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Seeking a network characterization of Corson compacta

Ziqin Feng

Abstract. We say that a collection A of subsets of X has property (CC) if there
is a set D and point-countable collections C of closed subsets of X such that
for any A ∈ A there is a finite subcollection F of C such that A = D \

⋃
F .

Then we prove that any compact space is Corson if and only if it has a point-
σ-(CC) base. A characterization of Corson compacta in terms of (strong) point
network is also given. This provides an answer to an open question in “A Biased
View of Topology as a Tool in Functional Analysis” (2014) by B. Cascales and
J. Orihuela and as in “Network characterization of Gul’ko compact spaces and
their relatives” (2004) by F. Garcia, L. Oncina, J. Orihuela, which asked whether
there is a network characterization of the class of Corson compacta.

Keywords: Corson compacta; point network; condition (F); almost subbase; ad-
ditively ℵ0-Noetherian

Classification: 54D30, 46B50

1. Introduction

A compact space K is Corson if K is homeomorphic to a subspace of a Σ-

product of real lines. For any κ, the space Σ(Rκ) is called a Σ-product of real lines

if Σ(Rκ) = {x ∈ Rκ : supp(x) is countable}, where supp(x) = {γ ∈ κ : x(γ) 6= 0}

for each x ∈ Rκ. This class of compacta is an extension of Eberlein compacta,

hence contains all metrizable compacta. A space is Eberlein compact if it is

homeomorphic to a weakly compact subset (compact in the weak topology) of

a Banach space.

The class of Corson compacta has an impressive list of natural topological

properties, for example, Fréchet-Uryshon, monolithic, hereditarily meta-Lindelöf,

hereditarily D, etc. A great number of topological characterizations of Corson

compacta have been obtained by different mathematicians. The first one was

given by E. Michael and M.E. Rudin in [15] followed by characterizations by

G. Gruenhage in [11], A. P. Kombarov in [14], I. Bandlow in [1], S. Clontz and

G. Gruenhage in [4], G.D. Dimov [8], and F. Casarrubias-Segura, S. Garćıa-

Ferreira and R. Rojas-Hernández in [2]. The main purpose of this note is to give
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characterizations of Corson compacta using bases and (strong) point networks,

see definition in Section 3. These provide an answer to an open question raised

by F. Garćıa, L. Oncina, and J. Orihuela in [10], and P. J. Cascales and A.W.

Orihula in [3], which asked whether there is a network characterization of Corson

compacta. In what follows, all the spaces are assumed to be Tychonoff (completely

regular and T1).

Let X be a space. Let A be a collection of subsets of X and Ax = {A :

x ∈ A and A ∈ A} for each x ∈ X . We say that A is point-finite (point-countable,

respectively) if Ax is finite (countable) for each x ∈ X . A collection is σ-point-

finite if it can be written as a countable union of point-finite subcollections.

We say that a collection A of subsets of X has property (CC) if there is a set

D ⊆ X and a point-countable collection C of closed subsets of X such that for

any A ∈ A there is a finite subcollection F of C such that A = D \
⋃

F . We say

that a collection A has property σ-(CC) if it can be written as a countable union

of subcollections of A which have the property (CC). In this note, we say that

a collection is (CC) (σ-(CC), respectively) if it has the property (CC) (property

σ-(CC)). A collection A of subsets of X is called point-(CC) (point-σ-(CC),

respectively) if Ax has property (CC) (property σ-(CC)) for each x ∈ X .

2. About the property (CC)

The following lemma directly follows from the definition above.

Lemma 1. Any countable collection of open subsets of X has the property (CC).

Proof: Let U be a countable collection of open subsets of X . Let D = X and

C = {X \U : U ∈ U} which is clearly point-countable. It is straightforward to see

that the property (CC) of U is guaranteed by D and C. �

Hence, the result below follows naturally.

Corollary 2. Any second countable space has a base with property (CC).

Lemma 3. Let A and B, respectively, be (CC) collections of subsets of X and Y .

Then the collection A × B = {A × B : A ∈ A and B ∈ B} of subsets of X × Y

has the property (CC).

Proof: Let D and C, respectively, D′ and C′, be the set and collection which

witness the (CC) properties of A and B. Note that C and C′ are point-countable.

