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Generalized versions of Ilmanen lemma:

Insertion of C1,ω
or C

1,ω
loc functions

Václav Kryštof

Abstract. We prove that for a normed linear space X, if f1 : X → R is continuous
and semiconvex with modulus ω, f2 : X → R is continuous and semiconcave
with modulus ω and f1 ≤ f2, then there exists f ∈ C1,ω(X) such that f1 ≤

f ≤ f2. Using this result we prove a generalization of Ilmanen lemma (which
deals with the case ω(t) = t) to the case of an arbitrary nontrivial modulus ω.

This generalization (where a C
1,ω
loc function is inserted) gives a positive answer

to a problem formulated by A. Fathi and M. Zavidovique in 2010.
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modulus
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1. Introduction

Suppose A ⊂ R
n is a convex set. We say that f : A → R is classically semi-

convex if there exists C > 0 such that the function x 7→ f(x) + C|x|2, x ∈ A,
is convex. We say that f : A → R is classically semiconcave if −f is classically
semiconvex. T. Ilmanen proved the following result (so called Ilmanen lemma)
[9, Proof of 4F from 4G, page 199].

Ilmanen lemma. Let G ⊂ R
n be an open set and f1, f2 : G→ R. Suppose that

f1 ≤ f2 and that for every a ∈ G there exists r > 0 such that U := U(a, r) ⊂ G,
f1 ↾U is classically semiconvex and f2 ↾U is classically semiconcave. Then there
exists f ∈ C1,1

loc (G) such that f1 ≤ f ≤ f2.

Alternative proofs of Ilmanen lemma can be found in [1] and [7].
We will work with semiconvex, or semiconcave, functions with general modulus

(see Definition 2.2 and cf. [2, Definition 2.1.1]). Note that the classically semicon-
vex functions coincide with semiconvex functions with modulus ω(t) = Ct where
C > 0.

A. Fathi and M. Zavidovique (see [7, Problem 5.1]) asked if Ilmanen lemma
can be generalized to the case of a general modulus ω.

More precisely, suppose that G ⊂ R
n is an open set, ω a modulus and f1, f2 :

G → R continuous functions such that f1 ≤ f2 and for every a ∈ G there exist
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C, r > 0 such that f1↾U(a,r) is semiconvex with modulus Cω and f2↾U(a,r) is semi-

concave with modulus Cω. Then the question is whether there exists f ∈ C1,ω
loc (G)

with f1 ≤ f ≤ f2.
We prove (see Theorem 4.5) that the answer is positive if the modulus ω satisfies

lim inft→0+ ω(t)/t > 0 (even if G is an open subset of a Hilbert space). Note (see
implication (2) below) that if lim inft→0+ ω(t)/t = 0, then f1 (or f2), is convex
(or concave, respectively) on every convex A ⊂ G. In such a case it is well known
that the answer is negative for many open G.

The proof of Theorem 4.5 is based on Corollary 3.2 which is a special case of
Theorem 3.1 (which has a short and quite simple proof).

Corollary 3.2 can be equivalently reformulated (without using the symbol
SCω(X)) in the following way. Suppose that X is a normed linear space, ω a mod-
ulus and f1, f2 : X → R continuous functions such that f1 is semiconvex with
modulus ω, f2 is semiconcave with modulus ω and f1 ≤ f2. Then there exists
f ∈ C1,ω(X) such that f1 ≤ f ≤ f2.

So, Corollary 3.2 generalizes [1, Theorem 2].

2. Preliminaries

If X is a normed linear space, then we set U(a, r) := {x ∈ X : ‖x − a‖ < r},

a ∈ X , r > 0, and supp f := {x ∈ X : f(x) 6= 0}, f : X → R.

Notation 2.1. We denote by M the set of all ω : [0,∞) → [0,∞) which are
non-decreasing and satisfy limt→0+ ω(t) = 0.

Definition 2.2. LetX be a normed linear space, A ⊂ X a convex set and ω ∈ M.

