Isometric embeddings of a class of separable metric spaces into Banach spaces

Sophocles K. Mercourakis, Vassiliadis G. Vassiliadis

Abstract. Let (M, d) be a bounded countable metric space and c > 0 a constant, such that $d(x, y) + d(y, z) - d(x, z) \ge c$, for any pairwise distinct points x, y, z of M. For such metric spaces we prove that they can be isometrically embedded into any Banach space containing an isomorphic copy of ℓ_{∞} .

Keywords: concave metric space; isometric embedding; separated set

Classification: Primary 46B20, 46E15; Secondary 46B26, 54D30

Introduction

Let (M, d) be a metric space; following [4] we will call it *concave*, when the triangle inequality is strict, i.e., when d(x, y) + d(y, z) > d(x, z) for any pairwise distinct points x, y, z of M.

In this note we are interested in (concave) metric spaces satisfying the stronger property: there is a constant c > 0 such that $d(x, y) + d(y, z) - d(x, z) \ge c$ for any pairwise distinct points x, y, z. Let us call these spaces *strongly concave* metric spaces.

The main result we prove is an infinite dimensional version of Theorem 4.3 of [4], that is, if a Banach space X contains an isomorphic copy of ℓ_{∞} , then X contains isometrically any bounded countable strongly concave metric space (Theorem 2). An immediate consequence of this result is that any Banach space containing an isomorphic copy of c_0 admits an infinite equilateral set (Theorem 3). This result was first proved (by similar methods) in [5, Theorem 2].

A subset S of a metric space (M, d) is said to be equilateral, if there is a $\lambda > 0$ such that for $x \neq y \in S$ we have $d(x, y) = \lambda$; we also call S a λ -equilateral set (see [8]).

If X is any (real) Banach space, then B_X and S_X denote its closed unit ball and unit sphere respectively. X is said to be strictly convex, if for any $x \neq y \in S_X$ we have ||x + y|| < 2. The Banach-Mazur distance between two isomorphic Banach spaces X and Y is $d(X, Y) = \inf\{||T|| ||T^{-1}||: T \text{ is an isomorphism}\}.$

DOI 10.14712/1213-7243.2015.239

Strongly concave metric spaces

We start by presenting some examples of concave metric spaces.

Examples 1. (1) a) Let (M, d) be a discrete metric space (i.e. d(x, y) = 1 when $x \neq y$). Clearly 1 = d(x, z) < d(x, y) + d(y, z) = 2 for any pairwise distinct triplet $x, y, z \in M$. Therefore (M, d) is a concave metric space. In particular, every λ -equilateral subset of any metric space is a concave metric space.

b) More generally, every *ultrametric* space is concave. This holds since for any x, y, z pairwise distinct points we have $d(x, z) \leq \max\{d(x, y), d(y, z)\} < d(x, y) + d(y, z)$.

(2) Let $(X, \|\cdot\|)$ be a strictly convex Banach space. As is well known, if x, y, z are non collinear points of X then $\|x - z\| < \|x - y\| + \|y - z\|$.

It then follows that the unit sphere S_X and every affinely independent subset A of X with the norm metric are concave metric spaces (in any case no three pairwise distinct points are collinear).

(3) Let $(X, \|\cdot\|)$ be a Banach space and $A \subseteq B_X$ such that $x \neq y \in A \Rightarrow \|x-y\| > 1$ (see [3]). Then for any x, y, z pairwise distinct points of A we have $\|x-y\| + \|y-z\| - \|x-z\| > 1 + 1 - \|x-z\| \ge 1 + 1 - 2 = 0$. Hence A with the norm metric is concave.

(4) Let (M, d) be any metric space and $p \in (0, 1)$. Then it is rather easy to show that d^p is a concave metric on M. This follows from the fact that given a, b, c > 0 with $a \leq b + c$ then $a^p < b^p + c^p$. The metric d^p is then called the snowflaked version of d (see [6]).

We are interested in concave metric spaces (M, d) satisfying the stronger property: there is a constant c > 0 such that for any pairwise distinct points x, y, z of M we have $d(x, y) + d(y, z) - d(x, z) \ge c$, equivalently $d(x, z) + c \le d(x, y) + d(y, z)$. Let us call these spaces *strongly concave* spaces.