We claim that the setD×D′ and the collection C×{Y }∪{X}×C′ guarantee the

(CC) property of the collection A×B. It is clear that C×{Y }∪{X}×C′ is a point-

countable collection of closed subsets of X × Y . For each A×B ∈ A×B, choose

finite subcollections F ⊂ C and F ′ ⊂ C′ such that A = D\
⋃

F and B = D′\
⋃

F ′.
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Then (A×B) =
(

D \
⋃

F
)

×
(

D′ \
⋃

F ′
)

= (D×D′)\
((

X×
⋃

F ′
)

∪
(
⋃

F×Y
))

.

This finishes the proof of the collection A× B having the property (CC). �

Let C be a collection of sets. Then C is said to be less than κ-Noetherian if

every subcollection of C which is well-ordered by “⊆” has cardinality less than κ.

The family is said to be additively less than κ-Noetherian if the collection of

all unions of members of the family is less than κ-Noetherian. We say that C

is additively κ-Noetherian (additively Noetherian) if C is additively less than

κ+-Noetherian (additively less than ℵ0-Noetherian, respectively). We say C is σ-

additively Noetherian if it is countable union of additively Noetherian collections.

The results in the following lemma were proved in [13] and [16], respectively.

Lemma 4. Let A be a family of sets. Then A is additively ℵ0-Noetherian

(additively Noetherian, respectively) if and only if any subcollection A′ of A

contains a countable (finite) subcollection A′′ such that
⋃

A′ =
⋃

A′′.

Motivated by this result, we say a collectionA is weakly σ-additively Noetherian

if any subcollection A′ of A can be written as
⋃

{A′
n : n ∈ ω} such that for each

n ∈ ω, there exists a finite collection A′′
n ⊂ A′

n with
⋃

A′′
n =

⋃

A′
n. It is clear

that:

1. any countable collection is σ-additively Noetherian;

2. any σ-additively Noetherian collection is weakly σ-additively Noetherian;

3. any weakly σ-additively Noetherian collection is additively ℵ0-Noetherian.

From the lemma above, it is straightforward to verify the corollary below.

Corollary 5. Any countable union of additively ℵ0-Noetherian families is addi-

tively ℵ0-Noetherian.

Lemma 6. Any space with an additively ℵ0-Noetherian base is Lindelöf.

Proof: Let B be an additively ℵ0-Noetherian base of X . Let U be an open cover

of X . For each x ∈ X , pick Ux ∈ U and Bx ∈ B such that x ∈ Bx ⊂ Ux. Then

{Bx : x ∈ X} ⊆ B is an open refinement of U . Then there exists a countable

subset C of X such that
⋃

{Bx : x ∈ C} = X . Then {Ux : x ∈ C} is a countable

subcollection of U which covers X . �

Lemma 7. Suppose that X is Lindelöf. Any (CC) collection of subsets of X is

additively ℵ0-Noetherian.

Proof: Let A be a collection of subsets of X with property (CC). Let D and

the point-countable collection C witness the (CC) property of A. Take an arbi-

trary subcollection A′ of A. We show that there is a countable subcollection A′′

such that
⋃

A′ =
⋃

A′′. Then by Lemma 4, the collection A is additively ℵ0-

Noetherian.
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For each A ∈ A′, we fix F(A) to be a finite subcollection of C such that

A = D \
⋃

F(A). Let S = {F(A) : A ∈ A′}. For each S ∈ S, it is clear that there

is a unique element, AS , in A′ such that S = F(AS). Hence if S is countable,

A′ is countable too.

Now we assume that S is uncountable. We define R(S) to be the collection of

all roots of uncountable ∆-system from S, i.e. R ∈ R(S) if and only if there is an

uncountable subcollection of T of S such that S0 ∩ S1 = R whenever S0 and S1

are distinct elements of T . Then we define

M0(S) = {R ∈ R(S) : ∄R′ ∈ R(S)(R′ ( R)}

and

M1(S) = {S ∈ S : ∄R ∈ R(S)(R ⊆ S)}.

For each R ∈ M0(S), we denote TR to be an uncountable ∆-system with root R.

Then we define A′
TR

= {AS : S ∈ TR}. Since C is point-countable and R is the

root of TR,
{
⋃

(S \R) : S ∈ TR
}

is point-countable.

If M0(S) is uncountable, then there is a root of a ∆-system which is contained

in some element of M0(S) which is impossible. For the similar reason, M1(S)

is also countable. For each R ∈ M0(S), we define SR = {S ∈ S : S ⊃ R}.

It is straightforward to see that S =
⋃

{SR : R ