Limited p-converging operators and relation with some geometric properties of Banach spaces

Mohammad B. Dehghani, Seyed M. Moshtaghioun

Abstract. By using the concepts of limited p-converging operators between two Banach spaces X and Y, L_p -sets and L_p -limited sets in Banach spaces, we obtain some characterizations of these concepts relative to some well-known geometric properties of Banach spaces, such as *-Dunford-Pettis property of order p and Pelczyński's property of order p, $1 \le p < \infty$.

Keywords: Gelfand–Phillips property; Schur property; p-Schur property; weakly p-compact set; reciprocal Dunford–Pettis property of order p

Classification: 47L05, 46B25

1. Introduction

Suppose that X is a Banach space and $1 \le p \le \infty$. The space of all weakly p-summable sequences in X is defined by

$$l_p^{\text{weak}}(X) := \{(x_n) : (x_n, x^*) \in l_p, \ \forall x^* \in X^* \}.$$

This is a Banach space with norm

$$\|(x_n)\|_p^{\text{weak}} = \sup \left\{ \left(\sum_{n=1}^{\infty} |\langle x_n, x^* \rangle|^p \right)^{1/p} : \|x^*\| \le 1 \right\}.$$

Note that for $p = \infty$, $l_{\infty}^{\text{weak}}(X) = l_{\infty}(X)$ is the Banach space of all (weakly) bounded sequences in X with supremum norm, see [10, page 33]. Moreover, by $c_0^{\text{weak}}(X)$ we represent the closed subspace of $l_{\infty}(X)$ containing all weakly null sequences in X.

An operator T between two Banach spaces X and Y is said to be p-converging if it transfers weakly p-summable sequences into norm null sequences. The class of all p-converging operators from X into Y is denoted by $C_p(X,Y)$. Also T is

called *p*-summing if there is a constant $c \ge 0$ such that for all choices of $(x_k)_{k=1}^n$ in X we have

$$\left(\sum_{k=1}^{n} \|Tx_k\|^p\right)^{1/p} \le c \sup\left\{ \left(\sum_{k=1}^{n} |\langle x_k, x^* \rangle|^p\right)^{1/p} \colon \|x^*\| \le 1 \right\}.$$

The set of all p-summing operators from X into Y is denoted by $\Pi_p(X,Y)$.

For each $1 \leq p < \infty$ a sequence (x_n) in a Banach space X is said to be weakly p-convergent to an $x \in X$ if the sequence $(x_n - x)$ is weakly p-summable, i.e., $(x_n - x) \in l_p^{\text{weak}}(X)$. The weakly ∞ -convergent sequences are simply the weakly convergent sequences. Also, a bounded set K in a Banach space is said to be relatively weakly p-compact, $1 \leq p \leq \infty$, if every sequence in K has a weakly p-convergent subsequence, see [3]. If the limit point of each weakly p-convergent subsequence is in K, then K is weakly p-compact set. Moreover, according to [4], we say that a Banach space $X \in \mathcal{W}_p$ if the closed unit ball B_X of X is a weakly p-compact set. A bounded operator T from X into Y is called weakly p-compact, $1 \leq p \leq \infty$, if $T(B_X)$ is relatively weakly p-compact. The space of all weakly p-compact operators from X into Y is denoted by $W_p(X,Y)$; while the space of all bounded operators and weakly compact operators from X into Y are denoted by L(X,Y) and W(X,Y), respectively. Weakly ∞ -compact operators are precisely those $T \in L(X,Y)$ for which $T(B_X)$ is relatively weakly compact, that is, $W_\infty(X,Y) = W(X,Y)$.

A Banach space X has the Dunford–Pettis (DP) property, if every weakly compact operator T from X into arbitrary Banach space Y is a Dunford–Pettis operator, that is, T carries weakly convergent sequences into norm convergent ones. Moreover, if $1 \leq p \leq \infty$, the Banach space X has the Dunford–Pettis property of order p (DP $_p$) if for each Banach space Y, every weakly compact operator $T\colon X\to Y$ is p-converging; in other words $W(X,Y)\subseteq C_p(X,Y)$, see [3]. By definition, ∞ -converging operators are equal to Dunford–Pettis ones. So the Dunford–Pettis property of order ∞ is the same as DP property. Every Banach space with DP property, such as the sequence spaces c_0 and c_1 , have the DP $_p$ property, see [3].

Also the Banach space X has the Schur property if every weakly null sequence in X converges in norm. The simplest Banach space with the Schur property is l_1 . A Banach space X has the p-Schur property, $1 \leq p \leq \infty$, if every weakly p-compact subset of X is compact. In other words, if $1 \leq p < \infty$, X has the p-Schur property if and only if every sequence $(x_n) \in l_p^{\text{weak}}(X)$ is a norm null sequence, for example, l_p has the 1-Schur property. Moreover, X has the ∞ -Schur property if and only if every sequence in $c_0^{\text{weak}}(X)$ is norm null. So,

 ∞ -Schur property coincides with the Schur property. Also one note that every Schur space has the *p*-Schur property for all $p \ge 1$, see [6].

A subset K of a Banach space X is called limited (or Dunford–Pettis (DP)), if for each weak* null (weak null, respectively) sequence (x_n^*) in X^* ,

$$\lim_{n \to \infty} \sup_{x \in K} |\langle x, x_n^* \rangle| = 0.$$

In particular, a sequence $(x_n) \subset X$ is limited if and only if $\langle x_n, x_n^* \rangle \to 0$ for all weak*-null sequences (x_n^*) in X^* .

