
T (χM )|X0

= SM . This is a contradiction that completes the proof. �

Corollary 23. Let 1 < p < ∞. If X ∈ Cp and X does not have the Schur
property, then CC(X, ℓ∞) is not complemented in Cp(X, ℓ∞).

Proof: Since X ∈ Cp and X does not have the Schur property, BX∗ is a weakly
p-L-set which is not an L-set. Apply Theorem 22. �

Tsirelson’s space T is reflexive and T ∈ Cp for all p < ∞, see [3]. Thus T
satisfies the hypothesis of the previous corollary.
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Corollary 24. Let 1 < p <∞. Suppose X ∈ Cp and X does not have the Schur
property. If ℓ∞ →֒ Y , then CC(X,Y ) is not complemented in Cp(X,Y ).

Theorem 25. Let 1 < p <∞. If X /∈ Cp, then Cp(X, ℓ∞) is not complemented
in L(X, ℓ∞).

Proof: Suppose that (xn) is a weakly p-summable normalized sequence in X .
Since (xn) is weakly null and normalized, we can assume that it is a basic sequence
(by the Bessaga-Pe lczynski selection principle, see [5]). Let X0 = [xn] and let
(x∗n) be the associated sequence of coefficient functionals. For each n ∈ N, let
f∗
n ∈ X∗ be a Hahn-Banach extension of x∗n. Define T : ℓ∞ → L(X, ℓ∞) by
T (b)(x) = (bn f

∗
n(x)), b = (bn) ∈ ℓ∞, x ∈ X . Note that the operator T is

well-defined and T (en) = f∗
n ⊗ en for each n ∈ N.

Suppose that Cp(X, ℓ∞) is complemented in L(X, ℓ∞). Let P : L(X, ℓ∞) →
Cp(X, ℓ∞) be a projection, and let R : L(X, ℓ∞) → L(X0, ℓ∞) be the natural
restriction map. Define ϕ : ℓ∞ → L(X0, ℓ∞) by ϕ(b) = RT (b) and ψ : ℓ∞ →
Cp(X0, ℓ∞) by ψ(b) = RPT (b). Note that ϕ(en) = x∗n ⊗ en = ψ(en) for each
n ∈ N. By Lemma 9, there is an infinite subset M of N such that ψ(χM ) =
ϕ(χM ). Hence ϕ(χM ) is p-convergent. However, ϕ(χM )(xn) = en, n ∈ M ,
a contradiction. �

A Banach spaceX has the Gelfand-Phillips property if and only if every limited
weakly null sequence in X is norm null, see [8].

Theorem 26. (i) If X does not have the Gelfand-Phillips property, then
Lcc(X, ℓ∞) is not complemented in L(X, ℓ∞).

(ii) Let 1 < p <∞. If X does not have the p-GP property, then LCp(X, ℓ∞)
is not complemented in L(X, ℓ∞).

Proof: (i) Let (xn) be a limited weakly null sequence in X of norm one. The
proof is similar to that of Theorem 25.

(ii) Let (xn) be a limited weakly p-summable sequence in X of norm one. The
proof is similar to that of Theorem 25. �

Corollary 27. Let 1 < p <∞. Suppose ℓ∞ →֒ Y .

(i) If X /∈ Cp, then Cp(X,Y ) is not complemented in L(X,Y ).
(ii) If X does not have the Gelfand-Phillips property, then Lcc(X,Y ) is not

complemented in L(X,Y ).
(iii) If X does not have the p-GP property, then LCp(X,Y ) is not comple-

mented in L(X,Y ).

Corollary 28. Suppose X and Y are Banach spaces, ℓ∞ →֒ Y , and 1 < p <∞.
Then the following are equivalent:

(1) (i) X ∈ Cp;
(ii) Cp(X,Y ) = L(X,Y );
(iii) Cp(X,Y ) is complemented in L(X,Y ).
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(2) (i) X has the Gelfand-Phillips property;
(ii) Lcc(X,Y ) = L(X,Y );
(iii) Lcc(X,Y ) is complemented in L(X,Y ).

(3) (i) X has the p-GP property;
(ii) LCp(X,Y ) = L(X,Y );
(iii) LCp(X,Y ) is complemented in L(X,Y ).

Proof: (i) ⇒ (ii) (1) If X ∈ Cp, then every operator T : X → Y is p-convergent.
(2) If X has the Gelfand-Phillips property, then every operator T : X → Y is lim-
ited completely continuous. (3) If X has the p-GP property, then every operator
T : X → Y is limited p-convergent.

(iii) ⇒ (i) by Corollary 27. �
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[21] Pe lczyński A., Banach spaces on which every unconditionally converging operator is weakly

compact, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 10 (1962), 641–648.
[22] Salimi M., Moshtaghiun S. M., The Gelfand-Phillips property in closed subspaces of some

operator spaces, Banach J. Math. Anal. 5 (2011), no. 2, 84–92.

I. Ghenciu:

Mathematics Department, University of Wisconsin-River Falls, Wisconsin,

54022, U.S.A.

E-mail: ioana.ghenciu@uwrf.edu

(Received November 27, 2017, revised December 18, 2017)


