On hereditary normality of ω^* , Kunen points and character ω_1

Sergei Logunov

Abstract. We show that $\omega^* \setminus \{p\}$ is not normal, if p is a limit point of some countable subset of ω^* , consisting of points of character ω_1 . Moreover, such a point p is a Kunen point and a super Kunen point.

Keywords: non-normality point; butterfly point; Kunen point; super Kunen point

Classification: 54D15, 54D35, 54D40, 54D80, 54E35, 54G20

1. Introduction

We investigate properties of Čech–Stone compactification $\beta\omega$ of the countable discrete space $\omega = \{0, 1, 2, ...\}$. One of the most intriguing problems in this area was stated probably around 1960 by L. Gillman in [4] or in [3]: Is $\omega^* \setminus \{p\}$ non-normal for any point p of the remainder $\omega^* = \beta\omega \setminus \omega$? If so, then p is called a non-normality point of ω^* .

Assuming that the continuum hypothesis of CH (axiom of choice) is valid, a positive answer was obtained independently of N. M. Warren in [8] and M. Rajagopalan in [6] in 1972. A. Bešlagić and E. K. van Douwen in [1] in 1990 weakened CH to Martin's axiom (MA).

But so far not much is known within ZFC (Zermelo–Fraenkel set theory with the axiom of choice). Thus $p \in \omega^*$ is called a Kunen point, if there exists a discrete subset P of ω^* of cardinality ω_1 , that is no more than countable outside any open neighbourhood of p. Any Kunen point is a non-normality point of ω^* (E. van Douwen).

A. Szymański in [7] in 2012 proved the same, if p is a non-isolated point of some closed subset of ω^* of countable π -weight.

Some other more technical results were obtained in [5].

A. Błaszczyk and A. Szymański in [2] stated in 1980, that p is a non-normality point, if p is a limit point of some countable discrete subset P of ω^* . Now we

DOI 10.14712/1213-7243.2021.032

S. Logunov

omit the discrete requirement, assuming instead that P consists of points of the character ω_1 .

Theorem 1. Let P be a countable subset of ω^* , consisting of points of the character ω_1 . Then $\omega^* \setminus \{p\}$ is not normal for any point p of ω^* , which is in the closure of P. Moreover, p is a Kunen point and a super Kunen point.

2. Preliminaries

In our article $|N| = \omega$ and |R| = C. Each ordinal number α can be represented in a unique way in the form $\alpha = \beta + n$, where β is a limit ordinal and $n \in \omega$. Then α is even if n is even and odd otherwise.

By [] we always denote closure operator in ω^* , by Oa - a clopen neighbourhood of a, i.e. closed and open in ω^* set, containing a. A set A is strongly discrete if there is a cellular family { $Oa: a \in A$ }. A family { $O_{\alpha}a$ }_{$\alpha < \tau$} is called a clopen local base in a, if each Oa contains some $O_{\alpha}a$. The minimal cardinality of the local base is called the character in a and denoted $\chi(a)$.

Definition. A point p of ω^* is called a super Kunen point, if there is a strongly discrete subset P of ω^* of cardinality ω_1 , that is no more than countable outside any neighbourhood Op.

Of course, any super Kunen point is a Kunen point.

3. Proofs

Let from now on $P = \{p_i : i < \omega\}$ be a countable subset of ω^* , consisting of points of character ω_1 and let p be any point of $[P] \setminus P$. For every $i < \omega$ assume $\{O_{i\alpha} : \alpha < \omega_1\}$ to be a clopen local base of cardinality ω_1 in p_i . For any clopen neighbourhood O of p we denote

$$\mathcal{K}(O) = \min\{\lambda < \omega_1 \colon \forall i < \omega(p_i \in O \to \exists \alpha \le \lambda(O_{i\alpha} \subset O))\}.$$

We define a filter \mathcal{F} on ω as follows:

 $\mathcal{F} = \{\{i \in \omega \colon p_i \in O\} \colon O \text{ is a clopen neighbourhood of } p\}.$

Some of the following facts are simple and sometimes well-known.

Lemma 1. Every nonempty G_{δ} -subset of ω^* has nonempty interior in ω^* .

