VÁCLAV KRYŠTOF

Abstract. We prove that for a normed linear space X, if $f_1: X \to \mathbb{R}$ is continuous and semiconvex with modulus ω , $f_2: X \to \mathbb{R}$ is continuous and semiconcave with modulus ω and $f_1 \leq f_2$, then there exists $f \in C^{1,\omega}(X)$ such that $f_1 \leq$ $f \leq f_2$. Using this result we prove a generalization of Ilmanen lemma (which deals with the case $\omega(t) = t$) to the case of an arbitrary nontrivial modulus ω . This generalization (where a $C_{loc}^{1,\omega}$ function is inserted) gives a positive answer to a problem formulated by A. Fathi and M. Zavidovique in 2010.

Keywords:Ilmanen lemma; $C^{1,\omega}$ function; semiconvex function with general modulus

Classification: 26B25

1. Introduction

Suppose $A \subset \mathbb{R}^n$ is a convex set. We say that $f: A \to \mathbb{R}$ is classically semiconvex if there exists C > 0 such that the function $x \mapsto f(x) + C|x|^2$, $x \in A$, is convex. We say that $f: A \to \mathbb{R}$ is classically semiconcave if -f is classically semiconvex. T. Ilmanen proved the following result (so called Ilmanen lemma) [9, Proof of 4F from 4G, page 199].

Ilmanen lemma. Let $G \subset \mathbb{R}^n$ be an open set and $f_1, f_2: G \to \mathbb{R}$. Suppose that $f_1 \leq f_2$ and that for every $a \in G$ there exists r > 0 such that $U := U(a, r) \subset G$, $f_1 \upharpoonright_U$ is classically semiconvex and $f_2 \upharpoonright_U$ is classically semiconcave. Then there exists $f \in C_{\text{loc}}^{1,1}(G)$ such that $f_1 \leq f \leq f_2$.

Alternative proofs of Ilmanen lemma can be found in [1] and [7].

We will work with semiconvex, or semiconcave, functions with general modulus (see Definition 2.2 and cf. [2, Definition 2.1.1]). Note that the classically semiconvex functions coincide with semiconvex functions with modulus $\omega(t) = Ct$ where C > 0.

A. Fathi and M. Zavidovique (see [7, Problem 5.1]) asked if Ilmanen lemma can be generalized to the case of a general modulus ω .

More precisely, suppose that $G \subset \mathbb{R}^n$ is an open set, ω a modulus and $f_1, f_2: G \to \mathbb{R}$ continuous functions such that $f_1 \leq f_2$ and for every $a \in G$ there exist

DOI 10.14712/1213-7243.2015.245

The research was supported by the grant GA ČR P201/15-08218S.

Kryštof V.

C, r > 0 such that $f_1|_{U(a,r)}$ is semiconvex with modulus $C\omega$ and $f_2|_{U(a,r)}$ is semiconcave with modulus $C\omega$. Then the question is whether there exists $f \in C^{1,\omega}_{\text{loc}}(G)$ with $f_1 \leq f \leq f_2$.

We prove (see Theorem 4.5) that the answer is positive if the modulus ω satisfies $\liminf_{t\to 0^+} \omega(t)/t > 0$ (even if G is an open subset of a Hilbert space). Note (see implication (2) below) that if $\liminf_{t\to 0^+} \omega(t)/t = 0$, then f_1 (or f_2), is convex (or concave, respectively) on every convex $A \subset G$. In such a case it is well known that the answer is negative for many open G.

The proof of Theorem 4.5 is based on Corollary 3.2 which is a special case of Theorem 3.1 (which has a short and quite simple proof).

Corollary 3.2 can be equivalently reformulated (without using the symbol $SC^{\omega}(X)$) in the following way. Suppose that X is a normed linear space, ω a modulus and $f_1, f_2: X \to \mathbb{R}$ continuous functions such that f_1 is semiconvex with modulus ω , f_2 is semiconcave with modulus ω and $f_1 \leq f_2$. Then there exists $f \in C^{1,\omega}(X)$ such that $f_1 \leq f \leq f_2$.

So, Corollary 3.2 generalizes [1, Theorem 2].

2. Preliminaries

If X is a normed linear space, then we set $U(a,r) := \{x \in X : ||x-a|| < r\}, a \in X, r > 0$, and $\operatorname{supp} f := \overline{\{x \in X : f(x) \neq 0\}}, f : X \to \mathbb{R}.$

Notation 2.1. We denote by \mathcal{M} the set of all $\omega : [0, \infty) \to [0, \infty)$ which are non-decreasing and satisfy $\lim_{t\to 0^+} \omega(t) = 0$.

Definition 2.2. Let X be a normed linear space, $A \subset X$ a convex set and $\omega \in \mathcal{M}$.

• We say that $f: A \to \mathbb{R}$ is semiconvex with modulus ω if

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y) + \lambda(1 - \lambda)||x - y||\omega(||x - y||)$$

for every $x, y \in A$ and $\lambda \in [0, 1]$.

- We say that $f: A \to \mathbb{R}$ is semiconcave with modulus ω if -f is semiconvex with modulus ω .
- We denote by $SC^{\omega}(A)$ the set of all $f: A \to \mathbb{R}$ which are semiconvex with modulus $C\omega$ for some C > 0. We denote by $-SC^{\omega}(A)$ the set of all $f: A \to \mathbb{R}$ such that $-f \in SC^{\omega}(A)$.

If G is an open subset of a normed linear space and $\omega \in \mathcal{M}$, then we denote by $C^{1,\omega}(G)$ the set of all Fréchet differentiable $f: G \to \mathbb{R}$ such that f' is uniformly continuous with modulus $C\omega$ for some C > 0, and we denote by $C^{1,\omega}_{\text{loc}}(G)$ the set of all $f: G \to \mathbb{R}$ which are locally $C^{1,\omega}$.

The following lemma is well known and follows directly from the definition (for (iv) cf. [2, Proposition 2.1.5]).

Lemma 2.3. Let X, A and ω be as in Definition 2.2. Then the following hold.

- (i) Let f: A → R. Then f is semiconvex with modulus ω if and only if f is semiconvex with modulus ω on every line, i.e., for every x, h ∈ X, ||h|| = 1, the function t ↦ f(x + th), t ∈ {t ∈ R: x + th ∈ A}, is semiconvex with modulus ω.
- (ii) Let $f: X \to \mathbb{R}$ be semiconvex with modulus ω and let $z \in X$. Then the function $x \mapsto f(x+z), x \in X$, is semiconvex with modulus ω .
- (iii) Let $f_1, f_2: A \to \mathbb{R}$ be semiconvex with modulus ω , let $a_1, a_2 \in [0, \infty)$ and let $a_3 \in \mathbb{R}$. Then $a_1 f_1 + a_2 f_2 + a_3$ is semiconvex with modulus $(a_1 + a_2)\omega$.
- (iv) Let $S \subset \mathbb{R}^A$ be such that every $s \in S$ is semiconvex with modulus ω and $f(x) := \sup\{s(x): s \in S\} \in \mathbb{R}, x \in A$. Then the function f is semiconvex with modulus ω .

The notion of semiconvex functions is (up to a multiplicative constant) equivalent to the notion of strongly paraconvex functions (for the definition see [13]). More precisely, suppose that A is a convex subset of a normed linear space, $f: A \to \mathbb{R}, \omega \in \mathcal{M}$ and set $\alpha(t) := t\omega(t), t \in [0, \infty)$, then (cf. [4, Theorem 4.16])

(1)
$$f \in SC^{\omega}(A) \Leftrightarrow f$$
 is strongly $\alpha(\cdot)$ -paraconvex.

We also have

(2)
$$\left(f \in SC^{\omega}(A), \liminf_{t \to 0^+} \frac{\omega(t)}{t} = 0\right) \Rightarrow f \text{ is convex.}$$

For this implication see [13, Proposition 7] (the proof is not quite rigorous but one can easily correct it) or [4, Corollary 3.6]. Hence we may (and sometimes will) consider only the case $\liminf_{t\to 0^+} \omega(t)/t > 0$. Note that for $\omega \in \mathcal{M}$ we have

(3)
$$\liminf_{t \to 0^+} \frac{\omega(t)}{t} > 0 \Leftrightarrow \forall d \in [0, \infty) \, \exists M \in (0, \infty) \, \forall t \in [0, d] \ t \le M \omega(t).$$

We will need the following two propositions. The first one was proved in [5, Proposition 2.8].

Proposition 2.4. Let $I \subset \mathbb{R}$ be an open interval, $\omega \in \mathcal{M}$ and let $f: I \to \mathbb{R}$ be continuous. Then the following hold.

(i) If f is semiconvex with modulus ω , then $f'_+(x) \in \mathbb{R}$ for every $x \in I$ and

$$f'_{+}(x_1) - f'_{+}(x_2) \le 2\omega(x_2 - x_1), \qquad x_1, x_2 \in I, \ x_1 \le x_2.$$

(ii) If $f'_+(x) \in \mathbb{R}$ for every $x \in I$ and

$$f'_{+}(x_1) - f'_{+}(x_2) \le \omega(x_2 - x_1), \qquad x_1, x_2 \in I, \ x_1 \le x_2,$$

then f is semiconvex with modulus ω .

Proposition 2.5. Let X be a normed linear space, $A \subset X$ an open convex set and $f \in \bigcup_{\omega \in \mathcal{M}} SC^{\omega}(A)$. Then the following conditions are equivalent.

(i) The function f is locally Lipschitz.

Kryštof V.

- (ii) The function f is continuous.
- (iii) The function f is locally bounded.

PROOF: Obviously (i) \Rightarrow (ii) \Rightarrow (iii). If (iii) holds, then (i) holds by (1) and [13, Proposition 5].

We will need the following theorem whose part (i) is well known. Part (ii) is essentially known at least in its local version (see [2, Theorem 3.3.7, page 60], [6, Theorem A.19], and [10, Theorem 6.1]) but the present version is probably new.

Theorem 2.6. Let X be a normed linear space, $A \subset X$ an open convex set and $\omega \in \mathcal{M}$. Then the following hold (where C(A) denotes the set of all continuous $f: A \to \mathbb{R}$).

(i)
$$C^{1,\omega}(A) \subset C(A) \cap SC^{\omega}(A) \cap (-SC^{\omega}(A)).$$

(ii) If $A = X$ or A is bounded, then

(4)
$$C^{1,\omega}(A) = C(A) \cap SC^{\omega}(A) \cap (-SC^{\omega}(A)).$$

PROOF: (i) It follows easily from Lemma 2.3 (i) and [2, Proposition 2.1.2]. It can be also deduced from Lemma 2.3 (i) and Proposition 2.4 (ii).

(ii) Let $f \in C(A) \cap SC^{\omega}(A) \cap (-SC^{\omega}(A))$. By Proposition 2.5, f is locally Lipschitz. Hence f and -f have nonempty Clarke subdifferential at every point of A (cf. [3, Proposition 1.5, page 73]). Thus, by (1) and [14, Theorem 3], there exists C > 0 such that for every $x \in A$ we can find $\phi_x, \psi_x \in X^*$ with

$$f(x+h) - f(x) - \phi_x(h) \ge -C ||h|| \omega(||h||), \qquad h \in A - x, -f(x+h) + f(x) - \psi_x(h) \ge -C ||h|| \omega(||h||), \qquad h \in A - x.$$

Adding these two inequalities together and using the standard argument we obtain that $\psi_x = -\phi_x, x \in A$. Hence for every $x \in A$

$$|f(x+h) - f(x) - \phi_x(h)| \le C ||h|| \omega(||h||), \quad h \in A - x,$$

and $f'(x) = \phi_x$. Thus $f \in C^{1,\omega}(A)$ by [8, Corollary 126, page 58].

Remark 2.7. The corollary [8, Corollary 126, page 58] and the proof of Theorem 2.6 show that (4) holds also for A such that there exist $a \in X$, r > 0 and a sequence $(u_n)_{n=1}^{\infty}$ in X such that $||u_n|| = n$ and $\overline{U(a + u_n, rn)} \subset A$ for every $n \in \mathbb{N}$. But (4) does not hold for an arbitrary open convex set A ([12, Example 2.10, Remark 2.11]). However, if $\omega(t) = t$, $t \in [0, \infty)$, then (4) holds for any open convex A (see [12, Theorem 2.9 (iv)]).

3. Insertion of a $C^{1,\omega}$ function on the whole space

Here we prove the principal observation of this article. The main idea is based on the choice of the function s in the proof of Theorem 3.1.

Theorem 3.1. Let X be a normed linear space, $f_1, f_2: X \to \mathbb{R}$ and $\omega_1, \omega_2 \in \mathcal{M}$. Suppose that f_1 is semiconvex with modulus ω_1 , f_2 is semiconcave with modulus ω_2 and $f_1 \leq f_2$. Denote by S the set of all $s: X \to \mathbb{R}$ which are semiconvex with modulus ω_1 and satisfy $s \leq f_2$. Then the function

$$f(x) := \sup\{s(x) \colon s \in \mathcal{S}\}, \qquad x \in X,$$

is semiconvex with modulus ω_1 , semiconcave with modulus ω_2 and satisfies $f_1 \leq f \leq f_2$.

PROOF: It is clear that $f_1 \leq f \leq f_2$. By Lemma 2.3 (iv), f is semiconvex with modulus ω_1 . Now we will prove that f is semiconcave with modulus ω_2 .

Let $u, v \in X$ and $\lambda \in [0, 1]$. Set $w := \lambda u + (1 - \lambda)v$ and define a function s by

$$s(x) = \lambda f(x - w + u) + (1 - \lambda) f(x - w + v) - \lambda (1 - \lambda) ||u - v|| \omega_2(||u - v||), \quad x \in X.$$

By Lemma 2.3 (ii), (iii), s is semiconvex with modulus $\lambda \omega_1 + (1 - \lambda)\omega_1 = \omega_1$. Since f_2 is semiconcave with modulus ω_2 , we have

$$s(x) \le \lambda f_2(x - w + u) + (1 - \lambda)f_2(x - w + v) - \lambda(1 - \lambda)||u - v||\omega_2(||u - v||)$$

$$\le f_2(\lambda(x - w + u) + (1 - \lambda)(x - w + v)) = f_2(x), \qquad x \in X.$$

Hence $s \in \mathcal{S}$ and consequently $s \leq f$. So

$$f(\lambda u + (1-\lambda)v) \ge s(w) = \lambda f(u) + (1-\lambda)f(v) - \lambda(1-\lambda)||u-v||\omega_2(||u-v||).$$

Corollary 3.2. Let X be a normed linear space, $\omega \in \mathcal{M}$, $f_1 \in SC^{\omega}(X)$ and $f_2 \in -SC^{\omega}(X)$. Suppose that f_1, f_2 are continuous and $f_1 \leq f_2$. Then there exists $f \in C^{1,\omega}(X)$ such that $f_1 \leq f \leq f_2$.

PROOF: By Theorem 3.1 there exists $f \in SC^{\omega}(X) \cap (-SC^{\omega}(X))$ such that $f_1 \leq f \leq f_2$. Since f_1, f_2 are continuous, f is locally bounded. Hence, by Proposition 2.5, f is continuous and thus, by Theorem 2.6, $f \in C^{1,\omega}(X)$. \Box

4. Insertion of a $C_{loc}^{1,\omega}$ function

In this section we will use Corollary 3.2 and partitions of unity to obtain a version (Theorem 4.5) of Ilmanen lemma which works with locally semiconvex and locally semiconcave functions defined on an open subset of a Hilbert space. Recall that Theorem 4.5 gives a positive answer to a problem formulated by A. Fathi and M. Zavidovique (see [7, Problem 5.1]).

We will need the following obvious fact.

227

Fact 4.1. Let X, Y be normed linear spaces, $A \subset X$, and $f: A \to Y$. If A is bounded and f is uniformly continuous with some modulus $\omega \in \mathcal{M}$, then f is bounded.

Lemma 4.2. Let X be a normed linear space, $A \subset X$ a bounded open convex set, $\omega \in \mathcal{M}$, $g_1 \in C^{1,\omega}(A)$ and $g_2 \in SC^{\omega}(A)$. Suppose that $g_1 \geq 0$, g_2 is Lipschitz, and $\liminf_{t\to 0^+} \omega(t)/t > 0$. Then $g_1g_2 \in SC^{\omega}(A)$.

PROOF: By Fact 4.1, g'_1 is bounded and thus, by [8, Proposition 71, page 29], g_1 is Lipschitz. By the assumptions and Fact 4.1 we can find C > 0 big enough such that $0 \leq g_1 \leq C$, $|g_2| \leq C$, g'_1 is uniformly continuous with modulus $C\omega$, g_2 is semiconvex with modulus $C\omega$ and g_1, g_2 are C-Lipschitz. By (3) there exists M > 0 such that $t \leq M\omega(t), t \in [0, \operatorname{diam}(A)]$. We will show that g_1g_2 is semiconvex with modulus $(2M + 3)C^2\omega$.

Let $x, h \in X$, ||h|| = 1. Set $I := \{t \in \mathbb{R} : x + th \in A\}$ and for i = 1, 2 define a function $f_i(t) := g_i(x+th), t \in I$. By Lemma 2.3 (i), it is sufficient to show that $f_1 f_2$ is semiconvex with modulus $(2M+3)C^2\omega$. Since g'_1 is uniformly continuous with modulus $C\omega$, we easily obtain that $f'_1(t) \in \mathbb{R}$ for every $t \in I$ and

$$|f_1'(t_1) - f_1'(t_2)| \le C\omega(t_2 - t_1), \qquad t_1, t_2 \in I, \ t_1 \le t_2.$$

By Lemma 2.3 (i), f_2 is semiconvex with modulus $C\omega$ and thus, by Proposition 2.4 (i), $(f_2)'_+(t) \in \mathbb{R}$ for every $t \in I$ and

$$(f_2)'_+(t_1) - (f_2)'_+(t_2) \le 2C\omega(t_2 - t_1), \quad t_1, t_2 \in I, \ t_1 \le t_2.$$

Clearly f_1, f_2 are C-Lipschitz and hence also $|f'_1| \leq C$ and $|(f_2)'_+| \leq C$. Thus $(f_1 f_2)'_+(t) \in \mathbb{R}$ for every $t \in I$ and

$$\begin{aligned} (f_1f_2)'_+(t_1) &- (f_1f_2)'_+(t_2) \\ &= f'_1(t_1)f_2(t_1) + f_1(t_1)(f_2)'_+(t_1) - f'_1(t_2)f_2(t_2) - f_1(t_2)(f_2)'_+(t_2) \\ &= f'_1(t_1)(f_2(t_1) - f_2(t_2)) + f_2(t_2)(f'_1(t_1) - f'_1(t_2)) \\ &+ (f_2)'_+(t_1)(f_1(t_1) - f_1(t_2)) + f_1(t_2)((f_2)'_+(t_1) - (f_2)'_+(t_2)) \\ &\leq C^2(t_2 - t_1) + C^2\omega(t_2 - t_1) + C^2(t_2 - t_1) + 2C^2\omega(t_2 - t_1) \\ &\leq (2M + 3)C^2\omega(t_2 - t_1) \end{aligned}$$

for every $t_1, t_2 \in I$, $t_1 \leq t_2$. Hence $f_1 f_2$ is semiconvex with modulus $(2M+3)C^2\omega$ by Proposition 2.4 (ii).

Lemma 4.3. Let X be a normed linear space, $f: X \to \mathbb{R}$, and $\omega \in \mathcal{M}$. Suppose that there exists an open convex set $U \subset X$ such that $\operatorname{supp} f \subset U$ and $f \upharpoonright_U$ is semiconvex with modulus ω . Then f is semiconvex with modulus 2ω .

PROOF: By Lemma 2.3 (i) we may suppose that $X = \mathbb{R}$. Then f is continuous on U by [2, Theorem 2.1.7]. Since supp $f \subset U$, it follows that f is continuous and

f'(x)=0 for every $x\in\mathbb{R}\setminus U.$ By Proposition 2.4 (i), $f'_+(x)\in\mathbb{R}$ for every $x\in U$ and

(5)
$$f'_+(x_1) - f'_+(x_2) \le 2\omega(x_2 - x_1)$$

for every $x_1, x_2 \in U$, $x_1 \leq x_2$. Let $x_1, x_2 \in \mathbb{R}$, $x_1 \leq x_2$. By Proposition 2.4 (ii) it is enough to show that (5) holds. This is clear if $x_1, x_2 \in U$ or $x_1, x_2 \in \mathbb{R} \setminus U$. Suppose that $x_1 \in \mathbb{R} \setminus U$ and $x_2 \in U$. Then $f'(x_1) = 0$ and there exists $c \in U$ such that $x_1 < c \leq x_2$ and f'(c) = 0. Hence

$$f'_{+}(x_1) - f'_{+}(x_2) = f'_{+}(c) - f'_{+}(x_2) \le 2\omega(x_2 - c) \le 2\omega(x_2 - x_1)$$

The case $x_1 \in U, x_2 \in \mathbb{R} \setminus U$ is analogous.

Lemma 4.4. Let X be a Hilbert space, $a \in X$, r > 0 and $\omega \in \mathcal{M}$. Suppose that $\liminf_{t\to 0^+} \omega(t)/t > 0$. Then there exists $b \in C^{1,\omega}(X)$ such that $0 \le b \le 1$, $\operatorname{supp} b \subset U(a, 2r)$ and b = 1 on U(a, r).

PROOF: Set $g(x) := ||x - a||^2$, $x \in X$, and $\varphi(t) := t$, $t \in [0, \infty)$. It is well known that $g \in C^{1,\varphi}(X)$, g is Lipschitz on U := U(a, 2r) and that we can find $f \in C^{1,\varphi}(\mathbb{R})$ such that $0 \le f \le 1$, supp $f \subset (-1, 4r^2)$ and f = 1 on $[0, r^2]$.

Set $b = f \circ g$. Then clearly $0 \le b \le 1$, $\operatorname{supp} b \subset U$ and b = 1 on U(a, r). By Fact 4.1 and [8, Proposition 128, page 59] we have $b \upharpoonright_U \in C^{1,\varphi}(U)$. Hence, $b \upharpoonright_U \in C^{1,\omega}(U)$ by (3). Since $\operatorname{supp} b \subset U$, we easily obtain that $b \in C^{1,\omega}(X)$. \Box

Theorem 4.5. Let X be a Hilbert space, $G \subset X$ an open set, $f_1, f_2: G \to \mathbb{R}$ and $\omega \in \mathcal{M}$. Suppose that f_1, f_2 are continuous, $f_1 \leq f_2$, $\liminf_{t \to 0^+} \omega(t)/t > 0$ and the following condition holds.

• For every $a \in G$ there exist r, C > 0 such that $U := U(a, r) \subset G$, $f_1 \upharpoonright_U$ is semiconvex with modulus $C\omega$ and $f_2 \upharpoonright_U$ is semiconcave with modulus $C\omega$.

Then there exists $f \in C^{1,\omega}_{loc}(G)$ such that $f_1 \leq f \leq f_2$.

PROOF: We claim that for every $a \in G$ there exists $r_a > 0$ and $F_a \in C^{1,\omega}(X)$ such that $U(a, r_a) \subset G$ and

(6)
$$f_1(x) \le F_a(x) \le f_2(x), \qquad x \in U(a, r_a).$$

To prove this, choose $a \in G$. By the assumptions and Proposition 2.5 there exists $r_a > 0$ such that $U := U(a, 2r_a) \subset G$, f_1, f_2 are Lipschitz on U, $f_1 \upharpoonright_U \in SC^{\omega}(U)$ and $f_2 \upharpoonright_U \in -SC^{\omega}(U)$. By Lemma 4.4 there exists $b \in C^{1,\omega}(X)$ such that $b \ge 0$, supp $b \subset U$ and b = 1 on $U(a, r_a)$. For i = 1, 2 we define a function

$$b_i(x) := \begin{cases} b(x)f_i(x), & x \in U, \\ 0, & x \in X \setminus U. \end{cases}$$

Then $b_1 \leq b_2$, supp $b_1 \subset U$, supp $b_2 \subset U$, and b_1, b_2 are continuous. By Lemma 4.2 we have $b_1 \upharpoonright_U \in SC^{\omega}(U)$ and $-b_2 \upharpoonright_U \in SC^{\omega}(U)$. Thus $b_1 \in SC^{\omega}(X)$ and $-b_2 \in SC^{\omega}(X)$.

 $SC^{\omega}(X)$ by Lemma 4.3. Hence, by Corollary 3.2, there exists $F_a \in C^{1,\omega}(X)$ such that $b_1 \leq F_a \leq b_2$. Then (6) holds and we are done.

Since $\{U(a, r_a) : a \in G\}$ forms an open cover of G, we can, by [15, Theorem 3] and [11, Lemma 2.5], find a locally finite C^{∞} -partition of unity \mathcal{Q} on G subordinated to $\{U(a, r_a) : a \in G\}$. So, for every $q \in \mathcal{Q}$ there exists $a_q \in G$ such that $\operatorname{supp} q \subset U(a_q, r_{a_q})$. Set

$$f(x) := \sum_{q \in \mathcal{Q}} q(x) F_{a_q}(x), \qquad x \in G.$$

It follows from [8, Proposition 71, page 29] that q, q' and F_{a_q} are locally Lipschitz whenever $q \in Q$. Hence, $qF_{a_q} \in C^{1,\omega}_{\text{loc}}(X)$, $q \in Q$, by (3) and [8, Proposition 129, page 59]. Since Q is locally finite, it follows that f is well defined and $f \in C^{1,\omega}_{\text{loc}}(G)$. Finally, for every $x \in G$ we have $\sum_{q \in Q} q(x)f_i(x) = f_i(x)$, i = 1, 2, and $q(x)f_1(x) \leq q(x)F_{a_q}(x) \leq q(x)f_2(x)$, $q \in Q$. Thus $f_1 \leq f \leq f_2$.