Lemma 1. Every strongly concave metric space is separated (or uniformly discrete).

PROOF: Assume that (M, d) is a *c*-strongly concave metric space. We claim that $x \neq y \in M \Rightarrow d(x, y) \geq c/2$. Assume for the purpose of contradiction that there is a pair $\{x, y\} \subseteq M$ with d(x, y) < c/2. Let also $z \in M \setminus \{x, y\}$. We then have $d(x, y) + d(y, z) \leq d(x, y) + (d(y, x) + d(x, z)) = 2d(x, y) + d(x, z) \Rightarrow d(x, y) + d(y, z) - d(x, z) \leq 2d(x, y) < 2c/2 = c$. The last inequality clearly contradicts the fact that M is *c*-strongly concave.

The following are examples of strongly concave metric spaces.

Examples 2. (1) Every finite concave metric space is clearly strongly concave.

(2) Let A be a λ -equilateral subset of any metric space (M, d). For any pairwise distinct points x, y, z of A we have $d(x, y) + d(y, z) - d(x, z) = \lambda + \lambda - \lambda = \lambda$, so A is a λ -strongly concave metric subspace of (M, d).

(3) Let $(X, \|\cdot\|)$ be a Banach space. Also let $A \subseteq B_X$ with the property that $x \neq y \in A \Rightarrow \|x - y\| \ge 1 + \varepsilon$, where $\varepsilon > 0$ is a constant. Then we have $\|x - y\| + \|y - z\| - \|x - z\| > (1 + \varepsilon) + (1 + \varepsilon) - 2 = 2\varepsilon$ (cf. Examples 1 (3)). Therefore A with the norm metric is a 2ε -strongly concave metric space.

Note that if dim $X = \infty$, then by a result of J. Elton and E. Odell (see [2]) there is $A \subseteq S_X$ infinite and $\varepsilon > 0$ such that $x \neq y \in A \Rightarrow ||x - y|| \ge 1 + \varepsilon$.

Remarks 1. (1) Clearly every separable strongly concave metric space M is at most countable (this is so because M is separated, hence it has the discrete topology).

(2) Every subspace of a concave (or strongly concave) space has the same property.

The following result is classical (see [6]).

Theorem 1 (Fréchet). Every separable metric space (M, d) embeds isometrically into ℓ_{∞} .

PROOF: Let $(x_n) \subseteq M$ be a dense sequence in M. Then the map

$$\varphi \colon x \in M \mapsto (d(x, x_n) - d(x_1, x_n))_{n \ge 1} \in \ell_{\infty}$$

satisfies our claim.

Remark 2. Let (M, d) be a separable metric space. We define a map

$$\sigma \colon M \to \mathbb{R}^{\mathbb{N}}$$
 with $\sigma(x) = (d(x, x_n))_{n \ge 1}$

where (x_n) is any dense sequence in M. Then the Fréchet embedding of M into ℓ_{∞} is the map

$$\varphi(x) = \sigma(x) - \sigma(x_1), \qquad x \in X.$$

Note that if the space (M, d) is bounded (i.e., there is k > 0 such that $d(x, y) \leq k$ for all $x, y \in M$), then the map σ is already an isometric embedding of M into ℓ_{∞} , which we will still call the Fréchet embedding of M into ℓ_{∞} .

Proposition 1. Let (M, d) be a bounded countable infinite metric space. Then there is an infinite subset N of M such that the Fréchet embedding of N into ℓ_{∞} takes values into the space **c**.

PROOF: Let $\{x_1, x_2, \ldots, x_n, \ldots\}$ be a one-to-one enumeration of M. Then $\sigma(x_k) = (d(x_k, x_n))_{n \ge 1} \in \ell_{\infty}$ for $k \in \mathbb{N}$, since d is a bounded metric. We construct by induction a subsequence $\{x'_1, x'_2, \ldots, x'_n, \ldots\}$ of (x_n) satisfying our claim.