Lemma 2. Every point q of ω^* of character ω_1 is a super Kunen point.

PROOF: Let $\{O_{\alpha} : \alpha < \omega_1\}$ be a local base in q. By the previous lemma for every $\alpha < \omega_1$ we can find a nonempty clopen set U_{α} so that $q \notin U_{\alpha}$ and

$$U_{\alpha} \subset \bigcap_{\beta < \alpha} O_{\beta} \setminus \bigcup_{\beta < \alpha} U_{\beta}.$$

For any points $x_{\alpha} \in U_{\alpha}$ the set $\{x_{\alpha} : \alpha < \omega_1\}$ witnesses that q is a super Kunen point. \Box

Lemma 3. The family $\{\bigcap_{\alpha < \lambda_i} O_{i\alpha} : i < \omega\}$ is cellular for some $\lambda_i < \omega_1$.

PROOF: We can choose every λ_i so that the set $\bigcap_{\alpha < \lambda_i} O_{i\alpha}$ is disjoint from both $\bigcap_{\beta < \lambda_i} O_{j\beta}$ for every j < i and $\{p_j : j > i\}$.

Lemma 4. The family $\{U_{i\alpha}: i < \omega \text{ and } \alpha < \omega_1\}$ is cellular for some nonempty clopen sets $U_{i\alpha}$ such that $U_{i\alpha} \subset \bigcap_{\beta < \alpha} O_{i\beta}$.

PROOF: By the previous lemma we can choose every $U_{i\alpha}$ so that

$$U_{i\alpha} \subset \bigcap \{ O_{i\beta} \colon \beta < \max\{\alpha, \lambda_i\} \},\$$

 $p_i \notin U_{i\alpha}$ and $U_{i\beta} \cap U_{i\alpha} = \emptyset$ for every $\beta < \alpha$.

Lemma 5. For every $\alpha < \omega_1$ there is a point $a_\alpha \in \omega^*$ such that $a_\alpha \notin [P]$ and

$$a_{\alpha} \in \bigcap_{F \in \mathcal{F}} \left[\bigcup_{i \in F} U_{i\alpha} \right].$$

PROOF: For $U = \bigcup_{i < \omega} U_{i\alpha}$ assume $D \subset \omega^* \setminus [U]$ to be σ -compact. Then $X = \omega \cup U \cup D$ is σ -compact and, so, normal. Since $\omega \subset X$, then $[X]_{\beta\omega} = \beta X$ is a Čech–Stone compactification of X. Since U and D are closed in X, then $[U] \cap [D] = [U]_{\beta X} \cap [D]_{\beta X} = \emptyset$. Hence [U] is a P-set.

In every $U_{i\alpha}$ we can find a cellular family of *C*-many nonempty clopen sets $\{V_{i\beta}: \beta < C\}$ and put $V_{\beta} = \bigcup_{i < \omega} V_{i\beta}$ for any $\beta < C$. Since $[U] = \beta U$ by the standard arguments, then $[V_{\beta}]$ are disjoint clopen subsets of [U].

Thus $[V_{\beta_0}] \cap P = \emptyset$ for some $\beta_0 < C$, and by the first paragraph of this proof, this implies $[V_{\beta_0}] \cap [P] = \emptyset$. So we can choose a_α to be any point of $\bigcap_{F \in \mathcal{F}} [\bigcup_{i \in F} V_{i\beta_0}]$.

From now on every point a_{α} satisfies the conditions of Lemma 5.

Lemma 6. Let *O* be any clopen neighbourhood of *p*. If $\alpha > \mathcal{K}(O)$ for some $\alpha < \omega_1$, then $a_\alpha \in O$.

PROOF: For $F = \{i \in \omega : p_i \in O\}$ we get $F \in \mathcal{F}$. For any $i \in F$ there is $\alpha_i \leq \mathcal{K}(O)$ such that $O_{i\alpha_i} \subset O$. Then $\alpha > \alpha_i$ implies $U_{i\alpha} \subset O_{i\alpha_i} \subset O$ by our

 \square

S. Logunov

construction and

$$a_{\alpha} \in \left[\bigcup_{i \in F} U_{i\alpha}\right] \subset \left[\bigcup_{i \in F} O_{i\alpha_i}\right] \subset O.$$

Lemma 7. The set $\{a_{\alpha} : \alpha < \omega_1\}$ is discrete. Hence p is a Kunen point.

