Generalized versions of Ilmanen lemma: Insertion of $C^{1, \omega}$ or $C_{\text {loc }}^{1, \omega}$ functions

VÁClav Kryštof

Abstract

We prove that for a normed linear space X, if $f_{1}: X \rightarrow \mathbb{R}$ is continuous and semiconvex with modulus $\omega, f_{2}: X \rightarrow \mathbb{R}$ is continuous and semiconcave with modulus ω and $f_{1} \leq f_{2}$, then there exists $f \in C^{1, \omega}(X)$ such that $f_{1} \leq$ $f \leq f_{2}$. Using this result we prove a generalization of Ilmanen lemma (which deals with the case $\omega(t)=t$) to the case of an arbitrary nontrivial modulus ω. This generalization (where a $C_{\text {loc }}^{1, \omega}$ function is inserted) gives a positive answer to a problem formulated by A. Fathi and M. Zavidovique in 2010.

Keywords: Ilmanen lemma; $C^{1, \omega}$ function; semiconvex function with general modulus

Classification: 26B25

1. Introduction

Suppose $A \subset \mathbb{R}^{n}$ is a convex set. We say that $f: A \rightarrow \mathbb{R}$ is classically semiconvex if there exists $C>0$ such that the function $x \mapsto f(x)+C|x|^{2}, x \in A$, is convex. We say that $f: A \rightarrow \mathbb{R}$ is classically semiconcave if $-f$ is classically semiconvex. T. Ilmanen proved the following result (so called Ilmanen lemma) [9, Proof of 4F from 4G, page 199].

Ilmanen lemma. Let $G \subset \mathbb{R}^{n}$ be an open set and $f_{1}, f_{2}: G \rightarrow \mathbb{R}$. Suppose that $f_{1} \leq f_{2}$ and that for every $a \in G$ there exists $r>0$ such that $U:=U(a, r) \subset G$, $f_{1} \upharpoonright_{U}$ is classically semiconvex and $f_{2} \upharpoonright_{U}$ is classically semiconcave. Then there exists $f \in C_{\mathrm{loc}}^{1,1}(G)$ such that $f_{1} \leq f \leq f_{2}$.

Alternative proofs of Ilmanen lemma can be found in [1] and [7].
We will work with semiconvex, or semiconcave, functions with general modulus (see Definition 2.2 and cf. [2, Definition 2.1.1]). Note that the classically semiconvex functions coincide with semiconvex functions with modulus $\omega(t)=C t$ where $C>0$.
A. Fathi and M. Zavidovique (see [7, Problem 5.1]) asked if Ilmanen lemma can be generalized to the case of a general modulus ω.

More precisely, suppose that $G \subset \mathbb{R}^{n}$ is an open set, ω a modulus and f_{1}, f_{2} : $G \rightarrow \mathbb{R}$ continuous functions such that $f_{1} \leq f_{2}$ and for every $a \in G$ there exist

The research was supported by the grant GA ČR P201/15-08218S.
$C, r>0$ such that $f_{1} \upharpoonright_{U(a, r)}$ is semiconvex with modulus $C \omega$ and $f_{2} \upharpoonright_{U(a, r)}$ is semiconcave with modulus $C \omega$. Then the question is whether there exists $f \in C_{\mathrm{loc}}^{1, \omega}(G)$ with $f_{1} \leq f \leq f_{2}$.

We prove (see Theorem 4.5) that the answer is positive if the modulus ω satisfies $\liminf _{t \rightarrow 0^{+}} \omega(t) / t>0$ (even if G is an open subset of a Hilbert space). Note (see implication (2) below) that if $\liminf _{t \rightarrow 0^{+}} \omega(t) / t=0$, then f_{1} (or f_{2}), is convex (or concave, respectively) on every convex $A \subset G$. In such a case it is well known that the answer is negative for many open G.

The proof of Theorem 4.5 is based on Corollary 3.2 which is a special case of Theorem 3.1 (which has a short and quite simple proof).

Corollary 3.2 can be equivalently reformulated (without using the symbol $\left.S C^{\omega}(X)\right)$ in the following way. Suppose that X is a normed linear space, ω a modulus and $f_{1}, f_{2}: X \rightarrow \mathbb{R}$ continuous functions such that f_{1} is semiconvex with modulus ω, f_{2} is semiconcave with modulus ω and $f_{1} \leq f_{2}$. Then there exists $f \in C^{1, \omega}(X)$ such that $f_{1} \leq f \leq f_{2}$.