◦ We say that f : A→ R is semiconvex with modulus ω if

f(λx+ (1− λ)y) ≤ λf(x) + (1 − λ)f(y) + λ(1− λ)‖x− y‖ω(‖x− y‖)

for every x, y ∈ A and λ ∈ [0, 1].
◦ We say that f : A→ R is semiconcave with modulus ω if −f is semiconvex
with modulus ω.

◦ We denote by SCω(A) the set of all f : A → R which are semiconvex
with modulus Cω for some C > 0. We denote by −SCω(A) the set of all
f : A→ R such that −f ∈ SCω(A).

If G is an open subset of a normed linear space and ω ∈ M, then we denote by
C1,ω(G) the set of all Fréchet differentiable f : G → R such that f ′ is uniformly

continuous with modulus Cω for some C > 0, and we denote by C1,ω
loc (G) the set

of all f : G→ R which are locally C1,ω.
The following lemma is well known and follows directly from the definition (for

(iv) cf. [2, Proposition 2.1.5]).

Lemma 2.3. Let X , A and ω be as in Definition 2.2. Then the following hold.
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(i) Let f : A → R. Then f is semiconvex with modulus ω if and only if f is
semiconvex with modulus ω on every line, i.e., for every x, h ∈ X , ‖h‖ = 1,
the function t 7→ f(x+ th), t ∈ {t ∈ R : x + th ∈ A}, is semiconvex with
modulus ω.

(ii) Let f : X → R be semiconvex with modulus ω and let z ∈ X . Then the
function x 7→ f(x+ z), x ∈ X , is semiconvex with modulus ω.

(iii) Let f1, f2 : A→ R be semiconvex with modulus ω, let a1, a2 ∈ [0,∞) and
let a3 ∈ R. Then a1f1+a2f2+a3 is semiconvex with modulus (a1+a2)ω.

(iv) Let S ⊂ R
A be such that every s ∈ S is semiconvex with modulus ω and

f(x) := sup{s(x) : s ∈ S} ∈ R, x ∈ A. Then the function f is semiconvex
with modulus ω.

The notion of semiconvex functions is (up to a multiplicative constant) equiv-
alent to the notion of strongly paraconvex functions (for the definition see [13]).
More precisely, suppose that A is a convex subset of a normed linear space,
f : A→ R, ω ∈ M and set α(t) := tω(t), t ∈ [0,∞), then (cf. [4, Theorem 4.16])

(1) f ∈ SCω(A) ⇔ f is strongly α(·)-paraconvex.

We also have

(2)

(

f ∈ SCω(A), lim inf
t→0+

ω(t)

t
= 0

)

⇒ f is convex.

For this implication see [13, Proposition 7] (the proof is not quite rigorous but
one can easily correct it) or [4, Corollary 3.6]. Hence we may (and sometimes
will) consider only the case lim inft→0+ ω(t)/t > 0. Note that for ω ∈ M we have

(3) lim inf
t→0+

ω(t)

t
> 0 ⇔ ∀d ∈ [0,∞)∃M ∈ (0,∞)∀t ∈ [0, d] t ≤Mω(t).

We will need the following two propositions. The first one was proved in
[5, Proposition 2.8].

Proposition 2.4. Let I ⊂ R be an open interval, ω ∈ M and let f : I → R be
continuous. Then the following hold.

(i) If f is semiconvex with modulus ω, then f ′
+(x) ∈ R for every x ∈ I and

f ′
+(x1)− f ′

+(x2) ≤ 2ω(x2 − x1), x1, x2 ∈ I, x1 ≤ x2.

(ii) If f ′
+(x) ∈ R for every x ∈ I and

f ′
+(x1)− f ′

+(x2) ≤ ω(x2 − x1), x1, x2 ∈ I, x1 ≤ x2,

then f is semiconvex with modulus ω.

Proposition 2.5. Let X be a normed linear space, A ⊂ X an open convex set
and f ∈

⋃

ω∈M
SCω(A). Then the following conditions are equivalent.

