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Linear and metric maps on trees via Markov graphs

Sergiy Kozerenko

Abstract. The main focus of combinatorial dynamics is put on the structure of
periodic points (and the corresponding orbits) of topological dynamical systems.
The first result in this area is the famous Sharkovsky’s theorem which completely
describes the coexistence of periods of periodic points for a continuous map from
the closed unit interval to itself. One feature of this theorem is that it can be
proved using digraphs of a special type (the so-called periodic graphs). In this
paper we use Markov graphs (which are the natural generalization of periodic
graphs in case of dynamical systems on trees) as a tool to study several classes
of maps on trees. The emphasis is put on linear and metric maps.
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1. Introduction

Given a set X (finite or infinite) and a map f : X → X from X to itself the
pair (X, f) is called a (combinatorial) dynamical system. If X is a topological
space and f is a continuous map, then we obtain topological dynamical system.
An element x ∈ X is called periodic point for f if fn(x) = x for some n ≥ 1, where
fn denotes the nth iterate function of f . If n is the smallest number with the
above property, then it is called the period of x. Fixed points are periodic points of
period one. Combinatorial dynamics mainly deals with the structure of periodic
points and their orbits. The first result in this area is the celebrated Sharkovsky’s
theorem which completely describes the coexistence of periods of periodic points
for a continuous map from the closed unit interval to itself. To present this result
we must consider the following linear ordering of natural numbers:

1⊳2⊳22⊳ · · ·⊳2n⊳ · · ·⊳7 ·2n⊳5 ·2n⊳3 ·2n⊳ · · ·⊳7 ·2⊳5 ·2⊳3 ·2⊳ · · ·⊳7⊳5⊳3.

The ordering ⊳ is called Sharkovsky ordering and it plays an important role in
one-dimensional dynamics because of the following result.

Theorem 1.1 ([10]). If the continuous map f : [0, 1] → [0, 1] has a periodic point
of period n, then it also has a periodic point of period m for all m⊳n. Moreover,
for every m there exists a continuous map that has a periodic point of period m
but does not have periodic points of periods n, where m⊳ n.
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Sharkovsky’s theorem can be proved using purely combinatorial arguments
which involve digraphs of a special type (see [2], [11]). Namely, let f : [0, 1] → [0, 1]
be a continuous map and x ∈ [0, 1] be its periodic point of period n ≥ 2. Consider
the corresponding orbit orbf (x) = {x, f(x), . . . , fn−1(x)} and its natural ordering
inherited from the interval, i.e. let orbf (x) = {x1 < · · · < xn}. Since x is
a periodic point, the restriction of f to orbf (x) is a cyclic permutation of orbf (x).
Periodic graph is then defined as a directed graph with the vertex set {1, . . . , n−1}
(each 1 ≤ i ≤ n − 1 represents the minimal interval [xi, xi+1]) and with the
arc set {(i, j) : min{f(xi), f(xi+1)} ≤ xj < max{f(xi), f(xi+1)}}. Since f is
continuous, each cycle in the periodic graph corresponds to some periodic point
of f . Moreover, if the cycle does not consists of a smaller cycle traced several
times, then the period of the corresponding periodic point equals the length of
a cycle.

In [1] Bernhardt used a similar approach to prove a Sharkovsky-type result
for the continuous maps on finite topological trees. The corresponding digraphs
are called Markov graphs and they resemble all important properties of periodic
graphs.

Such a crucial role that Markov graphs play in combinatorial dynamics is a rea-
son to study these digraphs from graph-theoretic point of view. It seems that the
first results in this direction were obtained by Pavlenko [7], [8], [9]. In particu-
lar, the number of non-isomorphic periodic graphs with given number of vertices
was calculated in [7]. Graph-theoretic criteria for periodic graphs and for their
induced subgraphs were presented in [8] and [9], respectively.

In this paper we study several classes of maps on combinatorial trees via their
Markov graphs. The emphasis is put on linear and metric maps. Roughly speak-
ing, linear maps are those maps which preserve metric intervals between pairs
of vertices and metric maps are natural generalization of homomorphisms. We
obtain several “dual” criteria for linear and metric maps on trees and show that
linear metric maps can be characterized as maps which minimize the number of
arcs in Markov graphs. Moreover, we use linear maps to study one particular
class of trees named spiders.

2. Definitions and preliminary results

To the end of this paper a map is just a function. If f : X → Y is a map and
A ⊂ X is some subset, then by f |A we denote the restriction of f to A. Also, the
symbols Im f and fix f denote the image and the set of all fixed points of a map f ,
respectively.

2.1 Graphs. A graph G is a pair of sets (V,E), where V = V (G) is the set of
vertices and E = E(G) is the set of edges which are unordered pairs of vertices
of G. Two vertices u, v ∈ V (G) are adjacent if there is an edge uv ∈ E(G). The
set NG(u) = {v ∈ V (G) : uv ∈ E(G)} is called the neighborhood of a vertex u
in a graph G. The number dG(u) = |NG(u)| is called the degree of u. A graph
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G is called m-regular if dG(u) = m for all vertices u ∈ V (G). Given a set of
vertices A ⊂ V (G) we write G[A] for the subgraph of G induced by A, that is
G[A] = (A,E(A)), where E(A) = {uv ∈ E(G) : u, v ∈ A}.

Two graphs are isomorphic if there exists a bijection between their vertex sets
which preserves the adjacency in both ways. Every such a bijection is called an
isomorphism. If two graphs G1 and G2 are isomorphic, then we write G1 ≃ G2.