So, Corollary 3.2 generalizes [1, Theorem 2].

2. Preliminaries

If X is a normed linear space, then we set $U(a, r):=\{x \in X:\|x-a\|<r\}$, $a \in X, r>0$, and $\operatorname{supp} f:=\overline{\{x \in X: f(x) \neq 0\}}, f: X \rightarrow \mathbb{R}$.

Notation 2.1. We denote by \mathcal{M} the set of all $\omega:[0, \infty) \rightarrow[0, \infty)$ which are non-decreasing and satisfy $\lim _{t \rightarrow 0^{+}} \omega(t)=0$.

Definition 2.2. Let X be a normed linear space, $A \subset X$ a convex set and $\omega \in \mathcal{M}$.

- We say that $f: A \rightarrow \mathbb{R}$ is semiconvex with modulus ω if
$f(\lambda x+(1-\lambda) y) \leq \lambda f(x)+(1-\lambda) f(y)+\lambda(1-\lambda)\|x-y\| \omega(\|x-y\|)$
for every $x, y \in A$ and $\lambda \in[0,1]$.
- We say that $f: A \rightarrow \mathbb{R}$ is semiconcave with modulus ω if $-f$ is semiconvex with modulus ω.
- We denote by $S C^{\omega}(A)$ the set of all $f: A \rightarrow \mathbb{R}$ which are semiconvex with modulus $C \omega$ for some $C>0$. We denote by $-S C^{\omega}(A)$ the set of all $f: A \rightarrow \mathbb{R}$ such that $-f \in S C^{\omega}(A)$.

If G is an open subset of a normed linear space and $\omega \in \mathcal{M}$, then we denote by $C^{1, \omega}(G)$ the set of all Fréchet differentiable $f: G \rightarrow \mathbb{R}$ such that f^{\prime} is uniformly continuous with modulus $C \omega$ for some $C>0$, and we denote by $C_{\text {loc }}^{1, \omega}(G)$ the set of all $f: G \rightarrow \mathbb{R}$ which are locally $C^{1, \omega}$.

The following lemma is well known and follows directly from the definition (for (iv) cf. [2, Proposition 2.1.5]).

Lemma 2.3. Let X, A and ω be as in Definition 2.2. Then the following hold.
(i) Let $f: A \rightarrow \mathbb{R}$. Then f is semiconvex with modulus ω if and only if f is semiconvex with modulus ω on every line, i.e., for every $x, h \in X,\|h\|=1$, the function $t \mapsto f(x+t h), t \in\{t \in \mathbb{R}: x+t h \in A\}$, is semiconvex with modulus ω.
(ii) Let $f: X \rightarrow \mathbb{R}$ be semiconvex with modulus ω and let $z \in X$. Then the function $x \mapsto f(x+z), x \in X$, is semiconvex with modulus ω.
(iii) Let $f_{1}, f_{2}: A \rightarrow \mathbb{R}$ be semiconvex with modulus ω, let $a_{1}, a_{2} \in[0, \infty)$ and let $a_{3} \in \mathbb{R}$. Then $a_{1} f_{1}+a_{2} f_{2}+a_{3}$ is semiconvex with modulus $\left(a_{1}+a_{2}\right) \omega$.
(iv) Let $\mathcal{S} \subset \mathbb{R}^{A}$ be such that every $s \in \mathcal{S}$ is semiconvex with modulus ω and $f(x):=\sup \{s(x): s \in \mathcal{S}\} \in \mathbb{R}, x \in A$. Then the function f is semiconvex with modulus ω.

The notion of semiconvex functions is (up to a multiplicative constant) equivalent to the notion of strongly paraconvex functions (for the definition see [13]). More precisely, suppose that A is a convex subset of a normed linear space, $f: A \rightarrow \mathbb{R}, \omega \in \mathcal{M}$ and set $\alpha(t):=t \omega(t), t \in[0, \infty)$, then (cf. [4, Theorem 4.16])

$$
\begin{equation*}
f \in S C^{\omega}(A) \Leftrightarrow f \text { is strongly } \alpha(\cdot) \text {-paraconvex. } \tag{1}
\end{equation*}
$$

We also have

$$
\begin{equation*}
\left(f \in S C^{\omega}(A), \liminf _{t \rightarrow 0^{+}} \frac{\omega(t)}{t}=0\right) \Rightarrow f \text { is convex. } \tag{2}
\end{equation*}
$$