In general, every relatively compact subset of X is limited and so is Dunford–Pettis. If every limited subset of X is relatively compact, then X has the Gelfand–Phillips (GP) property. For example the classical Banach spaces c_0 and l_1 have the GP property and every Schur space and spaces containing no copy of l_1 , such as reflexive spaces have the same property, see [2]. The reader can find some useful and additional properties of limited and DP sets and Banach spaces with the Schur and GP properties in [1], [11], [12], [15], [19], [20], [22], [24].

In this note, using the concepts of limited p-converging operators between Banach spaces and L_p -limited subsets in dual of Banach spaces, we obtain some characterizations of the DP_p^* property of X. We shall also obtain some necessary and sufficient conditions for Pelczyński's property (V) of order p which has been introduced and studied in [18]. In particular, we will present a new class of Banach spaces with Pelczyński's property (V) of order p. More precisely, we will prove that if $X \in \mathcal{W}_p$ and Y is a Banach space with Pelczyński's property (V) of order p such that $L(X,Y^*) = \Pi_p(X,Y^*)$, then $X \otimes_{\pi} Y$ has Pelczyński's property (V) of order p.

2. Main results

An operator $T \in L(X,Y)$ is called limited completely continuous if it carries limited and weakly null sequences in X to norm null ones in Y. The class of all limited completely continuous operators from X into Y is denoted by $L_{cc}(X,Y)$, see [23]. Also, an operator $T \in L(X,Y)$ is limited p-converging if it transfers limited and weakly p-summable sequences into norm null sequences, see [14]. We denote the space of all limited p-converging operators from X into Y by $C_{lp}(X,Y)$.

It is clear that every weakly p-compact operator is weakly compact. On the other hand by [23, Corollary 2.5] every weakly compact operator is limited completely continuous. Also limited completely continuous operators are limited p-converging. Therefore we have

$$W_p(X,Y) \subseteq W(X,Y) \subseteq L_{cc}(X,Y) \subseteq C_{lp}(X,Y).$$

Theorem 2.1. The following statements for any bounded operator $T: X \to Y$ are equivalent.

- (1) $T \in C_{lp}(X,Y)$.
- (2) Operator T transfers limited weakly p-compact sets into relatively norm compact ones.
- (3) If $S: Z \to X$ is limited weakly p-compact operator, i.e., $S(B_Z)$ is limited and weakly p-compact, then TS is compact.
- (4) If $S: l_1 \to X$ is limited weakly p-compact, then TS is compact.

PROOF: (1) \Rightarrow (2) Let $A \subset X$ be limited weakly p-compact and (Tx_n) is a sequence in T(A). Since A is weakly p-compact, we conclude that there is a subsequence (x_{n_k}) of (x_n) and $x_0 \in X$ such that $(x_{n_k} - x_0) \in l_p^{\text{weak}}(X)$. By assumption, $||Tx_{n_k} - Tx_0|| \to 0$ which implies that T(A) is relatively compact.

- $(2) \Rightarrow (3)$ and $(3) \Rightarrow (4)$ are clear.
- $(4) \Rightarrow (1)$ Assume that (x_n) is limited weakly p-summable. We shall prove that $||Tx_n|| \to 0$. Define

$$S: l_1 \to X, \qquad S(\alpha_1, \alpha_2, \ldots) = \sum_{n=1}^{\infty} \alpha_n x_n.$$

First, note that S is well defined, since (x_n) is weakly p-summable. We claim that S is limited weakly p-compact.

Since (x_n) is limited and

$$S(B_{l_1}) = \left\{ \sum_{n=1}^{\infty} \alpha_n x_n \colon \sum_{n=1}^{\infty} |\alpha_n| \le 1 \right\},\,$$

it follows that S is a limited operator. Assume that q > 1 such that 1/p + 1/q = 1. It is easy to see that the set

$$\left\{ \sum_{n=1}^{\infty} \alpha_n x_n \colon \sum_{n=1}^{\infty} |\alpha_n|^q \le 1 \right\}$$

is the continuous image by the natural operator associated to $(\alpha_n) \in B_{l_q}$ and so is weakly *p*-compact, see e.g. [10]. On the other hand, it is clear that

$$\bigg\{\sum_{n=1}^{\infty}\alpha_nx_n\colon \sum_{n=1}^{\infty}|\alpha_n|\le 1\bigg\}\subseteq \bigg\{\sum_{n=1}^{\infty}\alpha_nx_n\colon \sum_{n=1}^{\infty}|\alpha_n|^q\le 1\bigg\}.$$

It implies that $S(B_{l_1})$ is relatively weakly p-compact. Then by (4) the operator TS is compact. If (e_n) is the standard basis for l_1 , then each subsequence (e_{n_k}) of (e_n) , has a new subsequence, which is denoted again by (e_{n_k}) , such that

 $(Tx_{n_k}) = (TSe_{n_k})$ is norm convergent. Since the sequence (Tx_n) is weakly null it follows that $||Tx_n|| \to 0$.

A Banach space X is said to have the DP*-property of order p, for $1 \le p \le \infty$, if all weakly p-compact sets in X are limited. In short, we say that X has the DP*_p property, see [13]. It is clear that every p-converging operator is limited p-converging, but the converse in general is false. For example, let T be the identity operator on c_0 . By [6, Corollary 2.8] c_0 does not have the p-Schur property. Then T is not p-converging while $T \in C_{1p}(c_0)$, since c_0 has the GP property.