A graph is called connected if for any pair of its vertices there exists a path
joining them. The distance dG(u, v) between two vertices u, v ∈ V (G) in a con-
nected graph G is the number of edges in a shortest u − v path. The set of
vertices [u, v]G = {x ∈ V (G) : dG(u, x)+dG(x, v) = dG(u, v)} is called an interval

between u and v. It is also convenient to write (u, v)X = [u, v]X − {u, v} for any
pair of vertices u, v ∈ V (G). We put diamG = max{dG(u, v) : u, v ∈ V (G)} for
the diameter of a connected graph G. For every set of vertices A ⊂ V (G) in
a connected graph G we set diamA = diamG[A].

For an edge e = uv ∈ E(G) in a connected graph G we define the next “half-
space” AG(u, v) = {x ∈ V (G) : dG(u, x) ≤ dG(v, x)}.

A unique (up to isomorphism) connected 2-regular graph with n ≥ 3 vertices
is called a cycle and denoted by Cn.

The set of vertices A ⊂ V (G) in a graph G is called connected if the induced
subgraph G[A] is connected. By definition the empty set is connected. The set
of vertices A ⊂ V (G) in a connected graph G is called convex if for any pair of
vertices u, v ∈ A we have [u, v]G ⊂ A. Obviously, each convex set is connected.
The convex hull ConvG(A) of a given set A ⊂ V (G) is the smallest convex set
containing A. The set of vertices A ⊂ V (G) in a connected graph G is called
Chebyshev if for every vertex u ∈ V (G) there exists a unique vertex vu ∈ A such
that dG(u, vu) = dG(u,A) = min{dG(u, x) : x ∈ A}. The corresponding map
prA : V (G) → V (G), where prA(u) = vu is called a projection on a Chebyshev
set A. Note that a constant map is a projection on a singleton subset. Also,
observe that a Chebyshev set of vertices need not to be connected.

A connected graph G is called median if given a triple of its vertices u, v,
w ∈ V (G) the set [u, v]G ∩ [v, w]G ∩ [u,w]G is a singleton. The corresponding
unique vertex is called a median of the triple u, v, w and denoted by mG(u, v, w).

A tree is a connected acyclic graph. It is easy to see that each tree is a median
graph. Also, note that each connected set of vertices in a tree is Chebyshev.
A vertex u ∈ V (X) in a tree X is a leaf provided dX(u) = 1. The set of all
leaf vertices of X is denoted by L(X). A path is a tree X with |L(X)| ≤ 2.
A path with n ≥ 1 vertices is denoted by Pn. Similarly, a star is a tree X with
|L(X)| ≥ |V (X)|− 1. A tree is called spider if it has at most one vertex of degree
at least three. If such a vertex exists, it will be called the center of a spider.
Paths and stars are prime examples of spiders.

A directed graph or just a digraph D is a pair of sets (V,A), where V = V (D)
is the set of vertices and A = A(D) ⊂ V × V is the set of arcs of D. Sometimes
we would write x → y for the arc (x, y). A loop is an arc of the form x → x.
The outdegree d+D(x) of a vertex x in a digraph D is the number of arcs of the



176 Kozerenko S.

form x → y. Similarly, the indegree d−D(x) of x is the number of arcs of the form
y → x.

Suppose X is some set and f : X → X is a map from X to itself. A functional

graph of the map f is a digraph with the vertex set X and the arc set {(x, y):
y = f(x)}. Thus, functional digraphs are characterized as digraphs D with the
property d+D(x) = 1 for every vertex x ∈ V (D). Similarly, a digraph D is called

partial functional if d+D(x) ≤ 1 for all vertices x ∈ V (D). Examples of functional
and partial functional digraphs are provided by directed cycles and paths.

For a given digraphD its converse digraphDco has a vertex set V (Dco) = V (D)
and there is an arc x → y in Dco if there is an arc y → x in D.

A digraph is called weakly connected if its underlying undirected graph is con-
nected. A weak component of a given digraph is its maximal weakly connected
subgraph.

Having some fixed linear ordering on the set of vertices V (D) = {x1, . . . , xn} of
a digraph D, one can define its adjacency matrix which is a matrix MD = (aij),
where aij = 1 if xi → xj in D and aij = 0 otherwise. For every k ≥ 1 the
kth power Mk

D of the adjacency matrix MD has the following interpretation: if
Mk

D = (akij), then akij equals the number of directed walks of length k from the
vertex xi to the vertex xj in D.

2.2 Classes of maps between graphs. Let G1 and G2 be two connected
graphs. A map f : V (G1) → V (G2) is called

1. homomorphism if uv ∈ E(G1) implies f(u)f(v) ∈ E(G2);
2. metric if dG2

(f(u), f(v)) ≤ dG1
(u, v) for all u, v ∈ V (G1);

3. linear if f([u, v]G1
) ⊂ [f(u), f(v)]G2

for all u, v ∈ V (G1);
4. continuous if [f(u), f(v)]G2

⊂ f([u, v]G1
) for all u, v ∈ V (G1);

5. monotone if the pre-image f−1(y) of every vertex y ∈ V (G2) is a con-
nected set in G1.

For example, each injective map is monotone. Similarly, if f : V (G1) → V (G2)
is a linear map between two connected graphs G1 and G2, then for all y ∈ V (G2)
and u, v ∈ f−1(y) we have f([u, v]G1

) ⊂ [f(u), f(v)]G2
= {y}. This means that

[u, v]G1
⊂ f−1(y) and therefore f−1(y) is a convex set. Thus, every linear map is

monotone. However, not every monotone map is linear. To see this consider the
path G ≃ P3 with three vertices, where V (G) = {1, 2, 3}, E(G) = {12, 23} and

its map f =

(

1 2 3
1 3 2

)

. Then f is a bijective and thus a monotone map, but

f([1, 3]G)− [f(1), f(3)]G = {3} 6= ∅.