For this implication see [13, Proposition 7] (the proof is not quite rigorous but one can easily correct it) or [4, Corollary 3.6]. Hence we may (and sometimes will) consider only the case $\liminf _{t \rightarrow 0^{+}} \omega(t) / t>0$. Note that for $\omega \in \mathcal{M}$ we have

$$
\begin{equation*}
\liminf _{t \rightarrow 0^{+}} \frac{\omega(t)}{t}>0 \Leftrightarrow \forall d \in[0, \infty) \exists M \in(0, \infty) \forall t \in[0, d] \quad t \leq M \omega(t) \tag{3}
\end{equation*}
$$

We will need the following two propositions. The first one was proved in [5, Proposition 2.8].

Proposition 2.4. Let $I \subset \mathbb{R}$ be an open interval, $\omega \in \mathcal{M}$ and let $f: I \rightarrow \mathbb{R}$ be continuous. Then the following hold.
(i) If f is semiconvex with modulus ω, then $f_{+}^{\prime}(x) \in \mathbb{R}$ for every $x \in I$ and

$$
f_{+}^{\prime}\left(x_{1}\right)-f_{+}^{\prime}\left(x_{2}\right) \leq 2 \omega\left(x_{2}-x_{1}\right), \quad x_{1}, x_{2} \in I, x_{1} \leq x_{2}
$$

(ii) If $f_{+}^{\prime}(x) \in \mathbb{R}$ for every $x \in I$ and

$$
f_{+}^{\prime}\left(x_{1}\right)-f_{+}^{\prime}\left(x_{2}\right) \leq \omega\left(x_{2}-x_{1}\right), \quad x_{1}, x_{2} \in I, x_{1} \leq x_{2}
$$

then f is semiconvex with modulus ω.
Proposition 2.5. Let X be a normed linear space, $A \subset X$ an open convex set and $f \in \bigcup_{\omega \in \mathcal{M}} S C^{\omega}(A)$. Then the following conditions are equivalent.
(i) The function f is locally Lipschitz.
(ii) The function f is continuous.
(iii) The function f is locally bounded.

Proof: Obviously (i) \Rightarrow (ii) \Rightarrow (iii). If (iii) holds, then (i) holds by (1) and [13, Proposition 5].

We will need the following theorem whose part (i) is well known. Part (ii) is essentially known at least in its local version (see [2, Theorem 3.3.7, page 60], [6, Theorem A.19], and [10, Theorem 6.1]) but the present version is probably new.

Theorem 2.6. Let X be a normed linear space, $A \subset X$ an open convex set and $\omega \in \mathcal{M}$. Then the following hold (where $C(A)$ denotes the set of all continuous $f: A \rightarrow \mathbb{R})$.
(i) $C^{1, \omega}(A) \subset C(A) \cap S C^{\omega}(A) \cap\left(-S C^{\omega}(A)\right)$.
(ii) If $A=X$ or A is bounded, then

$$
\begin{equation*}
C^{1, \omega}(A)=C(A) \cap S C^{\omega}(A) \cap\left(-S C^{\omega}(A)\right) \tag{4}
\end{equation*}
$$

Proof: (i) It follows easily from Lemma 2.3 (i) and [2, Proposition 2.1.2]. It can be also deduced from Lemma 2.3 (i) and Proposition 2.4 (ii).
(ii) Let $f \in C(A) \cap S C^{\omega}(A) \cap\left(-S C^{\omega}(A)\right)$. By Proposition $2.5, f$ is locally Lipschitz. Hence f and $-f$ have nonempty Clarke subdifferential at every point of A (cf. [3, Proposition 1.5, page 73]). Thus, by (1) and [14, Theorem 3], there exists $C>0$ such that for every $x \in A$ we can find $\phi_{x}, \psi_{x} \in X^{*}$ with

$$
\begin{array}{rlrl}
f(x+h)-f(x)-\phi_{x}(h) & \geq-C\|h\| \omega(\|h\|), & h \in A-x \\
-f(x+h)+f(x)-\psi_{x}(h) \geq-C\|h\| \omega(\|h\|), & h \in A-x .
\end{array}
$$