In the following, we give a characterization of this converse assertion, with respect to the DP_p^* property of Banach spaces.

Theorem 2.2 ([13]). Let $1 \leq p \leq \infty$. The Banach space X has the DP^{*}_p property if and only if $\langle x_n, x_n^* \rangle \to 0$ as $n \to \infty$ for all $(x_n) \in l_p^{\text{weak}}(X)$ and all weak* null sequence (x_n^*) in X^* .

Theorem 2.3. The Banach space X has the DP_p^* property if and only if $C_p(X,Y) = C_{1p}(X,Y)$ for every Banach space Y.

PROOF: Let $T \in C_{lp}(X,Y)$ and $(x_n) \in l_p^{\text{weak}}(X)$. Theorem 2.2 implies that (x_n) is limited and so $||Tx_n|| \to 0$. Hence $T \in C_p(X,Y)$.

Conversely, if X does not have the DP_p^* property, then there are $(x_n) \in l_p^{\mathrm{weak}}(X)$ and a weak*-null sequence (x_n^*) in X^* and $\varepsilon > 0$ such that $|\langle x_n, x_n^* \rangle| > \varepsilon$ for all integer n. Define $T \colon X \to c_0$ by $Tx = (\langle x, x_n^* \rangle)$ and let A be a limited subset of X. Then T(A) is also limited in c_0 . Since c_0 has the GP property, T(A) is relatively compact. Theorem 2.1 shows that $T \in C_{lp}(X, c_0)$. Moreover, $||Tx_n|| \ge |\langle x_n, x_n^* \rangle| \ge \varepsilon$. Therefore $T \notin C_p(X, c_0)$, which completes the proof. \square

Recall that according to [17], a bounded subset K of a Banach space X is p-limited if for every $(x_n^*) \in l_p^{\text{weak}}(X^*)$ there exists $(\alpha_n) \in l_p$ such that $|\langle x, x_n^* \rangle| \leq \alpha_n$ for all $x \in K$ and all $n \in \mathbb{N}$. Equivalently, K is p-limited if

$$\lim_n \sup_{x \in K} |\langle x, x_n^* \rangle| = 0$$

for every $(x_n^*) \in l_p^{\text{weak}}(X^*)$.

It is clear that every limited set and every Dunford–Pettis set are p-limited. We refer to [9] for more information about p-limited subsets of Banach spaces.

Theorem 2.4. Let X^* has the DP_p^* property. If $T\colon X\to Y$ and $T(B_X)$ is not p-limited, then T fixes a copy of l_1 .

PROOF: By assumptions, there exist $\varepsilon > 0$, $(y_k^*) \in l_p^{\text{weak}}(Y^*)$ and a sequence $(x_k) \subset B_X$ such that $|\langle Tx_k, y_k^* \rangle| \geq \varepsilon$ for all integers k. We claim that (Tx_n) does not have a weakly Cauchy subsequence. Otherwise, by passing to subsequence,

we can assume that the sequence (Tx_n) is weakly Cauchy. For each $m \in \mathbb{N}$, $\lim_{n\to\infty}\langle Tx_m,y_n^*\rangle=0$. Therefore there is an $n_m\in\mathbb{N}$ such that $|\langle Tx_m,y_{n_m}^*\rangle|<\varepsilon/2$. We also have

$$|\langle Tx_{n_m} - Tx_m, y_{n_m}^* \rangle| \ge |\langle Tx_{n_m}, y_{n_m}^* \rangle| - |\langle Tx_m, y_{n_m}^* \rangle| \ge \varepsilon - \frac{\varepsilon}{2} = \frac{\varepsilon}{2}$$

for all $m \in \mathbb{N}$. Since the sequence $(x_{n_m} - x_m)_{m \in \mathbb{N}}$ is weakly null and $(y_{n_m}^* \circ T) \in l_p^{\text{weak}}(X^*)$, it follows from the DP_p^* property of X^* that

$$\lim_{m \to \infty} \langle Tx_{n_m} - Tx_m, y_{n_m}^* \rangle = 0,$$

which is a contradiction. Hence (x_n) has no weakly Cauchy subsequence, since the image of a weakly Cauchy sequence is weakly Cauchy. Therefore the Rosenthal's l_1 -theorem implies the existence of a subsequence of (x_n) and a subsequece of (Tx_n) which is equivalent to the usual l_1 basis. Therefore a copy of l_1 in Y is fixed by T.

Let us recall that according to [18] a bounded subset K of X^* is said to be p-(V) set if

$$\lim_{n} \sup_{x^* \in K} |\langle x_n, x^* \rangle| = 0$$

for all $(x_n) \in l_p^{\text{weak}}(X)$. The authors in [18] have used this notion to define Pelczyński's property (V) of order p as a p-version of Pelczyński's property (V). Also, a bounded subset K of X^* is called an L-set, if each weakly null sequence (x_n) in X tends to 0 uniformly on K, see [12]. It is clear that ∞ -(V) sets are L-sets. According to this point of view in this article we choose the name L_p -sets instead of the p-(V) subsets of X^* .

Obviously, a sequence $(x_n^*) \in X^*$ is a L_p -set if and only if $\lim_{n\to\infty} \langle x_n, x_n^* \rangle = 0$ for all $(x_n) \in l_p^{\text{weak}}(X)$.

In the following, we introduce the notion of L_p -limited subsets of the dual space X^* .

Definition 2.5. Let $1 \leq p \leq \infty$. A subset K of a dual space X^* of X is L_p -limited set if

$$\lim_{n} \sup_{x^* \in K} |\langle x_n, x^* \rangle| = 0$$

for every limited sequence $(x_n) \in l_p^{\text{weak}}(X)$.

For example, the Schur property of l_1 implies that the closed unit ball of $l_{\infty} = l_1^*$ is an L_p -set and so L_p -limited set. The closed unit ball of $c_0^* = l_1$ shows that L_p -limited sets are not L_p -sets, in general. In fact c_0 has the GP property and so every limited weakly null sequence in c_0 is norm null, hence the closed unit ball of c_0^* is an L_p -limited set. But c_0 fail to have the p-Schur property. Then this

closed unit ball is not an L_p -set. The reader is referred to [8] for more information about the relationships between L_p -sets and L_p -limited sets.

Proposition 2.6. A Banach space X has the p-Schur property if and only if every bounded subset of X^* is an L_p -set. In particular, the closed unit ball of each l_p space is an L_1 -set.

PROOF: If X has the p-Schur property and $(x_n) \in l_p^{\text{weak}}(X)$, then

$$\sup\{|\langle x_n, x^* \rangle| \colon x^* \in B_{X^*}\} = ||x_n|| \to 0.$$

Thus B_{X^*} is an L_p -set. So, every bounded subset of X^* is an L_p -set. The converse is proven in a similar way.

It is clear that, for every Banach space X, every p-limited subset of X^* is an L_p set and the closed convex hull of an L_p -limited set is also L_p -limited. Furthermore,
every L_p -limited set in X^* is bounded. In fact, if $K \subseteq X^*$ is an L_p -limited
set which is unbounded, then there are (x_n^*) in K and (y_n) in B_X such that $|\langle y_n, x_n^* \rangle| > n^2$ for all n. Let $x_n = y_n/n^2$. Then

$$\sum_{n=1}^{\infty} ||x_n||^p = \sum_{n=1}^{\infty} \frac{1}{n^{2p}} ||y_n||^p < \infty.$$

Hence (x_n) is a limited sequence in $l_p^{\text{weak}}(X)$. Therefore

$$0 = \lim_{n \to \infty} \sup_{x_n^* \in K} |\langle x_n, x_n^* \rangle| \ge \lim_{n \to \infty} |\langle x_n, x_n^* \rangle| = \lim_{n \to \infty} \frac{1}{n^2} |\langle y_n, x_n^* \rangle| > 1.$$

This is a contradiction.

Theorem 2.7. The Banach space X has the DP_p^* property if and only if every L_p -limited subset of X^* is L_p -set.

PROOF: It is clear that, for an operator $T: X \to Y$, $T \in C_{lp}(X,Y)$ if and only if $T^*(B_{Y^*})$ is an L_p -limited set. Also, $T \in C_p(X,Y)$ if and only if $T^*(B_{Y^*})$ is an L_p -set. Now, assume that every L_p -limited subset of X^* is L_p -set and $T: X \to Y$ is a limited p-converging operator. Then $T^*(B_{Y^*})$ is an L_p -limited set. By assumption $T^*(B_{Y^*})$ is an L_p -set. Hence T is p-converging. Therefore Theorem 2.3 completes the proof. The converse follows easily from Theorem 2.2.

In [16] A. Grothendieck introduced the reciprocal Dunford–Pettis (RDP) property: a Banach space X has the RDP property if for every Banach space Y, every completely continuous operator $T \colon X \to Y$ is weakly compact. Recall that Banach space X has Pelczyński property (V) if for every Banach space Y, every unconditionally converging operator $T \in L(X,Y)$, (i.e. any operator mapping

weakly unconditionally converging series into unconditionally converging ones) is weakly compact.

The concept of Pelczyński property (V) of order p has been introduced in [18]. In fact, a Banach space X has the Pelczyński property (V) of order p (property p-(V)) if $C_p(X,Y) \subseteq W(X,Y)$ for every Banach space Y.

Note that property 1-(V) is equivalent to Pelczyński property (V) and ∞ -(V) is equivalent to the RDP property. Also, since every completely continuous operator is p-converging, then every Banach space which has property p-(V) for some $1 \le p \le \infty$ has the RDP property. Then we have the following well-known result; every Banach space X with Pelczyński (V) property has the RDP property.

Moreover, every reflexive Banach space has property p-(V) and if X is non reflexive with the p-Schur property, then X does not have property p-(V); indeed, the identity operator $i: X \to X$ is p-converging, but it is not weakly compact.

Theorem 2.8 ([18, Theorem 2.4]). A Banach space X has property p-(V) if and only if every L_p -set in X^* is relatively weakly compact.

Theorem 2.9. If a Banach space $X \in \mathcal{W}_p$, then every L_p -set in X^* is relatively compact.