(i) The function f is locally Lipschitz.
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(ii) The function f is continuous.
(iii) The function f is locally bounded.

Proof: Obviously (i) ⇒ (ii) ⇒ (iii). If (iii) holds, then (i) holds by (1) and
[13, Proposition 5]. �

We will need the following theorem whose part (i) is well known. Part (ii) is
essentially known at least in its local version (see [2, Theorem 3.3.7, page 60],
[6, Theorem A.19], and [10, Theorem 6.1]) but the present version is probably
new.

Theorem 2.6. Let X be a normed linear space, A ⊂ X an open convex set and
ω ∈ M. Then the following hold (where C(A) denotes the set of all continuous
f : A→ R).

(i) C1,ω(A) ⊂ C(A) ∩ SCω(A) ∩ (−SCω(A)).
(ii) If A = X or A is bounded, then

(4) C1,ω(A) = C(A) ∩ SCω(A) ∩ (−SCω(A)).

Proof: (i) It follows easily from Lemma 2.3 (i) and [2, Proposition 2.1.2]. It can
be also deduced from Lemma 2.3 (i) and Proposition 2.4 (ii).

(ii) Let f ∈ C(A) ∩ SCω(A) ∩ (−SCω(A)). By Proposition 2.5, f is locally
Lipschitz. Hence f and −f have nonempty Clarke subdifferential at every point
of A (cf. [3, Proposition 1.5, page 73]). Thus, by (1) and [14, Theorem 3], there
exists C > 0 such that for every x ∈ A we can find φx, ψx ∈ X∗ with

f(x+ h)− f(x)− φx(h) ≥ −C‖h‖ω(‖h‖), h ∈ A− x,

−f(x+ h) + f(x)− ψx(h) ≥ −C‖h‖ω(‖h‖), h ∈ A− x.

Adding these two inequalities together and using the standard argument we obtain
that ψx = −φx, x ∈ A. Hence for every x ∈ A

|f(x+ h)− f(x)− φx(h)| ≤ C‖h‖ω(‖h‖), h ∈ A− x,

and f ′(x) = φx. Thus f ∈ C1,ω(A) by [8, Corollary 126, page 58]. �

Remark 2.7. The corollary [8, Corollary 126, page 58] and the proof of Theo-
rem 2.6 show that (4) holds also for A such that there exist a ∈ X , r > 0 and

a sequence (un)
∞
n=1 in X such that ‖un‖ = n and U(a+ un, rn) ⊂ A for every

n ∈ N. But (4) does not hold for an arbitrary open convex set A ([12, Exam-
ple 2.10, Remark 2.11]). However, if ω(t) = t, t ∈ [0,∞), then (4) holds for any
open convex A (see [12, Theorem 2.9 (iv)]).

3. Insertion of a C1,ω function on the whole space

Here we prove the principal observation of this article. The main idea is based
on the choice of the function s in the proof of Theorem 3.1.
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Theorem 3.1. Let X be a normed linear space, f1, f2 : X → R and ω1, ω2 ∈ M.
Suppose that f1 is semiconvex with modulus ω1, f2 is semiconcave with modulus
ω2 and f1 ≤ f2. Denote by S the set of all s : X → R which are semiconvex with
modulus ω1 and satisfy s ≤ f2. Then the function

f(x) := sup{s(x) : s ∈ S}, x ∈ X,

is semiconvex with modulus ω1, semiconcave with modulus ω2 and satisfies f1 ≤
f ≤ f2.

Proof: It is clear that f1 ≤ f ≤ f2. By Lemma 2.3 (iv), f is semiconvex with
modulus ω1. Now we will prove that f is semiconcave with modulus ω2.

Let u, v ∈ X and λ ∈ [0, 1]. Set w := λu+ (1− λ)v and define a function s by

s(x) = λf(x− w + u) + (1− λ)f(x− w + v)

− λ(1− λ)‖u − v‖ω2(‖u− v‖), x ∈ X.