Adding these two inequalities together and using the standard argument we obtain that $\psi_{x}=-\phi_{x}, x \in A$. Hence for every $x \in A$

$$
\left|f(x+h)-f(x)-\phi_{x}(h)\right| \leq C\|h\| \omega(\|h\|), \quad h \in A-x,
$$

and $f^{\prime}(x)=\phi_{x}$. Thus $f \in C^{1, \omega}(A)$ by [8, Corollary 126, page 58].
Remark 2.7. The corollary [8, Corollary 126, page 58] and the proof of Theorem 2.6 show that (4) holds also for A such that there exist $a \in X, r>0$ and a sequence $\left(u_{n}\right)_{n=1}^{\infty}$ in X such that $\left\|u_{n}\right\|=n$ and $\overline{U\left(a+u_{n}, r n\right)} \subset A$ for every $n \in \mathbb{N}$. But (4) does not hold for an arbitrary open convex set A ($[12$, Example 2.10, Remark 2.11]). However, if $\omega(t)=t, t \in[0, \infty)$, then (4) holds for any open convex A (see [12, Theorem 2.9 (iv)]).

3. Insertion of a $C^{1, \omega}$ function on the whole space

Here we prove the principal observation of this article. The main idea is based on the choice of the function s in the proof of Theorem 3.1.

Theorem 3.1. Let X be a normed linear space, $f_{1}, f_{2}: X \rightarrow \mathbb{R}$ and $\omega_{1}, \omega_{2} \in \mathcal{M}$. Suppose that f_{1} is semiconvex with modulus ω_{1}, f_{2} is semiconcave with modulus ω_{2} and $f_{1} \leq f_{2}$. Denote by \mathcal{S} the set of all $s: X \rightarrow \mathbb{R}$ which are semiconvex with modulus ω_{1} and satisfy $s \leq f_{2}$. Then the function

$$
f(x):=\sup \{s(x): s \in \mathcal{S}\}, \quad x \in X
$$

is semiconvex with modulus ω_{1}, semiconcave with modulus ω_{2} and satisfies $f_{1} \leq$ $f \leq f_{2}$.

Proof: It is clear that $f_{1} \leq f \leq f_{2}$. By Lemma 2.3 (iv), f is semiconvex with modulus ω_{1}. Now we will prove that f is semiconcave with modulus ω_{2}.

Let $u, v \in X$ and $\lambda \in[0,1]$. Set $w:=\lambda u+(1-\lambda) v$ and define a function s by

$$
\begin{aligned}
s(x)= & \lambda f(x-w+u)+(1-\lambda) f(x-w+v) \\
& -\lambda(1-\lambda)\|u-v\| \omega_{2}(\|u-v\|), \quad x \in X .
\end{aligned}
$$

By Lemma 2.3 (ii), (iii), s is semiconvex with modulus $\lambda \omega_{1}+(1-\lambda) \omega_{1}=\omega_{1}$. Since f_{2} is semiconcave with modulus ω_{2}, we have

$$
\begin{aligned}
s(x) & \leq \lambda f_{2}(x-w+u)+(1-\lambda) f_{2}(x-w+v)-\lambda(1-\lambda)\|u-v\| \omega_{2}(\|u-v\|) \\
& \leq f_{2}(\lambda(x-w+u)+(1-\lambda)(x-w+v))=f_{2}(x), \quad x \in X .
\end{aligned}
$$

Hence $s \in \mathcal{S}$ and consequently $s \leq f$. So

$$
f(\lambda u+(1-\lambda) v) \geq s(w)=\lambda f(u)+(1-\lambda) f(v)-\lambda(1-\lambda)\|u-v\| \omega_{2}(\|u-v\|)
$$

Corollary 3.2. Let X be a normed linear space, $\omega \in \mathcal{M}, f_{1} \in S C^{\omega}(X)$ and $f_{2} \in-S C^{\omega}(X)$. Suppose that f_{1}, f_{2} are continuous and $f_{1} \leq f_{2}$. Then there exists $f \in C^{1, \omega}(X)$ such that $f_{1} \leq f \leq f_{2}$.

Proof: By Theorem 3.1 there exists $f \in S C^{\omega}(X) \cap\left(-S C^{\omega}(X)\right)$ such that $f_{1} \leq f \leq f_{2}$. Since f_{1}, f_{2} are continuous, f is locally bounded. Hence, by Proposition 2.5, f is continuous and thus, by Theorem 2.6, $f \in C^{1, \omega}(X)$.