PROOF: Suppose that $X \in \mathcal{W}_p$ and $K \subseteq X^*$ is an L_p -set. Then K is bounded. Without loss of generality, we may assume that K is weak* closed and so is weak* compact. Define

$$T: X \to C(K), \quad \langle Tx, x^* \rangle = \langle x, x^* \rangle, \qquad x \in X, \ x^* \in K.$$

Clearly, T is bounded. Indeed,

$$||T|| = \sup_{\|x\| \le 1} ||Tx|| = \sup_{\|x\| \le 1} \left(\sup_{x^* \in K} |\langle x, x^* \rangle| \right) = \sup_{x^* \in K} ||x^*||.$$

On the other hand, T is p-converging, because if $(x_n) \in l_p^{\text{weak}}(X)$, then

$$||Tx_n|| = \sup_{x^* \in K} |\langle Tx_n, x^* \rangle| = \sup_{x^* \in K} |\langle x_n, x^* \rangle| \to 0.$$

Therefore T is compact and so $T^*: C(K)^* \to X^*$ is compact. For $x^* \in K$ define $\delta_{x^*} \in C(K)^*$ by

$$\delta_{x^*}(f) = f(x^*), \qquad f \in C(K).$$

Hence for all $x \in X$ we have

$$\langle x, T^*(\delta_{x^*}) \rangle = \langle Tx, \delta_{x^*} \rangle = \langle Tx, x^* \rangle = \langle x, x^* \rangle.$$

Then $T^*(\delta_{x^*}) = x^*$. Moreover,

$$K = \{T^*\delta_{x^*} : x^* \in K\} = T^*\{\delta_{x^*} : x^* \in K\} \subseteq T^*(B_{C(K)^*}).$$

Since T^* is compact, we conclude that K is relatively compact.

As a corollary, every Banach space $X \in \mathcal{W}_p$ has property p-(V). But the converse is not true in general. For example, the Hilbert space l_2 has property 1-(V), but it is not weakly 1-compact, see [6, page 132].

The following characterization of spaces having DP_p property has an essential role to achieve our next results.

Theorem 2.10 ([3, Proposition 3.2]). For a given Banach space X and $1 \le p \le \infty$ the following are equivalent:

- (1) Space X has the DP_p property.
- (2) If $(x_n) \in l_p^{\text{weak}}(X)$ and $(x_n^*) \in c_0^{\text{weak}}(X^*)$, then $\langle x_n, x_n^* \rangle \to 0$.

Corollary 2.11. If X has the DP_p property and $Y \in \mathcal{W}_p$, then $L(X, Y^*) = C_p(X, Y^*)$.

PROOF: Assume that $T \in L(X, Y^*)$ and $(x_n) \in l_p^{\text{weak}}(X)$. Let $(y_n) \in l_p^{\text{weak}}(Y)$. Since $(T^*(y_n))$ is weakly null, then $\langle Tx_n, y_n \rangle = \langle x_n, T^*y_n \rangle \to 0$ by Theorem 2.10. It follows that (Tx_n) is an L_p -set. Therefore Theorem 2.9 implies that (Tx_n) is relatively compact, and so $T \in C_p(X, Y)$.

Corollary 2.12. If a Banach space X has the DP_p property and $Y^* \in \mathcal{W}_p$, then $L(X,Y) = C_p(X,Y)$.

PROOF: Let $T \in L(X,Y)$ and let $(x_n) \in l_p^{\text{weak}}(X)$. Then by previous corollary, (Tx_n) is an L_p -set in Y^{**} . Hence an appeal to Theorem 2.9 shows that this sequence is relatively compact in Y^{**} and so in Y.

Note that if a Banach space $X \in \mathcal{W}_p$ and for some Banach space $Y, T \in C_p(X,Y)$, then for each sequence (x_n) in B_X , there is a subsequence (x_{n_k}) weakly p-convergent to some $x \in B_X$, and so $||Tx_{n_k} - Tx|| \to 0$ as $k \to \infty$. Therefore T is compact. This will be used in the proof of the following theorem.

Theorem 2.13. For Banach spaces X and Y such that $X, Y^* \in \mathcal{W}_p$ the following assertions are equivalent

- (1) For each $T \in L(X, Y^{**})$ and each sequence $(x_n) \in l_p^{\text{weak}}(X)$, (Tx_n) is an L_p -set.
- (2) Every $T \in L(X, Y^{**})$ is compact.
- (3) Every $T \in L(Y^*, X^*)$ is compact.

PROOF: $(1) \Rightarrow (2)$ Let $T \in L(X, Y^{**})$ and $(x_n) \in l_p^{\text{weak}}(X)$. Then (Tx_n) is an L_p -set in Y^{**} . Since $Y^* \in \mathcal{W}_p$, by Theorem 2.9, (Tx_n) is a relatively compact set. Therefore $||Tx_n|| \to 0$. Hence $T \in C_p(X, Y^{**})$ and we are done since $X \in \mathcal{W}_p$.

- (2) \Rightarrow (3) If $T \in L(Y^*, X^*)$, then $T^*|_X \in L(X, Y^{**})$ is compact. Therefore $T = (T^*|_X)^*|_{Y^*} : Y^* \to X^*$ is compact.
- (3) \Rightarrow (1) Let $T \in L(X, Y^{**})$ and $(x_n) \in l_p^{\text{weak}}(X)$ such that (Tx_n) is not an L_p -set. So there are $\varepsilon > 0$ and $(y_n^*) \in l_p^{\text{weak}}(Y^*)$ such that (by passing to a subsequence, if necessary)

$$|\langle Tx_n, y_n^* \rangle| > \varepsilon, \quad \forall n \in \mathbb{N}.$$

Hence,

$$|\langle T^*|_{Y^*}(y_n^*), x_n \rangle| > \varepsilon, \quad \forall n \in \mathbb{N}.$$

Since $T^*|_{Y^*}$ is compact, there is a subsequence $(y_{n_k}^*)_k$ such that $(T^*|_{Y^*}(y_{n_k}^*))$ is norm null and we have a contradiction.