Since $(d(x_1, x_n))_{n \ge 1}$ is a bounded sequence of real numbers, there is $A_1 \subseteq \mathbb{N}$ infinite, such that $d(x_1, x_n) \xrightarrow{n \in A_1} \alpha_1$. Set $n_1 = 1$.

Let $n_2 = \min A_1$ for which we may assume that $n_2 > n_1$. Then for the sequence $(d(x_{n_2}, x_n))_{n \in A_1}$, there is $A_2 \subseteq A_1$ infinite with $n_3 = \min A_2 > n_2$ such that $d(x_{n_2}, x_n) \xrightarrow{n \in A_2} \alpha_2$.

Then for the sequence $(d(x_{n_3}, x_n))_{n \in A_2}$, there is $A_3 \subseteq A_2$ infinite with $n_4 = \min A_3 > n_3$ such that $d(x_{n_3}, x_n) \xrightarrow{n \in A_3} \alpha_3$.

The inductive process should be clear. Now set a metric space $A = \{n_1 < n_2 < \cdots < n_k < \ldots\}$. Clearly $\{n_k, n_{k+1}, \ldots\} \subseteq A_k$ for $k \ge 1$ and hence $d(x_{n_k}, x_n) \xrightarrow{n \in A} \alpha_k$ for all $k \ge 1$. It is clear that the set $N = \{x'_k = x_{n_k} : k \ge 1\}$ satisfies our requirements.

The following theorem is the main result of this note; its proof resembles the proof of Theorem 4.3 of [4] and the proof of Theorem 2 of [5] (we use Schauder's fixed point theorem in the same way we did in [5]). The origins of these ideas can be traced in P. Braß (see [1] and [8]) and K. J. Swanepoel and R. Villa (see [9] and [10]).

Theorem 2. Let X be any Banach space containing an isomorphic copy of ℓ_{∞} . Then X contains isometrically any bounded separable strongly concave metric space.

PROOF: We shall use a kind of non distortion property of ℓ_{∞} proved independently by M. Talagrand (see [11]) and J. R. Partington (see [7]). Let us denote by $\|\cdot\|_{\infty}$ the usual norm of ℓ_{∞} .

Claim. Let (M, d) be any bounded separable strongly concave metric space. There is $\delta > 0$, such that if $\|\cdot\|$ is any equivalent norm on ℓ_{∞} with Banach Mazur distance

$$d((\ell_{\infty}, \|\cdot\|_{\infty}), (\ell_{\infty}, \|\cdot\|)) \le 1 + \delta$$

then the space (M, d) embeds isometrically into $(\ell_{\infty}, \|\cdot\|)$.

PROOF OF THE CLAIM: Since (M, d) is strongly concave, there is $\eta > 0$ such that $d(x, y) + d(y, z) - d(x, z) \ge \eta$ for each triplet x, y, z of pairwise distinct points of M. We may assume that $||x|| \le ||x||_{\infty} \le (1 + \delta)||x||$ for $x \in \ell_{\infty}$, where $\delta > 0$ is to be determined.

Let $I = \{(m, n) : n < m, n, m \in \mathbb{N}\}$; denote by K the compact cube $[0, \eta]^I$. Since M is (strongly concave and) separable, it is at most countable, so let $M = \{x_1, x_2, \ldots, x_n, \ldots\}$. For $\varepsilon = (\varepsilon_{(m,n)}) \in K$ set

$$p_{1}(\varepsilon) = (d(x_{1}, x_{1}) - d(x_{1}, x_{1}), d(x_{1}, x_{2}) - d(x_{1}, x_{2}), \dots, d(x_{1}, x_{n}) - d(x_{1}, x_{n}), \dots) = (0, \dots, 0, \dots) p_{2}(\varepsilon) = (d(x_{2}, x_{1}) - d(x_{1}, x_{1}) + \varepsilon_{(2,1)}, d(x_{2}, x_{2}) - d(x_{1}, x_{2}), \dots, d(x_{2}, x_{n}) - d(x_{1}, x_{n}), \dots) :$$

Isometric embeddings of a class of separable metric spaces into Banach spaces

$$p_n(\varepsilon) = (d(x_n, x_1) - d(x_1, x_1) + \varepsilon_{(n,1)}, \dots, d(x_n, x_{n-1}) - d(x_1, x_{n-1}) + \varepsilon_{(n,n-1)}, d(x_n, x_n) - d(x_1, x_n), \dots)$$

:

(Note that $x_n \mapsto p_n(0)$ is the Fréchet embedding of M into $(\ell_{\infty}, \|\cdot\|_{\infty})$).

For n < m we have

$$\|p_n(\varepsilon) - p_m(\varepsilon)\|_{\infty} = \sup_k \left| d(x_n, x_k) + \varepsilon_{(n,k)} - (d(x_m, x_k) + \varepsilon_{(m,k)}) \right|$$

where we set $\varepsilon_{(k,l)} = 0$ for $l \ge k$. This supremum is equal to $d(x_n, x_m) + \varepsilon_{(m,n)}$ as for $k \ne n, m$ we have

$$d(x_n, x_k) - d(x_m, x_k) + \varepsilon_{(n,k)} - \varepsilon_{(m,k)} \le d(x_n, x_m) - \eta + \varepsilon_{(n,k)} - \varepsilon_{(m,k)} \le d(x_n, x_m) + \varepsilon_{(m,k)} - \varepsilon_{(m,k)} \le d(x_n, x_m) + \varepsilon_{(m,k)} \le d(x_m, x_m) + \varepsilon_{(m,k)} \le d(x_m, x_m$$

We define a function

$$\varepsilon = (\varepsilon_{(m,n)}) \in K \xrightarrow{\varphi} \varphi(\varepsilon) = (\varphi_{(m,n)}(\varepsilon)) \in K,$$

by the rule $\varphi_{(m,n)}(\varepsilon) = d(x_n, x_m) + \varepsilon_{(m,n)} - ||p_n(\varepsilon) - p_m(\varepsilon)||$. Note that $\varphi_{(m,n)}(\varepsilon) \ge d(x_n, x_m) + \varepsilon_{(m,n)} - ||p_n(\varepsilon) - p_m(\varepsilon)||_{\infty} = 0$ (using the computation above and the fact that the norm $||\cdot||_{\infty}$ dominates $||\cdot||$). We also have

$$d(x_n, x_m) + \varepsilon_{(m,n)} = \|p_n(\varepsilon) - p_m(\varepsilon)\|_{\infty} \le (1+\delta) \|p_n(\varepsilon) - p_m(\varepsilon)\|$$

$$\Rightarrow \frac{1}{1+\delta} (d(x_n, x_m) + \varepsilon_{(m,n)}) \le \|p_n(\varepsilon) - p_m(\varepsilon)\|.$$

Therefore

$$\begin{aligned} \varphi_{(m,n)}(\varepsilon) &= d(x_n, x_m) + \varepsilon_{(m,n)} - \|p_n(\varepsilon) - p_m(\varepsilon)\| \\ &\leq d(x_n, x_m) + \varepsilon_{(m,n)} - \frac{1}{1+\delta} (d(x_n, x_m) + \varepsilon_{(m,n)}) \\ &= \frac{\delta}{1+\delta} (d(x_n, x_m) + \varepsilon_{(m,n)}). \end{aligned}$$

It then follows from (this inequality and) the fact that M is bounded that if δ is quite small, then $\varphi_{(m,n)}(\varepsilon) \leq \eta$ for $\varepsilon \in K$.

Since each coordinate function $\varphi_{(m,n)}$ is continuous (as dependent on finite coordinates, i.e., from the set $\{(k,l): 1 \leq l < k \leq m\}$) it follows that φ is also continuous. By a classical result of Schauder, φ has a fixed point $\varepsilon' = (\varepsilon'_{(m,n)}) \in K$, that is $\varphi(\varepsilon') = \varepsilon'$, which implies $\|p_n(\varepsilon') - p_m(\varepsilon')\| = d(x_n, x_m)$ for all $n, m \in \mathbb{N}$. The proof of the Claim is complete.