4. Insertion of a $C_{\text {loc }}^{1, \omega}$ function

In this section we will use Corollary 3.2 and partitions of unity to obtain a version (Theorem 4.5) of Ilmanen lemma which works with locally semiconvex and locally semiconcave functions defined on an open subset of a Hilbert space. Recall that Theorem 4.5 gives a positive answer to a problem formulated by A. Fathi and M. Zavidovique (see [7, Problem 5.1]).

We will need the following obvious fact.

Fact 4.1. Let X, Y be normed linear spaces, $A \subset X$, and $f: A \rightarrow Y$. If A is bounded and f is uniformly continuous with some modulus $\omega \in \mathcal{M}$, then f is bounded.

Lemma 4.2. Let X be a normed linear space, $A \subset X$ a bounded open convex set, $\omega \in \mathcal{M}, g_{1} \in C^{1, \omega}(A)$ and $g_{2} \in S C^{\omega}(A)$. Suppose that $g_{1} \geq 0, g_{2}$ is Lipschitz, and $\lim \inf _{t \rightarrow 0^{+}} \omega(t) / t>0$. Then $g_{1} g_{2} \in S C^{\omega}(A)$.
Proof: By Fact 4.1, g_{1}^{\prime} is bounded and thus, by [8, Proposition 71, page 29], g_{1} is Lipschitz. By the assumptions and Fact 4.1 we can find $C>0$ big enough such that $0 \leq g_{1} \leq C,\left|g_{2}\right| \leq C, g_{1}^{\prime}$ is uniformly continuous with modulus $C \omega$, g_{2} is semiconvex with modulus $C \omega$ and g_{1}, g_{2} are C-Lipschitz. By (3) there exists $M>0$ such that $t \leq M \omega(t), t \in[0, \operatorname{diam}(A)]$. We will show that $g_{1} g_{2}$ is semiconvex with modulus $(2 M+3) C^{2} \omega$.

Let $x, h \in X,\|h\|=1$. Set $I:=\{t \in \mathbb{R}: x+t h \in A\}$ and for $i=1,2$ define a function $f_{i}(t):=g_{i}(x+t h), t \in I$. By Lemma 2.3 (i), it is sufficient to show that $f_{1} f_{2}$ is semiconvex with modulus $(2 M+3) C^{2} \omega$. Since g_{1}^{\prime} is uniformly continuous with modulus $C \omega$, we easily obtain that $f_{1}^{\prime}(t) \in \mathbb{R}$ for every $t \in I$ and

$$
\left|f_{1}^{\prime}\left(t_{1}\right)-f_{1}^{\prime}\left(t_{2}\right)\right| \leq C \omega\left(t_{2}-t_{1}\right), \quad t_{1}, t_{2} \in I, t_{1} \leq t_{2}
$$

By Lemma 2.3 (i), f_{2} is semiconvex with modulus $C \omega$ and thus, by Proposition 2.4 (i), $\left(f_{2}\right)_{+}^{\prime}(t) \in \mathbb{R}$ for every $t \in I$ and

$$
\left(f_{2}\right)_{+}^{\prime}\left(t_{1}\right)-\left(f_{2}\right)_{+}^{\prime}\left(t_{2}\right) \leq 2 C \omega\left(t_{2}-t_{1}\right), \quad t_{1}, t_{2} \in I, t_{1} \leq t_{2}
$$

Clearly f_{1}, f_{2} are C-Lipschitz and hence also $\left|f_{1}^{\prime}\right| \leq C$ and $\left|\left(f_{2}\right)_{+}^{\prime}\right| \leq C$. Thus $\left(f_{1} f_{2}\right)_{+}^{\prime}(t) \in \mathbb{R}$ for every $t \in I$ and