Theorem 2.14. Let X be a Banach space and $X \in \mathcal{W}_p$ and let Y be a Banach space with property p-(V). If $L(X, Y^*) = \Pi_p(X, Y^*)$, then $X \otimes_{\pi} Y$ has property p-(V).

PROOF: Let H be an L_p -subset of $(X \otimes_{\pi} Y)^* = L(X, Y^*)$ and (h_n) be a sequence in H. If $(x_n) \in l_p^{\text{weak}}(X)$ we claim that $||h_n(x_n)||_{Y^*} \to 0$. If this were false, there would exist $\varepsilon > 0$, (h_{n_k}) , (x_{n_k}) and $(y_k) \subseteq B_Y$ such that

$$|\langle h_{n_k}(x_{n_k}), y_k \rangle| > \varepsilon$$

for all $k \in \mathbb{N}$. On the other hand, for every $T \in (X \otimes_{\pi} Y)^* = L(X, Y^*)$,

$$\sum_{k=1}^{\infty} |T(x_{n_k} \otimes y_k)|^p = \sum_{k=1}^{\infty} |\langle Tx_{n_k}, y_k \rangle|^p \le \sum_{k=1}^{\infty} ||Tx_{n_k}||^p < \infty,$$

since T is p-summing and $(x_{n_k}) \in l_p^{\text{weak}}(X)$. Hence $(x_{n_k} \otimes y_k) \in l_p^{\text{weak}}(X \otimes_{\pi} Y)$ and so by assumption on H, $\langle h_{n_k}(x_{n_k}), y_n \rangle \to 0$ which is a contradiction. Similarly we can prove that if $(y_n) \in l_p^{\text{weak}}(Y)$, then $\|h_n^*(y_n)\|_{X^*} \to 0$.

If $y^{**} \in Y^{**}$, then the sequence $(h_n^*(y^{**})) \subseteq X^*$ is an L_p -set. Because, If $(x_n) \in l_p^{\text{weak}}(X)$, then

$$|\langle h_n^*(y^{**}), x_n \rangle| = |\langle h_n(x_n), y^{**} \rangle| \le ||y^{**}|| ||h_n(x_n)||_{Y^*} \to 0.$$

Hence Theorem 2.9 implies that $(h_n^*(y^{**}))$ is a relatively compact set. By passing to a subsequence, we may assume that this sequence is weakly convergent to some x^* . Similarly, we can prove that for all $x^{**} \in X^{**}$, the sequence $(h_n^{**}(x^{**}))$ is an L_p -set and so is a relatively weakly compact subset of Y^{***} , by virtue of Theorem 2.8. But $h_n \colon X \to Y^*$ is compact for all $n \in \mathbb{N}$; so $(h_n^{**}(x^{**})) \subseteq Y^*$.

Now consider two arbitrary subsequences $(h_{n_k}^{**}(x^{**}))$ and $(h_{n_p}^{**}(x^{**}))$ which are weakly convergent to z_1 and z_2 , respectively. It is easy to see that $z_1 = z_2$. Indeed, if $y^{**} \in Y^{**}$, then we have

$$\langle z_1, y^{**} \rangle = \lim_{k} \langle h_{n_k}^{**}(x^{**}), y^{**} \rangle = \lim_{k} \langle x^{**}, h_{n_k}^{*}(y^{**}) \rangle$$
$$= \lim_{n} \langle x^{**}, h_n^{*}(y^{**}) \rangle = \lim_{p} \langle x^{**}, h_{n_p}^{*}(y^{**}) \rangle$$
$$= \lim_{p} \langle h_{n_p}^{**}(x^{**}), y^{**} \rangle = \langle z_2, y^{**} \rangle.$$

Hence there is $h_0(x^{**}) \in Y^*$ such that $h_0(x^{**}) = w - \lim_n h_n^{**}(x^{**})$. Now we claim that h_0 is w^* - w^* continuous. In fact, we show that h_0 is w^* - w^* continuous from X^{**} into Y^* . Let (x_α^{**}) be a w^* -null net in X^{**} and $y^{**} \in Y^{**}$. Since

$$\langle h_0(x_\alpha^{**}), y^{**}\rangle = \lim_n \langle h_n^{**}(x_\alpha^{**}), y^{**}\rangle = \lim_n \langle x_\alpha^{**}, h_n^{*}(y^{**})\rangle = \langle x_\alpha^{**}, x^*\rangle,$$

we observe that $\lim_{\alpha} \langle h_0(x_{\alpha}^{**}), y^{**} \rangle = 0$ and h_0 is $w^* - w^*$ continuous. Now consider $h \in L(X, Y^*) = \prod_p (X, Y^*)$ defined by $h = h_0|_X$. If $x^{**} \in X^{**}$, then there is a net $(x_{\alpha}) \subset X$ which is w^* -converging to x^{**} . So we obtain

$$h^{**}(x^{**}) = w^* - \lim_{\alpha} h^{**}(x_{\alpha}) = w^* - \lim_{\alpha} h(x_{\alpha}) = w^* - \lim_{\alpha} h_0(x_{\alpha}) = h_0(x^{**}).$$

Therefore $h^{**} = h_0$. By the construction of h_0 we thus have $\lim_n \langle h_n^{**}(x^{**}), y^{**} \rangle = \langle h^{**}(x^{**}), y^{**} \rangle$ for all $x^{**} \in X^{**}$ and $y^{**} \in Y^{**}$. Corollary 4.1.5 of [21] implies that $h_n \stackrel{w}{\to} h$ in $L(X, Y^*)$. Therefore H is relatively weakly compact.