Proposition 2.1. Let G be a connected graph and A ⊂ V (G) be a Chebyshev
set. Then the projection prA is a monotone map.

Proof: We prove that for every y ∈ A and every u ∈ pr−1
A (y) it holds [u, y]G ⊂

pr−1
A (y). Namely, if x ∈ [u, y]G, then dG(u, prA(x)) ≤ dG(u, x) + dG(x, prA(x)) ≤

dG(u, x) + dG(x, y) = dG(u, y) = dG(u, prA(u)). Therefore, prA(x) = prA(u) = y.
�
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Proposition 2.2. Let G1, G2 be two connected graphs and f : V (G1) → V (G2)
be some map. Then f is a metric map if and only if dG2

(f(u), f(v)) ≤ 1 for all
edges uv ∈ E(G1).

Proof: The necessity of this condition is obvious. We prove the sufficiency using
induction on dG1

(u, v). Induction basis trivially holds. Now let dG1
(u, v) = n+1.

Fix a vertex x ∈ [u, v]G1
with ux ∈ E(G1). Then dG1

(x, v) = n and thus by induc-
tion assumption dG2

(f(x), f(v)) ≤ dG1
(x, v) = n. Therefore, dG2

(f(u), f(v)) ≤
dG2

(f(u), f(x)) + dG2
(f(x), f(v)) ≤ n+ 1 = dG1

(u, v). �

Corollary 2.3. Each homomorphism between two connected graphs is a metric
map.

Corollary 2.4. The image of a metric map between two connected graphs is
always a connected set.

Proof: Let G1, G2 be two connected graphs and f : V (G1) → V (G2) be a metric
map. Assume that the image Im f is disconnected. Then there exists a pair of sets
A,B ⊂ Im f with Im f = A ⊔B and dG2

(A,B) ≥ 2. We have V (G1) = f−1(A) ⊔
f−1(B). Since G1 is a connected graph, there exist two vertices u ∈ f−1(A) and
v ∈ f−1(B) with uv ∈ E(G1). We have dG2

(f(u), f(v)) ≥ dG2
(A,B) ≥ 2, which

contradicts Proposition 2.2. �

Further, suppose that f : V (G1) → V (G2) is a continuous map between two
connected graphs G1 and G2. Then for every edge uv ∈ E(G1) we have

[f(u), f(v)]G2
⊂ f([u, v]G1

) = f({u, v}) = {f(u), f(v)}.

Therefore, f(u) = f(v) or f(u)f(v) ∈ E(G2). From Proposition 2.2 it follows
that f is a metric map. However, not every metric map is continuous. To see
this consider the path G1 ≃ P4 with four vertices, where V (G1) = {1, 2, 3, 4},
E(G1) = {12, 23, 34}, a cycle G2 ≃ C4 with four vertices, where V (G2) = V (G1),
E(G2) = {12, 23, 34, 14} and the identity map f : V (G1) → V (G2). Then f is
a metric map, but [f(1), f(3)]G2

= {1, 2, 3, 4} * {1, 2, 3} = f([1, 3]G1
).

Proposition 2.5. Let G1 be a connected graph, G2 be a tree and f : V (G1) →
V (G2) be some map. Then f is metric if and only if f is continuous.

Proof: We must show only the necessity of the condition. Thus, let f be a metric
map. We use induction on dG1

(u, v) to prove that [f(u), f(v)]G2
⊂ f([u, v]G1

) for
all pairs of vertices u, v ∈ V (G1). The induction basis trivially holds. Now let
dG1

(u, v) = n + 1. Fix a vertex x ∈ [u, v]G1
with ux ∈ E(G1). By induction

assumption we have [f(x), f(v)]G2
⊂ f([x, v]G1

). Since dG1
(u, x) = 1 and f

is metric, it holds dG2
(f(u), f(x)) ≤ 1. But G2 is a tree. This means that

[f(u), f(v)]G2
⊂ {f(u)} ∪ [f(x), f(v)]G2

.
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Finally, since {u} ∪ [x, v]G1
= [u, v]G1

, then

[f(u), f(v)]G2
⊂ {f(u)} ∪ [f(x), f(v)]G2

⊂ {f(u)} ∪ f([x, v]G1
)

= f({u} ∪ [x, v]G1
) = f([u, v]G1

).

�

Proposition 2.6. Let G1, G2 be two median graphs and f : V (G1) → V (G2)
be some map. Then the map f is linear if and only if f preserves medians,
i.e., f(mG1

(u, v, w)) = mG2
(f(u), f(v), f(w)) for all triplets of vertices u, v, w ∈

V (G1).

Proof: Let f be a linear map. Then

{f(mG1
(u, v, w))} = f([u, v]G1

∩ [v, w]G1
∩ [u,w]G1

)

⊂ f([u, v]G1
) ∩ f([v, w]G1

) ∩ f([u,w]G1
)

⊂ [f(u), f(v)]G2
∩ [f(v), f(w)]G2

∩ [f(u), f(w)]G2

= {mG2
(f(u), f(v), f(w))}

which yields the desired equality f(mG1
(u, v, w)) = mG2

(f(u), f(v), f(w)). Con-
versely, suppose that x ∈ [u, v]G1

for u, v ∈ V (G1). Then mG1
(u, x, v) = x

and thus f(x) = f(mG1
(u, x, v)) = mG2

(f(u), f(x), f(v)). This implies f(x) ∈
[f(u), f(v)]G2

. Therefore, f([u, v]G1
) ⊂ [f(u), f(v)]G2

for any pair of vertices
u, v ∈ V (G1). �

Proposition 2.7. Let G1, G2 be two connected graphs and f : V (G1) → V (G2)
be some map. Then for all vertices u, v ∈ V (G1) we have

dG1
(u, v) ≤ dG2

(f(u), f(v))

if and only if f is injective and its inverse map f−1 : Im f → V (G1) is a (bijective)
homomorphism between the induced subgraph G2[Im f ] and G1.