$$
\begin{aligned}
&\left(f_{1} f_{2}\right)_{+}^{\prime}\left(t_{1}\right)-\left(f_{1} f_{2}\right)_{+}^{\prime}\left(t_{2}\right) \\
&= f_{1}^{\prime}\left(t_{1}\right) f_{2}\left(t_{1}\right)+f_{1}\left(t_{1}\right)\left(f_{2}\right)_{+}^{\prime}\left(t_{1}\right)-f_{1}^{\prime}\left(t_{2}\right) f_{2}\left(t_{2}\right)-f_{1}\left(t_{2}\right)\left(f_{2}\right)_{+}^{\prime}\left(t_{2}\right) \\
&= f_{1}^{\prime}\left(t_{1}\right)\left(f_{2}\left(t_{1}\right)-f_{2}\left(t_{2}\right)\right)+f_{2}\left(t_{2}\right)\left(f_{1}^{\prime}\left(t_{1}\right)-f_{1}^{\prime}\left(t_{2}\right)\right) \\
& \quad+\left(f_{2}\right)_{+}^{\prime}\left(t_{1}\right)\left(f_{1}\left(t_{1}\right)-f_{1}\left(t_{2}\right)\right)+f_{1}\left(t_{2}\right)\left(\left(f_{2}\right)_{+}^{\prime}\left(t_{1}\right)-\left(f_{2}\right)_{+}^{\prime}\left(t_{2}\right)\right) \\
& \leq C^{2}\left(t_{2}-t_{1}\right)+C^{2} \omega\left(t_{2}-t_{1}\right)+C^{2}\left(t_{2}-t_{1}\right)+2 C^{2} \omega\left(t_{2}-t_{1}\right) \\
& \leq(2 M+3) C^{2} \omega\left(t_{2}-t_{1}\right)
\end{aligned}
$$

for every $t_{1}, t_{2} \in I, t_{1} \leq t_{2}$. Hence $f_{1} f_{2}$ is semiconvex with modulus $(2 M+3) C^{2} \omega$ by Proposition 2.4 (ii).

Lemma 4.3. Let X be a normed linear space, $f: X \rightarrow \mathbb{R}$, and $\omega \in \mathcal{M}$. Suppose that there exists an open convex set $U \subset X$ such that $\operatorname{supp} f \subset U$ and $f \upharpoonright_{U}$ is semiconvex with modulus ω. Then f is semiconvex with modulus 2ω.

Proof: By Lemma 2.3 (i) we may suppose that $X=\mathbb{R}$. Then f is continuous on U by [2, Theorem 2.1.7]. Since supp $f \subset U$, it follows that f is continuous and
$f^{\prime}(x)=0$ for every $x \in \mathbb{R} \backslash U$. By Proposition 2.4 (i), $f_{+}^{\prime}(x) \in \mathbb{R}$ for every $x \in U$ and

$$
\begin{equation*}
f_{+}^{\prime}\left(x_{1}\right)-f_{+}^{\prime}\left(x_{2}\right) \leq 2 \omega\left(x_{2}-x_{1}\right) \tag{5}
\end{equation*}
$$

for every $x_{1}, x_{2} \in U, x_{1} \leq x_{2}$. Let $x_{1}, x_{2} \in \mathbb{R}, x_{1} \leq x_{2}$. By Proposition 2.4 (ii) it is enough to show that (5) holds. This is clear if $x_{1}, x_{2} \in U$ or $x_{1}, x_{2} \in \mathbb{R} \backslash U$. Suppose that $x_{1} \in \mathbb{R} \backslash U$ and $x_{2} \in U$. Then $f^{\prime}\left(x_{1}\right)=0$ and there exists $c \in U$ such that $x_{1}<c \leq x_{2}$ and $f^{\prime}(c)=0$. Hence

$$
f_{+}^{\prime}\left(x_{1}\right)-f_{+}^{\prime}\left(x_{2}\right)=f_{+}^{\prime}(c)-f_{+}^{\prime}\left(x_{2}\right) \leq 2 \omega\left(x_{2}-c\right) \leq 2 \omega\left(x_{2}-x_{1}\right)
$$

The case $x_{1} \in U, x_{2} \in \mathbb{R} \backslash U$ is analogous.
Lemma 4.4. Let X be a Hilbert space, $a \in X, r>0$ and $\omega \in \mathcal{M}$. Suppose that $\liminf _{t \rightarrow 0^{+}} \omega(t) / t>0$. Then there exists $b \in C^{1, \omega}(X)$ such that $0 \leq b \leq 1$, $\operatorname{supp} b \subset U(a, 2 r)$ and $b=1$ on $U(a, r)$.
Proof: Set $g(x):=\|x-a\|^{2}, x \in X$, and $\varphi(t):=t, t \in[0, \infty)$. It is well known that $g \in C^{1, \varphi}(X), g$ is Lipschitz on $U:=U(a, 2 r)$ and that we can find $f \in C^{1, \varphi}(\mathbb{R})$ such that $0 \leq f \leq 1, \operatorname{supp} f \subset\left(-1,4 r^{2}\right)$ and $f=1$ on $\left[0, r^{2}\right]$.

Set $b=f \circ g$. Then clearly $0 \leq b \leq 1, \operatorname{supp} b \subset U$ and $b=1$ on $U(a, r)$. By Fact 4.1 and [8, Proposition 128, page 59] we have $b \upharpoonright_{U} \in C^{1, \varphi}(U)$. Hence, $b \upharpoonright_{U} \in C^{1, \omega}(U)$ by (3). Since $\operatorname{supp} b \subset U$, we easily obtain that $b \in C^{1, \omega}(X)$.

Theorem 4.5. Let X be a Hilbert space, $G \subset X$ an open set, $f_{1}, f_{2}: G \rightarrow \mathbb{R}$ and $\omega \in \mathcal{M}$. Suppose that f_{1}, f_{2} are continuous, $f_{1} \leq f_{2}, \liminf _{t \rightarrow 0^{+}} \omega(t) / t>0$ and the following condition holds.

- For every $a \in G$ there exist $r, C>0$ such that $U:=U(a, r) \subset G, f_{1} \upharpoonright_{U}$ is semiconvex with modulus $C \omega$ and $f_{2} \upharpoonright_{U}$ is semiconcave with modulus $C \omega$. Then there exists $f \in C_{\text {loc }}^{1, \omega}(G)$ such that $f_{1} \leq f \leq f_{2}$.

Proof: We claim that for every $a \in G$ there exists $r_{a}>0$ and $F_{a} \in C^{1, \omega}(X)$ such that $U\left(a, r_{a}\right) \subset G$ and

$$
\begin{equation*}
f_{1}(x) \leq F_{a}(x) \leq f_{2}(x), \quad x \in U\left(a, r_{a}\right) \tag{6}
\end{equation*}
$$

To prove this, choose $a \in G$. By the assumptions and Proposition 2.5 there exists $r_{a}>0$ such that $U:=U\left(a, 2 r_{a}\right) \subset G, f_{1}, f_{2}$ are Lipschitz on $U, f_{1} \upharpoonright_{U} \in S C^{\omega}(U)$ and $f_{2} \upharpoonright_{U} \in-S C^{\omega}(U)$. By Lemma 4.4 there exists $b \in C^{1, \omega}(X)$ such that $b \geq 0$, $\operatorname{supp} b \subset U$ and $b=1$ on $U\left(a, r_{a}\right)$. For $i=1,2$ we define a function

$$
b_{i}(x):= \begin{cases}b(x) f_{i}(x), & x \in U \\ 0, & x \in X \backslash U\end{cases}
$$

Then $b_{1} \leq b_{2}$, supp $b_{1} \subset U$, $\operatorname{supp} b_{2} \subset U$, and b_{1}, b_{2} are continuous. By Lemma 4.2 we have $b_{1} \upharpoonright_{U} \in S C^{\omega}(U)$ and $-b_{2} \upharpoonright_{U} \in S C^{\omega}(U)$. Thus $b_{1} \in S C^{\omega}(X)$ and $-b_{2} \in$
$S C^{\omega}(X)$ by Lemma 4.3. Hence, by Corollary 3.2, there exists $F_{a} \in C^{1, \omega}(X)$ such that $b_{1} \leq F_{a} \leq b_{2}$. Then (6) holds and we are done.

Since $\left\{U\left(a, r_{a}\right): a \in G\right\}$ forms an open cover of G, we can, by [15, Theorem 3] and [11, Lemma 2.5], find a locally finite C^{∞}-partition of unity \mathcal{Q} on G subordinated to $\left\{U\left(a, r_{a}\right): a \in G\right\}$. So, for every $q \in \mathcal{Q}$ there exists $a_{q} \in G$ such that $\operatorname{supp} q \subset U\left(a_{q}, r_{a_{q}}\right)$. Set

$$
f(x):=\sum_{q \in \mathcal{Q}} q(x) F_{a_{q}}(x), \quad x \in G .
$$

It follows from [8, Proposition 71, page 29] that q, q^{\prime} and $F_{a_{q}}$ are locally Lipschitz whenever $q \in \mathcal{Q}$. Hence, $q F_{a_{q}} \in C_{\mathrm{loc}}^{1, \omega}(X), q \in \mathcal{Q}$, by (3) and [8, Proposition 129 , page 59]. Since \mathcal{Q} is locally finite, it follows that f is well defined and $f \in$ $C_{\text {loc }}^{1, \omega}(G)$. Finally, for every $x \in G$ we have $\sum_{q \in \mathcal{Q}} q(x) f_{i}(x)=f_{i}(x), i=1,2$, and $q(x) f_{1}(x) \leq q(x) F_{a_{q}}(x) \leq q(x) f_{2}(x), q \in \mathcal{Q}$. Thus $f_{1} \leq f \leq f_{2}$.