By Lemma 2.3 (ii), (iii), s is semiconvex with modulus λω1 + (1 − λ)ω1 = ω1.
Since f2 is semiconcave with modulus ω2, we have

s(x) ≤ λf2(x− w + u) + (1− λ)f2(x− w + v)− λ(1 − λ)‖u− v‖ω2(‖u− v‖)

≤ f2(λ(x − w + u) + (1− λ)(x − w + v)) = f2(x), x ∈ X.

Hence s ∈ S and consequently s ≤ f . So

f(λu+ (1 − λ)v) ≥ s(w) = λf(u) + (1− λ)f(v) − λ(1 − λ)‖u− v‖ω2(‖u− v‖).

�

Corollary 3.2. Let X be a normed linear space, ω ∈ M, f1 ∈ SCω(X) and
f2 ∈ −SCω(X). Suppose that f1, f2 are continuous and f1 ≤ f2. Then there
exists f ∈ C1,ω(X) such that f1 ≤ f ≤ f2.

Proof: By Theorem 3.1 there exists f ∈ SCω(X) ∩ (−SCω(X)) such that
f1 ≤ f ≤ f2. Since f1, f2 are continuous, f is locally bounded. Hence, by
Proposition 2.5, f is continuous and thus, by Theorem 2.6, f ∈ C1,ω(X) . �

4. Insertion of a C1,ω
loc

function

In this section we will use Corollary 3.2 and partitions of unity to obtain
a version (Theorem 4.5) of Ilmanen lemma which works with locally semiconvex
and locally semiconcave functions defined on an open subset of a Hilbert space.
Recall that Theorem 4.5 gives a positive answer to a problem formulated by
A. Fathi and M. Zavidovique (see [7, Problem 5.1]).

We will need the following obvious fact.
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Fact 4.1. Let X,Y be normed linear spaces, A ⊂ X , and f : A → Y . If A is
bounded and f is uniformly continuous with some modulus ω ∈ M, then f is
bounded.

Lemma 4.2. Let X be a normed linear space, A ⊂ X a bounded open convex
set, ω ∈ M, g1 ∈ C1,ω(A) and g2 ∈ SCω(A). Suppose that g1 ≥ 0, g2 is Lipschitz,
and lim inft→0+ ω(t)/t > 0. Then g1g2 ∈ SCω(A).

Proof: By Fact 4.1, g′1 is bounded and thus, by [8, Proposition 71, page 29],
g1 is Lipschitz. By the assumptions and Fact 4.1 we can find C > 0 big enough
such that 0 ≤ g1 ≤ C, |g2| ≤ C, g′1 is uniformly continuous with modulus Cω,
g2 is semiconvex with modulus Cω and g1, g2 are C-Lipschitz. By (3) there
exists M > 0 such that t ≤ Mω(t), t ∈ [0, diam(A)]. We will show that g1g2 is
semiconvex with modulus (2M + 3)C2ω.

Let x, h ∈ X , ‖h‖ = 1. Set I := {t ∈ R : x + th ∈ A} and for i = 1, 2 define
a function fi(t) := gi(x+ th), t ∈ I. By Lemma 2.3 (i), it is sufficient to show that
f1f2 is semiconvex with modulus (2M +3)C2ω. Since g′1 is uniformly continuous
with modulus Cω, we easily obtain that f ′

1(t) ∈ R for every t ∈ I and

|f ′
1(t1)− f ′

1(t2)| ≤ Cω(t2 − t1), t1, t2 ∈ I, t1 ≤ t2.

By Lemma 2.3 (i), f2 is semiconvex with modulus Cω and thus, by Proposi-
tion 2.4 (i), (f2)

′
+(t) ∈ R for every t ∈ I and

(f2)
′
+(t1)− (f2)

′
+(t2) ≤ 2Cω(t2 − t1), t1, t2 ∈ I, t1 ≤ t2.