PROOF: For any $\alpha < \omega_1$ let O be any clopen neighbourhood of p such that $a_{\alpha} \notin O$. Then $a_{\beta} \in O$ for every $\beta > \mathcal{K}(O)$ by the previous lemma. Since the sets

$$C = \bigcup \{ U_{i\alpha} \colon i < \omega \} \quad \text{and} \quad D = \bigcup \{ U_{i\beta} \colon i < \omega, \ \beta \neq \alpha \text{ and } \beta \leq \mathcal{K}(O) \}$$

are σ -compact, open and disjoint, $[C] \cap [D] = \emptyset$. Since $a_{\alpha} \in [C]$ and $a_{\beta} \in [D]$ if $\beta \neq \alpha$ and $\beta \leq \mathcal{K}(O)$, then the open set $\omega^* \setminus (O \cup [D])$ contains a_{α} and non of $a'_{\beta}s$ for $\beta \neq \alpha$.

It implies that $\omega^* \setminus \{p\}$ is not normal by E. van Douwen. We shall give now another proof. Denote $A = \{a_\alpha : \alpha < \omega_1 \text{ even}\}$ and $B = \{a_\alpha : \alpha < \omega_1 \text{ odd}\}.$

Lemma 8. Since $p = [A] \cap [B]$, p is a butterfly-point.

PROOF: By Lemma 6 we get $p \in [A] \cap [B]$. On the other hand, let O be any clopen neighbourhood of p. Then

$$[A] \cap [B] \setminus O \subset [\{a_{\alpha} : \alpha \leq \mathcal{K}(O) \text{ even}\}] \cap [\{a_{\alpha} : \alpha \leq \mathcal{K}(O) \text{ odd}\}]$$
$$\subset \left[\bigcup\{U_{i\alpha} : i < \omega \text{ and } \alpha \leq \mathcal{K}(O) \text{ even}\}\right]$$
$$\cap \left[\bigcup\{U_{i\alpha} : i < \omega \text{ and } \alpha \leq \mathcal{K}(O) \text{ odd}\}\right] = \emptyset,$$

because ω^* is an *F*-space.

Lemma 9. The space $\omega^* \setminus \{p\}$ is not normal.

PROOF: For any continuous map $f: \omega^* \setminus \{p\} \to [0,1]$ it is enough to show that $f(A) \cap f(B) \neq \emptyset$.

For every $i < \omega$ we choose $\alpha_i < \omega_1$ so that $p \notin O_{i\alpha_i}$ and put $W = \bigcup_{i \in \omega} O_{i\alpha_i}$. Since $Y = \omega \cup W$ is regular and σ -compact, it is normal. Since W is closed in Y, the restriction f/W has a continuous extension $g \colon Y \to [0,1]$. Since $\omega \subset Y \subset \beta\omega$, then g has a continuous extension $\tilde{g} \colon \beta\omega \to [0,1]$. For its restriction $h = \tilde{g}/\omega^*$ onto ω^* we have $h^{-1}h(p) = \bigcap_{i \in \omega} O_i$ for some clopen $O_i \subset \omega^*$. If $\alpha > \sup_{i < \omega} \alpha_i$ for some $\alpha < \omega_1$, then $a_\alpha \in [\bigcup_{i < \omega} U_{i\alpha}] \subset [\bigcup_{i < \omega} O_{i\alpha_i}]$, i.e. $a_\alpha \in [W] \setminus \{p\}$. Since f/W = h/W, then $f(a_\alpha) = h(a_\alpha)$. If $\alpha > \sup_{i \in \omega} \mathcal{K}(O_i)$, then $a_\alpha \in \bigcap_{i \in \omega} O_i$ by Lemma 6 and, so, $h(a_\alpha) = h(p)$. But then $h(p) \in f(A) \cap f(B)$.

Lemma 10. There is a strongly discrete subset of $\{a_{\alpha}: \alpha < \omega_1\}$ of cardinality ω_1 .