Theorem 4.5 holds also for some non-Hilbertian Banach spaces as noted in the following remark.
Remark 4.6. If, in Theorem $4.5, X$ is a Banach space and G admits locally finite $C^{1, \omega}$-partitions of unity, then the proof works essentially the same. Moreover, it can be proved that if a Banach space X admits an equivalent norm with modulus of smoothness of power type 2 (e.g. $X=\ell^{p}$ for $p \geq 2$) and $\omega \in \mathcal{M}$ is such that $\lim \inf _{t \rightarrow 0^{+}} \omega(t) / t>0$, then every open $G \subset X$ admits locally finite $C^{1, \omega_{-}}$ partitions of unity. The proof of this fact is quite technical and thus we restricted ourselves to the case of a Hilbert space.

Acknowledgment. I thank Luděk Zajíček for many helpful suggestions that improved this article.

References

[1] Bernard P., Lasry-Lions regularization and a lemma of Ilmanen, Rend. Semin. Mat. Univ. Padova 124 (2010), 221-229.
[2] Cannarsa P., Sinestrari C., Semiconcave Functions, Hamilton-Jacobi Equations, and Optimal Control, Progress in Nonlinear Differential Equations and Their Applications, 58, Birkhäuser, Boston, 2004.
[3] Clarke F. H., Ledyaev Yu. S., Stern R. J., Wolenski P. R., Nonsmooth Analysis and Control Theory, Graduate Texts in Mathematics, 178, Springer, New York, 1998.
[4] Duda J., Zajíček L., Semiconvex functions: representations as suprema of smooth functions and extensions, J. Convex Anal. 16 (2009), no. 1, 239-260.
[5] Duda J., Zajíček L., Smallness of singular sets of semiconvex functions in separable Banach spaces, J. Convex Anal. 20 (2013), no. 2, 573-598.
[6] Fathi A., Figalli A., Optimal transportation on non-compact manifolds, Israel J. Math. 175 (2010), 1-59.
[7] Fathi A., Zavidovique M., Ilmanen's lemma on insertion of $C^{1,1}$ functions, Rend. Semin. Mat. Univ. Padova 124 (2010), 203-219.
[8] Hájek P., Johanis M., Smooth Analysis in Banach Spaces, De Gruyter Series in Nonlinear Analysis and Applications, 19, De Gruyter, Berlin, 2014.
[9] Ilmanen T., The level-set flow on a manifold, Differential Geometry: Partial Differential Equations on Manifolds (Los Angeles, CA, 1990), Proc. Sympos. Pure Math., 54, Part 1, Amer. Math. Soc., Providence, 1993, pp. 193-204.
[10] Jourani A., Thibault L., Zagrodny D., $C^{1, \omega(\cdot)}$-regularity and Lipschitz-like properties of subdifferential, Proc. Lond. Math. Soc. (3) 105 (2012), no. 1, 189-223.
[11] Koc M., Kolář J., Extensions of vector-valued functions with preservation of derivatives, J. Math. Anal. Appl. 449 (2017), no. 1, 343-367.
[12] Kryštof V., Semiconvex Functions and Their Differences, Master Thesis, Charles University, Praha, 2016 (Czech).
[13] Rolewicz S., On $\alpha(\cdot)$-paraconvex and strongly $\alpha(\cdot)$-paraconvex functions, Control Cybernet. 29 (2000), no. 1, 367-377.
[14] Rolewicz S., On the coincidence of some subdifferentials in the class of $\alpha(\cdot)$-paraconvex functions, Optimization 50 (2001), no. 5-6, 353-360.
[15] Toruńczyk H., Smooth partitions of unity on some non-separable Banach spaces, Studia Math. 46 (1973), 43-51.
V. Kryštof:

Charles University, Faculty of Mathematics and Physics, Department of Mathematical Analysis, Sokolovská 83, 18675 Praha 8 - Karlín, Czech RePUBLIC

E-mail: krystof@karlin.mff.cuni.cz