Denote by $\|\cdot\|$ the norm of X and let Y be a subspace of X isomorphic to ℓ_{∞} . By the non distortion property of $(\ell_{\infty}, \|\cdot\|_{\infty})$ there is a subspace $Z \subseteq Y$ (isomorphic

237

to ℓ_{∞}) such that

$$d((Z, \|\cdot\|), (\ell_{\infty}, \|\cdot\|_{\infty})) \le 1 + \delta$$

(this is the $\delta > 0$ postulated in the Claim). It follows immediately from the Claim that the space $(Z, \|\cdot\|)$ contains an isometric copy of (M, d).

In the special case when (M, d) is the countable infinite discrete metric space we get the following result first proved in [5, Theorem 2], essentially with the same method.

Theorem 3. Every Banach space X containing an isomorphic copy of c_0 admits an infinite equilateral set.

PROOF: Take in the proof of the previous theorem (M, d) to be the countable infinite discrete space. Then $\eta = 1$ and the resulting family $(p_n(\varepsilon))_{n\geq 1}, \varepsilon \in K = [0, 1]^I$ takes values in c_0 (remember that $x_n \mapsto p_n(0)$ is the Fréchet embedding of (M, d) into c_0). Since $(c_0, \|\cdot\|_{\infty})$ is non distortable, we get the conclusion. \Box

Theorem 2 can be improved in the following way.

Theorem 4. Let (M, d) be an infinite bounded separable strongly concave metric space. Then there is $N \subseteq M$ infinite such that the metric space (N, d) can be isometrically embedded into any Banach space containing an isomorphic copy of the space c_0 .

PROOF: By Proposition 1, there is $N \subseteq M$ infinite such that the Fréchet embedding $\sigma: N \to \ell_{\infty}$ takes values into **c**. Then the proof of Theorem 2 gives us a family of embeddings $(p_n(\varepsilon))_{n\geq 1}, \varepsilon \in K = [0,\eta]^I$ taking values into **c**. Since **c** is isomorphic to c_0 , we are done.

References

- Braß P., On equilateral simplices in normed spaces, Beiträge Algebra Geom. 40 (1999), no. 2, 303–307.
- [2] Elton J., Odell E., The unit ball of every infinite-dimensional normed linear space contains a (1 + ε)-separated sequence, Colloq. Math. 44 (1981), no. 1, 105–109.
- [3] Glakousakis E., Mercourakis S., On the existence of 1-separated sequences on the unit ball of a finite-dimensional Banach space, Mathematika 61 (2015), no. 3, 547–558.
- [4] Kilbane J., On embeddings of finite subsets of l₂, available at arXiv:1609.08971v2 [math.FA] (2016), 12 pages.
- Mercourakis S. K., Vassiliadis G., Equilateral sets in infinite dimensional Banach spaces, Proc. Amer. Math. Soc. 142 (2014), no. 1, 205–212.
- [6] Ostrovskii M. I., Metric Embeddings. Bilipschitz and Coarse Embeddings into Banach Spaces, De Gruyter Studies in Mathematics, 49, De Gruyter, Berlin, 2013.
- [7] Partington J. R., Subspaces of certain Banach sequence spaces, Bull. London Math. Soc. 13 (1981), no. 2, 162–166.
- [8] Swanepoel K. J., Equilateral sets in finite-dimensional normed spaces, Seminar of Mathematical Analysis, Colecc. Abierta, 71, Univ. Sevilla Secr. Publ., Seville, 2004, pp. 195–237.
- [9] Swanepoel K. J., Villa R., A lower bound for the equilateral number of normed spaces, Proc. Amer. Math. Soc. 136 (2008), no. 1, 127–131.

238

- [10] Swanepoel K. J., Villa R., Maximal equilateral sets, Discrete Comput. Geom. 50 (2013) no. 2, 354–373.
- [11] Talagrand M., Sur les espaces de Banach contenant $l_1(\tau)$, Israel J. Math. **40** (1981) no. 3–4, 324–330 (French. English summary).

S.K. Mercourakis, V.G. Vassiliadis:

UNIVERSITY OF ATHENS, DEPARTMENT OF MATHEMATICS, 15784 ATHENS, GREECE

E-mail: smercour@math.uoa.gr georgevassil@hotmail.com

(Received November 27, 2017, revised January 19, 2018)