Recall that a Banach space X has the p-Gelfand–Phillips (p-GP) property if every limited weakly p-compact subset of X is relatively compact, see [13]. It should be noted that this notion has been called "limited p-Schur property" in [7]. More precisely, X has the p-GP property if and only if every limited sequence $(x_n) \in l_p^{\text{weak}}(X)$ is norm null. It is easy to see that every Banach space with the p-Schur property and every Banach space with GP property is p-GP for all $1 \le p \le \infty$. Moreover, X has the GP property if and only if every limited weakly null sequence in X is norm null, see e.g., [11]. Therefore the ∞ -GP property is equivalent to the GP property.

If X is a p-GP space with the DP $_p^*$ property, then X has the p-Schur property. Indeed, if $(x_n) \in l_p^{\text{weak}}(X)$, then by the DP $_p^*$ property of X, we conclude that $\langle x_n, x_n^* \rangle \to 0$ for all w^* -null sequence $(x_n^*) \subset X^*$. Therefore (x_n) is limited and so $||x_n|| \to 0$. Furthermore, if $X \in \mathcal{W}_p$ has the p-GP property, then X has the GP property.

By a similar argument of Proposition 2.6, it is evident that a Banach space X has the p-GP property if and only if every bounded subset of X^* is an L_p -limited set. Since l_1 has the p-Schur property for all $1 \le p \le \infty$ so B_{l_1} is an L_p -limited

set which is not weakly compact. Also, l_2 has the 1-Schur property. It follows that B_{l_2} is an L_1 -limited set, while we know that it is not weakly 1-compact, see [6, page 132].

Theorem 2.15. For a Banach space X, the following are equivalent.

- (1) Every L_p -limited set in X^* is weakly compact.
- (2) For each Banach space Y, $C_{lp}(X,Y) = W(X,Y)$.
- (3) $C_{lp}(X, l_{\infty}) = W(X, l_{\infty}).$

PROOF: (1) \Rightarrow (2) If $T \in C_{lp}(X,Y)$, then $T^*(B_{Y^*})$ is an L_p -limited set in X^* . So by hypothesis, it is weakly compact and so T^* is a weakly compact operator. Therefore $T \in W(X,Y)$.

- $(2) \Rightarrow (3)$ It is clear.
- $(3) \Rightarrow (1)$ If (1) does not hold, then there is an L_p -limited subset A of X^* which is not weakly compact. So there is a sequence $(x_n^*) \subset A$ with no weakly p-convergent subsequence. Now let $T: X \to l_{\infty}$ be defined by

$$Tx = (\langle x, x_n^* \rangle), \qquad x \in X.$$

As (x_n^*) is L_p -limited set, for every limited sequence $(x_m) \in l_p^{\text{weak}}(X)$ we have

$$||Tx_m|| = \sup_n |\langle x_m, x_n^* \rangle| \to 0$$

as $m \to \infty$. Thus $T \in C_{lp}(X, l_{\infty})$. Clearly $T^*(e_n^*) = x_n^*$ for all $n \in \mathbb{N}$. Hence T^* is not weakly p-compact. So $T \notin W(X, l_{\infty})$.

It is clear that the class $C_{lp}(X,Y)$ is a closed linear subspace of L(X,Y) which has the ideal property. In sequel, we prove that the operator ideal C_{lp} of all limited p-converging operators between Banach spaces, by meaning of [5], is injective but it is not surjective.

Theorem 2.16. The operator ideal C_{lp} is injective but not surjective.

PROOF: Suppose that $T \in L(X,Y)$ and $J\colon Y \to Z$ is an isometric embedding, such that JT is limited p-converging. If $(x_n) \in l_p^{\text{weak}}(X)$ is limited, then $\|JTx_n\| \to 0$ and so $\|Tx_n\| \to 0$ as $n \to 0$. Therefore T belongs to C_{lp} . Hence C_{lp} is injective.

Now assume that X is a Banach space without the p-GP property. Then the identity operator $i: X \to X$ is not limited p-converging. On the other hand, one define $\Phi: l_1(B_X) \to X$ via

$$\Phi(\varphi) = \sum_{x \in B_X} \varphi(x)x, \qquad \varphi \in l_1(B_X).$$

It is easy to see that Φ is a surjective operator. Thus the Schur property and so the p-GP property of $l_1(B_X)$ imply that the operator $\Phi = i\Phi$ belongs to C_{lp} , while the identity operator i does not. Hence C_{lp} is not surjective.

Theorem 2.17. The Banach space X has the p-GP property if and only if $L(X,Y) = C_{lp}(X,Y)$ for every Banach space Y.

PROOF: Suppose that X has the p-GP property. If $T \in L(X,Y)$ and $(x_n) \in l_p^{\text{weak}}(X)$ is a limited sequence, then $||x_n|| \to 0$. Hence $||Tx_n|| \to 0$.

Conversely, if Y = X, then the identity operator on X belongs to C_{lp} . Therefore X has the limited p-Schur property.

Similarly, we can prove that the Banach space X has the p-GP property if and only if $L(Y,X) = C_{lp}(Y,X)$ for every Banach space Y.

Theorem 2.18. The Banach space X has the DP_p^* property if and only if $L(X,Y) = C_p(X,Y)$ for every $p\text{-}\mathrm{GP}$ Banach space Y.