Proof: We prove the necessity of this condition. Let u, v ∈ V (G1) be two
distinct vertices. Then dG2

(f(u), f(v)) ≥ dG1
(u, v) ≥ 1 implies f(u) 6= f(v).

Thus, f is an injective map. Further, suppose that for a pair of vertices u, v ∈
V (G1) there exists an edge f(u)f(v) ∈ E(G2). Then clearly u 6= v and therefore
1 ≤ dG1

(u, v) ≤ dG2
(f(u), f(v)) = 1. This implies uv ∈ E(G1). Thus, f−1 is

a homomorphism.
To prove the sufficiency of this condition again consider two vertices u, v ∈

V (G1). Since f−1 is a homomorphism, f−1 is a metric map which yields

dG1
(u, v) = dG1

(f−1(f(u)), f−1(f(v))) ≤ dG2
(f(u), f(v)).

�

Corollary 2.8. Let G be a connected graph. Then f : V (G) → V (G) is an
automorphism of G if and only if dG(u, v) ≤ dG(f(u), f(v)) for all u, v ∈ V (G).
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It is easy to see that for a given connected graph G the classes of metric and
linear maps of the form f : V (G) → V (G) are closed under composition of maps.
However, the composition of two monotone maps may not be monotone itself.
Moreover, the following proposition holds.

Proposition 2.9. The class of monotone maps f : V (G) → V (G) for a given
connected graph G with n ≥ 2 vertices is a generating set of the semigroup of all
vertex maps V (X)V (X).

Proof: It is well-known that the full transformation semigroup Tn of all self-
maps of n-element set {1, . . . , n} has a generating set consisting of the following
three maps:

σ1 =

(

1 2 3 . . . n
2 2 3 . . . n

)

, σ2 =

(

1 2 3 . . . n
2 1 3 . . . n

)

and σ3 = (12 . . . n).

Since G is connected and n ≥ 2, G has at least one edge. Fix an edge e =
uv ∈ E(G) and a bijection f : {1, . . . , n} → V (G) with f(1) = u, f(2) = v. Then
f ◦ σi ◦ f−1 for 1 ≤ i ≤ 3 is a triple of monotone maps from V (X) to itself which
generate all the maps from V (X)V (X). �

Furthermore, for a path X we can ensure that each map σ : V (X) → V (X) is
a composition of exactly two monotone maps.

Proposition 2.10. LetX be a path. Then for every map σ : V (X) → V (X) there
exist two monotone maps σi : V (X) → V (X), i = 1, 2, such that σ = σ2 ◦ σ1.

Proof: Suppose V (X) = {1, . . . , n} and E(X) = {ij : 1 ≤ i = j − 1 ≤ n − 1}.
Also, let Imσ = {i1 < · · · < im}. Construct σ1 in the following way. Let σ1 maps
the pre-image σ−1(i1) bijectively to {1, . . . , |σ−1(i1)|} and also maps the pre-

image σ−1(ik) bijectively to
{

∑k−1
j=1 |σ

−1(ij)| + 1, . . . ,
∑k

j=1 |σ
−1(ij)|

}

for each

2 ≤ k ≤ m. By construction, σ1 is bijective and hence a monotone map. Similarly,

let σ2 maps the set {1, . . . , |σ−1(i1)|} to i1 and also maps
{

∑k−1
j=1 |σ

−1(ij)| +

1, . . . ,
∑k

j=1 |σ
−1(ij)|

}

to ik for each 2 ≤ k ≤ m. It is easy to see that σ2 is also

monotone and σ = σ2 ◦ σ1. �

Also, note that the composition of two projections on connected Chebyshev
sets is not necessarily a projection itself. Namely, consider the graph G with
V (G) = {1, . . . , 8}, E(G) = {12, 16, 18, 23, 25, 34, 37, 45, 48, 56, 67} and two sets of
vertices A1 = {1, 2, 3}, A2 = {4, 5, 6}. Then A1 and A2 are connected Chebyshev

sets, but their composition prA2
◦ prA1

=

(

1 2 3 4 5 6 7 8
6 5 4 4 5 6 4 6

)

is not

a projection on any Chebyshev set in G.
Finally, if X is a tree and Ai ⊂ V (X), i = 1, 2, are its two connected (and

thus, Chebyshev) sets, then prA2
◦ prA1

= prA1∩A2
if A1∩A2 6= ∅ and prA2

◦ prA1

is a constant map otherwise. In both cases the composition prA2
◦ prA1

is a pro-
jection on a connected set.
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2.3 Markov graphs for maps on trees. Let X be a tree and σ : V (X) →
V (X) be some map from the vertex set of X to itself. The Markov graph is
a digraph Γ = Γ(X, σ) with the vertex set V (Γ) = E(X) and the arc set A(Γ) =
{(u1v1, u2v2) : u2, v2 ∈ [σ(u1), σ(v1)]X}. Thus, vertices in Γ are the edges of X
and there is an arc u1v1 → u2v2 in Γ if the edge u1v1 “covers” u2v2 under σ.
Note that periodic graphs are precisely Markov graphs Γ(X, σ) for paths X and
cyclic permutations σ.

Example 2.11. Let X be the tree with the vertex set V (X) = {1, . . . , 7}
and the edge set E(X) = {12, 23, 34, 45, 26, 37}. Also, consider the map σ =
(

1 2 3 4 5 6 7
4 1 3 6 2 4 2

)

(see Figure 1). Then the corresponding Markov graph

Γ(X, σ) is shown in Figure 2.