Theorem 4.5 holds also for some non-Hilbertian Banach spaces as noted in the following remark.

Remark 4.6. If, in Theorem 4.5, X is a Banach space and G admits locally finite $C^{1,\omega}$ -partitions of unity, then the proof works essentially the same. Moreover, it can be proved that if a Banach space X admits an equivalent norm with modulus of smoothness of power type 2 (e.g. $X = \ell^p$ for $p \ge 2$) and $\omega \in \mathcal{M}$ is such that $\liminf_{t\to 0^+} \omega(t)/t > 0$, then every open $G \subset X$ admits locally finite $C^{1,\omega}$ -partitions of unity. The proof of this fact is quite technical and thus we restricted ourselves to the case of a Hilbert space.

Acknowledgment. I thank Luděk Zajíček for many helpful suggestions that improved this article.

References

- Bernard P., Lasry-Lions regularization and a lemma of Ilmanen, Rend. Semin. Mat. Univ. Padova 124 (2010), 221–229.
- [2] Cannarsa P., Sinestrari C., Semiconcave Functions, Hamilton-Jacobi Equations, and Optimal Control, Progress in Nonlinear Differential Equations and Their Applications, 58, Birkhäuser, Boston, 2004.
- [3] Clarke F. H., Ledyaev Yu. S., Stern R. J., Wolenski P. R., Nonsmooth Analysis and Control Theory, Graduate Texts in Mathematics, 178, Springer, New York, 1998.
- [4] Duda J., Zajíček L., Semiconvex functions: representations as suprema of smooth functions and extensions, J. Convex Anal. 16 (2009), no. 1, 239–260.
- [5] Duda J., Zajíček L., Smallness of singular sets of semiconvex functions in separable Banach spaces, J. Convex Anal. 20 (2013), no. 2, 573–598.
- [6] Fathi A., Figalli A., Optimal transportation on non-compact manifolds, Israel J. Math. 175 (2010), 1–59.
- [7] Fathi A., Zavidovique M., Ilmanen's lemma on insertion of C^{1,1} functions, Rend. Semin. Mat. Univ. Padova **124** (2010), 203–219.

- [8] Hájek P., Johanis M., Smooth Analysis in Banach Spaces, De Gruyter Series in Nonlinear Analysis and Applications, 19, De Gruyter, Berlin, 2014.
- [9] Ilmanen T., The level-set flow on a manifold, Differential Geometry: Partial Differential Equations on Manifolds (Los Angeles, CA, 1990), Proc. Sympos. Pure Math., 54, Part 1, Amer. Math. Soc., Providence, 1993, pp. 193–204.
- [10] Jourani A., Thibault L., Zagrodny D., C^{1,ω(·)}-regularity and Lipschitz-like properties of subdifferential, Proc. Lond. Math. Soc. (3) 105 (2012), no. 1, 189–223.
- [11] Koc M., Kolář J., Extensions of vector-valued functions with preservation of derivatives, J. Math. Anal. Appl. 449 (2017), no. 1, 343–367.
- [12] Kryštof V., Semiconvex Functions and Their Differences, Master Thesis, Charles University, Praha, 2016 (Czech).
- [13] Rolewicz S., On α(·)-paraconvex and strongly α(·)-paraconvex functions, Control Cybernet.
 29 (2000), no. 1, 367–377.
- [14] Rolewicz S., On the coincidence of some subdifferentials in the class of $\alpha(\cdot)$ -paraconvex functions, Optimization **50** (2001), no. 5–6, 353–360.
- [15] Toruńczyk H., Smooth partitions of unity on some non-separable Banach spaces, Studia Math. 46 (1973), 43–51.

V. Kryštof:

CHARLES UNIVERSITY, FACULTY OF MATHEMATICS AND PHYSICS, DEPARTMENT OF MATHEMATICAL ANALYSIS, SOKOLOVSKÁ 83, 186 75 PRAHA 8 - KARLÍN, CZECH RE-PUBLIC

E-mail: krystof@karlin.mff.cuni.cz

(*Received* December 22, 2017)