PROOF: Assume that X has the DP_p^* property and Y is a p-GP space. Consider limited sequence $(x_n) \in l_p^{\operatorname{weak}}(X)$. Then for every operator $T \in L(X,Y)$, $(Tx_n) \in l_p^{\operatorname{weak}}(Y)$ is a limited sequence. So $||T(x_n)|| \to 0$ and by Theorem 2.3 $T \in C_p(X,Y)$.

Conversely suppose that $Y = c_0$, $(x_n) \in l_p^{\text{weak}}(X)$ and (x_n^*) is a weak* null sequence in X^* . Define $T: X \to c_0$ by $Tx = (\langle x, x_n^* \rangle)$. Then by assumption, $||Tx_n|| \to 0$. Therefore

$$|\langle x_n, x_n^* \rangle| \le \sup_k |\langle x_n, x_k^* \rangle| = ||Tx_n|| \to 0$$

as $n \to \infty$. By Theorem 2.2, X has the DP_p^* property.

References

- [1] Albiac F., Kalton N. J., *Topics in Banach Space Theory*, Graduate Texts in Mathematics, 233, Springer, New York, 2006.
- [2] Bourgain J., Diestel J., Limited operators and strict cosingularity, Math. Nachr. 119 (1984), 55–58.
- [3] Castillo J. M. F., Sanchez F., Dunford-Pettis-like properties of continuous vector function spaces, Rev. Mat. Univ. Complut. Madrid 6 (1993), no. 1, 43-59.
- [4] Castillo J. M. F., Sánchez F., Weakly p-compact, p-Banach-Saks and super-reflexive Banach spaces, J. Math. Anal. Appl. 185 (1994), no. 2, 256–261.
- [5] Defant A., Floret K., Tensor Norms and Operator Ideals, North-Holland Mathematics Studies, 176, North-Holland Publishing, Amsterdam, 1993.
- [6] Dehghani M.B., Moshtaghioun S.M., On the p-Schur property of Banach spaces, Ann. Funct. Anal. 9 (2018), no. 1, 123–136.

- [7] Dehghani M. B., Moshtaghioun S. M., Dehghani M., On the limited p-Schur property of some operator spaces, Int. J. Anal. Appl. 16 (2018), no. 1, 50-61.
- [8] Dehghani M., Dehghani M.B., Moshtaghioun M.S., Sequentially right Banach spaces of order p, Comment. Math. Univ. Carolin. 61 (2020), no. 1, 51–67.
- [9] Delgado J. M., Piñeiro C., A note on p-limited sets, J. Math. Anal. Appl. 410 (2014), no. 2, 713–718.
- [10] Diestel J., Jarchow H., Tonge A., Absolutely summing operators, Cambridge Studies in Advanced Mathematics, 43, Cambridge University Press, Cambridge, 1995.
- [11] Drewnowski L., On Banach spaces with the Gelfand-Phillips property, Math. Z. 193 (1986), no. 3, 405-411.
- [12] Emmanuele G., A dual characterization of Banach spaces not containing l₁, Bull. Polish Acad. Sci. Math. 34 (1986), no. 3-4, 155-160.
- [13] Fourie J. H., Zeekoei E. D., DP* properties of order p on Banach spaces, Quaest. Math. 37 (2014), no. 3, 349–358.
- [14] Fourie J. H., Zeekoei E. D., On weak-star p-convergent operators, Quaest. Math. 40 (2017), no. 5, 563–579.
- [15] Ghenciu I., Lewis P., The Dunford-Pettis property, the Gelfand-Phillips property, and L-sets, Colloq. Math. 106 (2006), no. 2, 311–324.
- [16] Grothendieck A., Sur les applications linéaires faiblement compactes d'espaces du type C(K), Canad. J. Math. 5 (1953), 129–173 (French).
- [17] Karn A. K., Sinha D. P., An operator summability of sequences in Banach spaces, Glasg. Math. J. 56 (2014), no. 2, 427–437.
- [18] Li L., Chen D., Chávez-Domínguez J.A., Pelczyński's property (V*) of order p and its quantification, Math. Nachr. 291 (2018), no. 2–3, 420–442.
- [19] Moshtaghioun S. M., Zafarani J., Completely continuous subspaces of operator ideals, Taiwanese J. Math. 10 (2006), no. 3, 691–698.
- [20] Pelczyński A., Banach spaces on which every unconditionally converging operator is weakly compact, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 10 (1962), 641–648.
- [21] Ruess W., Duality and geometry of spaces of compact operators, Functional Analysis: Surveys and Recent Results III, Paderborn, 1983, North-Holland Math. Stud., 90, Notas Mat., 94, North-Holland, Amsterdam, 1984, pages 59–78.
- [22] Ryan R. A., Introduction to Tensor Products of Banach Spaces, Springer Monographs in Mathematics, Springer, London, 2002.
- [23] Salimi M., Moshtaghioun S. M., The Gelfand-Phillips property in closed subspaces of some operator spaces, Banach J. Math. Anal. 5 (2011), no. 2, 84-92.
- [24] Schlumprecht T., Limited sets in injective tensor products, Functional Analysis, Austin, 1987/1989, Lecture Notes in Math., 1470, Longhorn Notes, Springer, Berlin, 1991, pages 133–158.

M. B. Dehghani, S. M. Moshtaghioun (corresponding author):

DEPARTMENT OF MATHEMATICS, YAZD UNIVERSITY, UNIVERSITY BLVD,

P. O. Box 89195-741, Yazd, 97514, Iran

E-mail: m.b.deh91@gmail.com E-mail: moshtagh@yazd.ac.ir

(Received May 10, 2020, revised October 27, 2020)