1 2 3 4 5

6 7

Figure 1. The pair (X, σ) from Example 2.11.

34 26 45

12 23 37

Figure 2. Markov graph Γ(X, σ) for the pair (X, σ) from Example 2.11.

Proposition 2.12 ([5]). Let X be a tree and σ : V (X) → V (X) be some map.
Put E(σ) = {e ∈ E(X) : d−Γ (e) ≥ 1}. Then E(σ) = E(ConvX(Imσ)). In particu-
lar, X [E(σ)] is the connected subgraph of X .
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Now suppose that for a tree X some linear ordering of its edge set E(X) is
fixed. In [4] it was proved that the correspondence σ → MΓ(X,σ) gives a homomor-
phism from the full transformation semigroup Tn to the semigroup Matn−1(F2)
of (n− 1)× (n− 1) matrices over the two-element field. In particular, this corre-
spondence induces an injective homomorphism from the symmetric group Sn into
the general linear group Gln−1(F2).

Theorem 2.13 ([4]). Let X be a tree and suppose that some linear ordering
of the edge set E(X) is fixed. Then for any pair of maps σi : V (X) → V (X),
i = 1, 2, it holds MΓ(X,σ2◦σ1) = MΓ(X,σ1)MΓ(X,σ2) mod 2.

For each tree X and its map σ : V (X) → V (X) one can construct the corre-
sponding edge labeling τσ : E(X) → V (X) ∪ {1,−1} in the following way:

τσ(e) =



















u if σ(u), σ(v) ∈ AX(u, v),

v if σ(u), σ(v) ∈ AX(v, u),

1 if σ(u) ∈ AX(u, v) and σ(v) ∈ AX(v, u),

−1 if σ(u) ∈ AX(v, u) and σ(v) ∈ AX(u, v)

for every edge e = uv ∈ E(X). In other words, the edge e = uv gets an orientation
v → u provided τσ(e) = u (similarly, for the τσ(e) = v we have an orientation
u → v). Otherwise, the edge e is σ-positive or σ-negative depending on the sign
of τσ(e).

The definition of the labeling τσ naturally leads to the two extremal classes of
maps on trees. Namely, the map σ is called expansive if each vertex in the Markov
graph Γ(X, σ) has a loop. In other words, σ is expansive if τσ(E(X)) ⊂ {1,−1}.
Similarly, the map σ is called anti-expansive if Γ(X, σ) does not contain a vertex
with a loop. In this case, τσ is an orientation of the tree X .

Proposition 2.14 ([3]). Let X be a tree and σ : V (X) → V (X) be an anti-
expansive map. Then σ has a unique fixed point.

3. Main results

In [4] automorphisms and projections on connected sets of vertices in trees
were characterized in terms of the corresponding Markov graphs. Also, from
Proposition 2.2 it directly follows that a map σ : V (X) → V (X) on a tree X is
metric if and only if the Markov graph Γ(X, σ) is partial functional. To obtain
a “dual” criterion for linear maps we need the following lemma.

Lemma 3.1 ([4]). Let X be a tree, σ : V (X) → V (X) be some map and Γ =
Γ(X, σ) be its Markov graph. Then for every pair of vertices u, v ∈ V (X) and
an edge xy ∈ E([σ(u), σ(v)]X ) there exists an edge wz ∈ E([u, v]X) such that
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wz → xy in Γ. In particular,

[σ(u), σ(v)]X ⊂
⋃

wz∈E([u,v]X)

[σ(w), σ(z)]X .

Theorem 3.2. Let X be a tree, σ : V (X) → V (X) be some map and Γ = Γ(X, σ)
be its Markov graph. Then σ is linear if and only if the converse digraph Γco is
partial functional.

Proof: First, we prove the necessity of this condition. To the contrary, suppose
that σ is linear, but there exists an edge e ∈ E(X) such that d−Γ (e) ≥ 2. Fix

a pair of edges e1, e2 ∈ N−
Γ (e). Then u, v ∈ [σ(u1), σ(v1)]X ∩ [σ(u2), σ(v2)]X ,

where e = uv and ei = uivi for i = 1, 2. Without loss of generality, we can
assume that [v1, v2]X ⊂ [u1, u2]X .

Consider the composition pre ◦ σ. Again, without loss of generality, suppose
that (pre ◦ σ)(u1) = u. Then (pre ◦ σ)(v1) = v. If (pre ◦ σ)(v2) = u, then
σ(v1) ∈ σ([u1, v2]X)− [σ(u1), σ(v2)]X which contradicts the fact that σ is a linear
map. Similarly, if (pre ◦ σ)(v2) = v, then (pre ◦ σ)(u2) = u. This means that
σ(v1), σ(v2) ∈ σ([u1, u2]X)− [σ(u1), σ(u2)]X . A contradiction again.

Now we prove the sufficiency of this condition. Suppose that Γco is partial func-
tional and u, v ∈ V (X). If dX(u, v) ≤ 1, then clearly σ([u, v]X) ⊂ [σ(u), σ(v)]X .
Thus, let dX(u, v) ≥ 2 and let x ∈ (u, v)X be some fixed vertex. We show that
in this case σ(x) ∈ [σ(u), σ(v)]X . Consider the vertex y = (pr[σ(u),σ(v)]X ◦ σ)(x).
Thus, we must prove that σ(x) = y.

First, note that [σ(x), y]X ⊂ [σ(u), σ(x)]X ∩ [σ(x), σ(v)]X . Further, from
Lemma 3.1 it follows that for every edge e ∈ E([σ(x), y]X) there exists an
edge e1 ∈ E([u, x]X) such that e1 → e in Γ and also there exists another edge
e2 ∈ E([x, v]X) with e2 → e in Γ. Since e1 6= e2, we obtain a contradiction
with the partial functionality of Γco. Therefore, the interval [σ(x), y]X does not
contain an edge, i.e. σ(x) = y. �

Corollary 3.3. Let X be a tree and σ : V (X) → V (X) be some map. Then σ is
a linear metric map if and only if each weak component in Γ(X, σ) is a cycle or
a path.

Proposition 3.4. Let X be a tree and σ : V (X) → V (X) be a linear map. Then
σ is a metric map if and only if the image Imσ is a connected set.

Proof: Corollary 2.4 asserts that we must prove only the sufficiency of this con-
dition. Assume that there exists an edge e = uv ∈ E(X) with dX(σ(u), σ(v)) ≥ 2.
Fix a vertex y ∈ (σ(u), σ(v))X . Since Imσ is a connected set, then y ∈ Imσ im-
plies there is a vertex x ∈ V (X) with σ(x) = y. If x ∈ AX(u, v), then u ∈ [x, v]X
and σ(u) /∈ [y, σ(v)]X = [σ(x), σ(v)]X . If x ∈ AX(v, u), then v ∈ [u, x]X and
σ(v) /∈ [σ(u), y]X = [σ(u), σ(x)]X . In both cases σ is not a linear map. �

It is easy to see that σ : V (X) → V (X) is a proper coloring of a tree X
if and only if d+Γ (e) ≥ 1 for all edges e ∈ E(X). This implies the inequality
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|A(Γ(X, σ))| ≥ |V (X)| − 1 for each proper coloring σ. Similarly, σ is a constant
map if and only if |A(Γ(X, σ))| = 0. In [4] we obtained the following bounds for
the number of arcs in Markov graphs.

Proposition 3.5 ([4]). Let X be an n-vertex tree, σ : V (X) → V (X) be some
map and Γ = Γ(X, σ). Then | Imσ| − 1 ≤ |A(Γ)| ≤ (n− 1) · diam Imσ.

The next theorem gives a characterization of maps which attain the lower
bound from Proposition 3.5.

Theorem 3.6. LetX be a tree, σ : V (X) → V (X) be some map and Γ = Γ(X, σ).
Then |A(Γ)| = | Imσ| − 1 if and only if σ is a linear metric map.

Proof: First, we prove the sufficiency of this condition using the induction on
|V (X)|. Induction basis trivially holds. Suppose that |V (X)| ≥ 2. Fix a leaf
vertex u ∈ L(X) and the corresponding edge e = uu0. Also, put X ′ = X − {u}
and σ′ = prV (X)−{u} ◦ σ. Obviously, X ′ is a tree and σ′ is a linear metric map

on X ′. By induction assumption |A(Γ′)| = | Imσ′| − 1, where Γ′ = Γ(X ′, σ′).
Further, we consider the following four cases.

Case 1: d+Γ (e) = d−Γ (e) = 0. If u ∈ Imσ, then from the equality d−Γ (e) = 0
it follows that σ is a constant map and therefore we are done. Otherwise, let
u /∈ Imσ. Since d+Γ (e) = 0 implies σ(u) = σ(u0), then Imσ = Imσ′. Also, in this
case we have A(Γ) = A(Γ′) and the desired is proved.

Case 2: d+Γ (e) = 0 and d−Γ (e) = 1. The equality d−Γ (e) = 1 implies u ∈ Imσ.

Again, from the equality d+Γ (e) = 0 it follows that σ(u) = σ(u0). In other words, in

this case | Imσ| = | Imσ′|+1. Let e′ = xy ∈ E(X) be an edge with N+
Γ (e′) = {e}.

Then N+
Γ′(e′) = ∅. Thus, in this case |A(Γ)| = |A(Γ′)| + 1 implies |A(Γ)| =

| Imσ′| − 1 + 1 = | Imσ′| = | Imσ| − 1.

Case 3: d+Γ (e) = 1 and d−Γ (e) = 0. Since every linear map is monotone and
σ(u) 6= σ(u0), then σ−1(σ(u)) = {u}. This means that σ(u) ∈ Imσ, but σ(u) /∈
Imσ′. Meanwhile, if u ∈ Imσ, then from the equality d−Γ (e) = 0 it follows that
σ is a constant map and we are done. Otherwise, u /∈ Imσ and thus | Imσ| =
| Imσ′| + 1. Therefore, in this case |A(Γ)| = |A(Γ′)| + 1, which yields |A(Γ)| =
| Imσ| − 1.

Case 4: d+Γ (e) = d−Γ (e) = 1. In this case we have |A(Γ)| = |A(Γ′)| + 2. Also,
clearly u, σ(u) ∈ Imσ − Imσ′. This means that | Imσ| = | Imσ′| + 2 and we are
done.

Now we prove the necessity of this condition. Put E′ = E(ConvX(Imσ)). By
Proposition 2.12, we have

| Imσ| − 1 = |A(Γ)| =
∑

e∈E(X)

d−Γ (e) ≥ |{e ∈ E(X) : d−Γ (e) ≥ 1}|

= |E′| ≥ | Imσ| − 1.
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This means that d−Γ (e) ≤ 1 for all e ∈ E(X). Hence, the map σ is linear on X
(see Theorem 3.2). Moreover, the equality |E′| = | Imσ| − 1 asserts that Imσ is
a connected set. By Proposition 3.4 the map σ is metric on X . �

Given a tree X and a pair of maps σi : V (X) → V (X), i = 1, 2, we write
σ1 ≤m σ2 if Γ(X, σ1) ⊂ Γ(X, σ2). In other words, σ1 ≤m σ2 if for all edges
uv ∈ E(X) we have σ1(u) = σ1(v) and σ2(u) = σ2(v), or [σ1(u), σ1(v)]X ⊂
[σ2(u), σ2(v)]X . Relation ≤m establishes a preordering of the set V (X)V (X) which
is called Markov preordering. Indeed, for every two different constant maps σ1

and σ2 we have σ1 ≤m σ2 and σ2 ≤m σ1 but σ1 6= σ2. Thus, generally speaking,
≤m is not an antisymmetric relation. However, in [4] it was proved that Markov
preordering is a partial ordering of the set {σ ∈ V (X)V (X) : | Imσ| ≥ 3}. For the
results about maximal elements in Markov preordering, see [3].

Theorem 3.7. Let X be a tree with |V (X)| ≥ 3 and f : V (X) → V (X) be some
map. Then

1. the map f is linear if and only if for every pair of maps σi : V (X) → V (X),
i = 1, 2, with σ1 ≤m σ2 we have f ◦ σ1 ≤m f ◦ σ2;

2. the map f is metric if and only if for every pair of maps σi : V (X) → V (X),
i = 1, 2, with σ1 ≤m σ2 we have σ1 ◦ f ≤m σ2 ◦ f .

Proof: We prove the first claim. Let f be a linear map and uv ∈ E(X) be
some edge in X . If σ1|{u,v} and σ2|{u,v} is a pair of constant maps, then the
compositions f ◦σ1|{u,v} and f ◦σ2|{u,v} are also constant. Therefore, in this case

N+
Γ(X,f◦σ1)

(uv) = N+
Γ(X,f◦σ2)

(uv) = ∅.

Otherwise, we have σ1(u), σ1(v) ∈ [σ2(u), σ2(v)]X . This implies f(σ1(u)),
f(σ1(v)) ∈ f([σ2(u), σ2(v)]X) ⊂ [f(σ2(u)), f(σ2(v))]X as f is linear. But an inter-
val in a tree is a convex set. Thus, [f(σ1(u)), f(σ1(v))]X ⊂ [f(σ2(u)), f(σ2(v))]X
which means that f ◦ σ1 ≤m f ◦ σ2.

Now suppose that f is a non-linear map. Then there exists a pair of vertices
u, v ∈ V (X) such that f([u, v]X)− [f(u), f(v)]X 6= ∅. In other words, there exists
a vertex w ∈ [u, v]X with f(w) /∈ [f(u), f(v)]X . Without loss of generality, we can
assume that u and w are adjacent in X . Consider two new maps σ1 = pr{u,w} and

σ2 = σ′ ◦ pr{u,w}, where σ′ : {u,w} → V (X), σ′(u) = u, σ′(w) = v. It is easy to

see that σ1 ≤m σ2. On the other hand, f◦ σ1|{u,w} (as well as f◦ σ2|{u,w}) is a non-
constant map and f(σ1(w)) = f(w) ∈ [f(σ1(u)), f(σ1(w))]X = [f(u), f(w)]X , but
f(w) /∈ [f(u), f(v)]X = [f(σ2(u)), f(σ2(w))]X . In other words, f ◦ σ1 �m f ◦ σ2.

Now we prove the second claim. Let f be a metric map. Then f(u) = f(v)
or f(u)f(v) ∈ E(X) for every edge uv ∈ E(X). If f(u) = f(v), then σ1 ◦ f |{u,v}
and σ2 ◦ f |{u,v} are two constant maps. Therefore, in this case N+

Γ(X,f◦σ1)
(uv) =

N+
Γ(X,f◦σ2)

(uv) = ∅.

Let f(u)f(v) ∈ E(X). If σ1|{f(u),f(v)} and σ2|{f(u),f(v)} are two constant maps,
then σ1 ◦ f |{u,v} and σ2 ◦ f |{u,v} are also constant maps. Thus, σ1 ◦ f ≤m σ2 ◦ f .
Otherwise, [σ1(f(u)), σ1(f(v))]X ⊂ [σ2(f(u)), σ2(f(v))]X which also means that
σ1 ◦ f ≤m σ2 ◦ f .
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Suppose that f is a non-metric map. Then there exists an edge uv ∈ E(X) with
dX(f(u), f(v)) ≥ 2. Fix two vertices w, t ∈ [f(u), f(v)]X such that f(u) is adja-
cent with w and w is adjacent with t (it could be t = f(v), but w ∈ (f(u), f(v))X
since dX(f(u), f(v)) ≥ 2). Consider two maps σ1 = pr{f(u),w} and σ2 = σ′ ◦
pr{f(u),w,t}, where σ′ : {f(u), w, t} → V (X), σ′(f(u)) = σ′(t) = f(u), σ′(w) = w.

It is easy to see that σ1 ≤m σ2. Also, from the inequality dX(f(u), f(v)) ≥ 2 and
definitions of σi, i = 1, 2 it follows that σ1 ◦ f |{u,v} is non-constant. Moreover,
σ1(f(u)) = f(u) and σ1(f(v)) = w, but σ2(f(u)) = σ2(f(v)) = f(u). In other
words, [σ1(f(u)), σ1(f(v))]X * [σ2(f(u)), σ2(f(v))]X = {f(u)} which is equiva-
lent to σ1 ◦ f �m σ2 ◦ f . �

Corollary 3.8. Let X be a tree and σi : V (X) → V (X), i = 1, 2, be a pair of
maps. The following conditions are equivalent:

1. σ1 ≤m σ2;
2. prA ◦ σ1 ≤m prA ◦ σ2 for every connected set A ⊂ V (X);
3. σ1 ◦ prA ≤m σ2 ◦ prA for every connected set A ⊂ V (X).