Clearly f1, f2 are C-Lipschitz and hence also |f ′
1| ≤ C and |(f2)

′
+| ≤ C. Thus

(f1f2)
′
+(t) ∈ R for every t ∈ I and

(f1f2)
′
+(t1)− (f1f2)

′
+(t2)

= f ′
1(t1)f2(t1) + f1(t1)(f2)

′
+(t1)− f ′

1(t2)f2(t2)− f1(t2)(f2)
′
+(t2)

= f ′
1(t1)(f2(t1)− f2(t2)) + f2(t2)(f

′
1(t1)− f ′

1(t2))

+ (f2)
′
+(t1)(f1(t1)− f1(t2)) + f1(t2)((f2)

′
+(t1)− (f2)

′
+(t2))

≤ C2(t2 − t1) + C2ω(t2 − t1) + C2(t2 − t1) + 2C2ω(t2 − t1)

≤ (2M + 3)C2ω(t2 − t1)

for every t1, t2 ∈ I, t1 ≤ t2. Hence f1f2 is semiconvex with modulus (2M+3)C2ω
by Proposition 2.4 (ii). �

Lemma 4.3. Let X be a normed linear space, f : X → R, and ω ∈ M. Suppose
that there exists an open convex set U ⊂ X such that supp f ⊂ U and f ↾U is
semiconvex with modulus ω. Then f is semiconvex with modulus 2ω.

Proof: By Lemma 2.3 (i) we may suppose that X = R. Then f is continuous
on U by [2, Theorem 2.1.7]. Since supp f ⊂ U , it follows that f is continuous and
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f ′(x) = 0 for every x ∈ R \ U . By Proposition 2.4 (i), f ′
+(x) ∈ R for every x ∈ U

and

(5) f ′
+(x1)− f ′

+(x2) ≤ 2ω(x2 − x1)

for every x1, x2 ∈ U , x1 ≤ x2. Let x1, x2 ∈ R, x1 ≤ x2. By Proposition 2.4 (ii)
it is enough to show that (5) holds. This is clear if x1, x2 ∈ U or x1, x2 ∈ R \ U .
Suppose that x1 ∈ R \ U and x2 ∈ U . Then f ′(x1) = 0 and there exists c ∈ U
such that x1 < c ≤ x2 and f ′(c) = 0. Hence

f ′
+(x1)− f ′

+(x2) = f ′
+(c)− f ′

+(x2) ≤ 2ω(x2 − c) ≤ 2ω(x2 − x1).

The case x1 ∈ U , x2 ∈ R \ U is analogous. �

Lemma 4.4. Let X be a Hilbert space, a ∈ X , r > 0 and ω ∈ M. Suppose
that lim inft→0+ ω(t)/t > 0. Then there exists b ∈ C1,ω(X) such that 0 ≤ b ≤ 1,
supp b ⊂ U(a, 2r) and b = 1 on U(a, r).

Proof: Set g(x) := ‖x − a‖2, x ∈ X , and ϕ(t) := t, t ∈ [0,∞). It is well
known that g ∈ C1,ϕ(X), g is Lipschitz on U := U(a, 2r) and that we can find
f ∈ C1,ϕ(R) such that 0 ≤ f ≤ 1, supp f ⊂ (−1, 4r2) and f = 1 on [0, r2].

Set b = f ◦ g. Then clearly 0 ≤ b ≤ 1, supp b ⊂ U and b = 1 on U(a, r).
By Fact 4.1 and [8, Proposition 128, page 59] we have b↾U∈ C1,ϕ(U). Hence,
b↾U∈ C1,ω(U) by (3). Since supp b ⊂ U , we easily obtain that b ∈ C1,ω(X). �

Theorem 4.5. Let X be a Hilbert space, G ⊂ X an open set, f1, f2 : G→ R and
ω ∈ M. Suppose that f1, f2 are continuous, f1 ≤ f2, lim inf t→0+ ω(t)/t > 0 and
the following condition holds.

◦ For every a ∈ G there exist r, C > 0 such that U := U(a, r) ⊂ G, f1↾U is
semiconvex with modulus Cω and f2↾U is semiconcave with modulus Cω.