PROOF: We shall construct by induction on $\lambda < \omega_1$ both a countable set $A_{\lambda} \subset \{a_{\alpha} : \alpha < \omega_1\}$ and a cellular family of clopen neighbourhoods of its points $\mathcal{B}_{\lambda} = \{Oa : a \in A_{\lambda}\}$ so that $A_{\lambda} \subsetneq A_{\gamma}$ if $\lambda < \gamma < \omega_1$ and $Oa \cap P = \emptyset$ for any $Oa \in \mathcal{B}_{\lambda}$. First we put $A_0 = \{a_0\}$ and choose $\mathcal{B}_0 = \{Oa_0\}$ so that $Oa_0 \cap P = \emptyset$.

If A_{α} and \mathcal{B}_{α} have been constructed for every $\alpha < \lambda$ for some limit ordinal $\lambda < \omega_1$, then we put $A_{\lambda} = \bigcup_{\alpha < \lambda} A_{\alpha}$ and $\mathcal{B}_{\lambda} = \bigcup_{\alpha < \lambda} \mathcal{B}_{\alpha}$.

Assume A_{λ} and B_{λ} have been constructed for some ordinal $\lambda < \omega_1$. Then $V_a = \omega^* \setminus Oa$ is a clopen neighbourhood of P for each $Oa \in \mathcal{B}_{\lambda}$. Let $\alpha > \sup_{a \in A_{\lambda}} \mathcal{K}(V_a)$ for some $\alpha < \omega_1$. Then $a_{\alpha} \in [\bigcup_{i \in \omega} U_{i\alpha}]$. For any $i \in \omega$ and $a \in A_{\lambda}$ we have $U_{i\alpha} \subset O_{i\beta} \subset V_a$ for some $\beta \leq \mathcal{K}(V_a)$, i.e. $U_{i\alpha} \cap O_a = \emptyset$. Hence $[\bigcup_{i \in \omega} U_{i\alpha}] \cap [\bigcup_{a \in A_{\lambda}} Oa] = \emptyset$, because ω^* is an F-space, and $a_{\alpha} \notin [\bigcup_{a \in A_{\lambda}} Oa]$. There is a clopen neighbourhood Oa_{α} , which does not intersect neither P nor $\bigcup_{a \in A_{\lambda}} Oa$. We put $A_{\lambda+1} = A_{\lambda} \cup \{a_{\alpha}\}$ and $\mathcal{B}_{\lambda+1} = \mathcal{B}_{\lambda} \cup \{Oa_{\alpha}\}$.

Finally, the set $\bigcup_{\alpha < \omega_1} A_{\alpha}$ is as required.

References

- Bešlagić A., van Douwen E.K., Spaces of nonuniform ultrafilters in spaces of uniform ultrafilters, Topology Appl. 35 (1990), no. 2–3, 253–260.
- [2] Błaszczyk A., Szymański A., Some non-normal subspaces of the Čech-Stone compactification of a discrete space, Proc. Eighth Winter School on Abstract Analysis, Czechoslovak Academy of Sciences, Praha, 1980, pages 35–38.
- [3] Comfort W. W., Negrepontis S., Homeomorphs of three subspaces of βN \ N, Math. Z. 107 (1968), 53–58.
- [4] Fine N. J., Gillman L., Extensions of continuous functions in βN, Bull. Amer. Math. Soc. 66 (1960), 376–381.
- [5] Gryzlov A. A., On the question of hereditary normality of the space βω \ ω, Topology and Set Theory, Udmurt. Gos. Univ., Izhevsk, 1982, 61–64 (Russian).
- [6] Rajagopalan M., $\beta N N \{p\}$ is not normal, J. Indian Math. Soc. (N.S.) **36** (1972), 173–176.
- [7] Szymanski A., Retracts and non-normality points, Topology Proc. 40 (2012), 195–201.
- [8] Warren N. M., Properties of Stone-Čech compactifications of discrete spaces, Proc. Amer. Math. Soc. 33 (1972), 599–606.

S. Logunov:

Department for Algebra and Topology, Udmurt State University, Universitetskaya 1, Izhevsk 426034, Russia

E-mail: olla209@yandex.ru

(Received March 1, 2020, revised June 18, 2020)

 \square