Proof: The equivalence of the above conditions follows from the fact that each
projection on a connected set of vertices in a tree is a linear metric map and
Theorem 3.7. �

It is easy to see that for a tree X the existence of a map σ : V (X) → V (X)
with a Markov graph Γ(X, σ) which has a vertex of maximum degree (equal to
|E(X)|) implies that X is a path. Similarly, let X be a tree and σ : V (X) → V (X)
be a map with Γ(X, σ) being a symmetric sum of two nontrivial digraphs. In [6]
it was proved that in this case X is a spider of degree at most three.

Theorem 3.9. Let X be a tree and σ : V (X) → V (X) be a map such that its
Markov graph Γ(X, σ) is a path. Then X is a spider.

Proof: We divide the proof into the following claims.

Claim 1: For every k ≥ 1 the Markov graph Γ(X, σk) has no loops.
Fix some linear ordering of the edge set E(X) = {e1, . . . , en−1}. From The-

orem 2.13 it follows that MΓ(X,σk) = Mk
Γ(X,σ) mod 2. Therefore, the existence

of a loop in Γ(X, σk) is equivalent to the existence of 1 ≤ i ≤ n − 1 for which
(Mk

Γ(X,σ))ii = 1 mod 2. This implies (Mk
Γ(X,σ))ii ≥ 1 which means that there ex-

ists a closed walk of length k passing through the edge ei in Γ(X, σ). Therefore,
Γ(X, σ) contains a cycle which is impossible since Γ(X, σ) is a path.

Claim 2: Each periodic point of σ is a fixed point.
To the contrary, suppose that u ∈ V (X) is a periodic point of σ with period

m ≥ 2. Then | fixσm| ≥ m ≥ 2 and thus from Proposition 2.14 it follows that
Γ(X, σm) has a loop. A contradiction with Claim 1.

Claim 3: Each vertex u ∈ V (X)− fix σ with dX(u) ≥ 3 is a periodic point of σ.
Fix three vertices x1, x2, x3 ∈ NX(u). Since σ(u) 6= u, it holds σ(xi) 6= σ(u)

for every 1 ≤ i ≤ 3. Thus, Γ(X, σ) has the following three arcs: uxi → σ(u)σ(xi),



186 Kozerenko S.

1 ≤ i ≤ 3. Since Γ(X, σ) is a path, without loss of generality, we can assume that
there are two directed walks: one from σ(u)σ(x1) to ux2 and another one from
σ(u)σ(x2) to ux3 in Γ(X, σ). In other words, there exist two numbers k,m ≥ 1
such that {σk+1(u), σk+1(x1)} = {u, x2} and {σm+1(u), σm+1(x2)} = {u, x3}. If
σk+1(u) = u (similarly, σm+1(u) = u), then u is a periodic point of σ. Since
σ(u) 6= u, u has a period of at least two. Therefore, suppose σk+1(u) = x2,
σk+1(x1) = u and σm+1(u) = x3, σ

m+1(x2) = u. This implies σk+m+2(u) =
σm+1(x2) = u. Thus, again u is a periodic point for σ with period greater than
one.

Combining Claim 2 and Claim 3, we can conclude that each vertex in X of
degree at least three is a fixed point of σ. However, the map σ is anti-expansive
and therefore using Proposition 2.14 we obtain that | fix σ| = 1 which completes
the proof. �

Note that not every spider X admits a map σ with Γ(X, σ) being a path. For
example, let X be a tree with V (X) = {1, . . . , 6} and E(X) = {12, 23, 34, 45, 26}.
Then X is a spider with the vertex 2 being its center. However, X does not admit
a map σ with a path Γ(X, σ). Nevertheless, paths and stars X admit maps σ with
Γ(X, σ) being a path. Moreover, in [4] it was proved that if Γ(X, σ) is a cycle,
then X is a star. Finally, note that for every proper coloring σ : V (X) → {u, v},
where uv ∈ E(X) the Markov graph Γ(X, σ) is weakly connected and σ is a metric
map.

Proposition 3.10. For every spiderX there exists a linear map σ : V (X)→V (X)
such that Γ(X, σ) is weakly connected.

Proof: At first, let X ≃ Pn be a path with n ≥ 1 vertices. Thus, let V (X) =
{u1, . . . , un} and E(X) = {uiuj : 1 ≤ i = j − 1 ≤ n− 1}. Consider the following
map

σ(x) =

{

ui+1 if x = ui for 1 ≤ i ≤ n− 1,

un if x = un

for all x ∈ V (X). Then Γ(X, σ) is a path.
Now let X be a nontrivial spider and u ∈ V (X) be its center. Put L(X) =

{v1, . . . , vn}. Therefore, V (X) =
⋃

1≤i≤n[u, vi]X and for each pair 1 ≤ i ≤ n, 1 ≤
j ≤ dX(u, vi) there exists a unique vertex xij ∈ [u, vi]X such that dX(u, xij) = j.

Without loss of generality, we can assume that dX(u, v1) ≥ · · · ≥ dX(u, vn).
Put

σ(x) =











u if x = u,

xi+1,dX (u,vi+1) if x = xij , 1 ≤ j ≤ dX(u, vi), and i 6= n,

x1,dX(u,v1) if x = xn,j , and 1 ≤ j ≤ dX(u, vn)

for all x ∈ V (X). Then the map σ is linear and Γ(X, σ) is weakly connected. �
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Consider the tree X with V (X) = {1, . . . , 6}, E(X) = {12, 23, 34, 35, 26} and

the map σ =

(

1 2 3 4 5 6
4 2 2 6 1 2

)

. It is easy to see that σ is linear and the

Markov graph Γ(X, σ) is weakly connected. However, the tree X is not a spider
as it has two vertices of degree three.
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