Then there exists f ∈ C1,ω
loc

(G) such that f1 ≤ f ≤ f2.

Proof: We claim that for every a ∈ G there exists ra > 0 and Fa ∈ C1,ω(X)
such that U(a, ra) ⊂ G and

f1(x) ≤ Fa(x) ≤ f2(x), x ∈ U(a, ra).(6)

To prove this, choose a ∈ G. By the assumptions and Proposition 2.5 there exists
ra > 0 such that U := U(a, 2ra) ⊂ G, f1, f2 are Lipschitz on U , f1↾U∈ SCω(U)
and f2↾U∈ −SCω(U). By Lemma 4.4 there exists b ∈ C1,ω(X) such that b ≥ 0,
supp b ⊂ U and b = 1 on U(a, ra). For i = 1, 2 we define a function

bi(x) :=

{

b(x)fi(x), x ∈ U,

0, x ∈ X \ U.

Then b1 ≤ b2, supp b1 ⊂ U , supp b2 ⊂ U , and b1, b2 are continuous. By Lemma 4.2
we have b1↾U∈ SCω(U) and −b2↾U∈ SCω(U). Thus b1 ∈ SCω(X) and −b2 ∈
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SCω(X) by Lemma 4.3. Hence, by Corollary 3.2, there exists Fa ∈ C1,ω(X) such
that b1 ≤ Fa ≤ b2. Then (6) holds and we are done.

Since {U(a, ra) : a ∈ G} forms an open cover of G, we can, by [15, Theorem 3]
and [11, Lemma 2.5], find a locally finite C∞-partition of unity Q on G subor-
dinated to {U(a, ra) : a ∈ G}. So, for every q ∈ Q there exists aq ∈ G such that
supp q ⊂ U(aq, raq

). Set

f(x) :=
∑

q∈Q

q(x)Faq
(x), x ∈ G.

It follows from [8, Proposition 71, page 29] that q, q′ and Faq
are locally Lipschitz

whenever q ∈ Q. Hence, qFaq
∈ C1,ω

loc (X), q ∈ Q, by (3) and [8, Proposition 129,
page 59]. Since Q is locally finite, it follows that f is well defined and f ∈

C1,ω
loc (G). Finally, for every x ∈ G we have

∑

q∈Q
q(x)fi(x) = fi(x), i = 1, 2, and

q(x)f1(x) ≤ q(x)Faq
(x) ≤ q(x)f2(x), q ∈ Q. Thus f1 ≤ f ≤ f2. �

Theorem 4.5 holds also for some non-Hilbertian Banach spaces as noted in the
following remark.

Remark 4.6. If, in Theorem 4.5, X is a Banach space and G admits locally finite
C1,ω-partitions of unity, then the proof works essentially the same. Moreover, it
can be proved that if a Banach space X admits an equivalent norm with modulus
of smoothness of power type 2 (e.g. X = ℓp for p ≥ 2) and ω ∈ M is such
that lim inft→0+ ω(t)/t > 0, then every open G ⊂ X admits locally finite C1,ω-
partitions of unity. The proof of this fact is quite technical and thus we restricted
ourselves to the case of a Hilbert space.

Acknowledgment. I thank Luděk Zaj́ıček for many helpful suggestions that
improved this article.
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[8] Hájek P., Johanis M., Smooth Analysis in Banach Spaces, De Gruyter Series in Nonlinear
Analysis and Applications, 19, De Gruyter, Berlin, 2014.

[9] Ilmanen T., The level-set flow on a manifold, Differential Geometry: Partial Differential
Equations on Manifolds (Los Angeles, CA, 1990), Proc. Sympos. Pure Math., 54, Part 1,
Amer. Math. Soc., Providence, 1993, pp. 193–204.

[10] Jourani A., Thibault L., Zagrodny D., C1,ω(·)-regularity and Lipschitz-like properties of

subdifferential, Proc. Lond. Math. Soc. (3) 105 (2012), no. 1, 189–223.
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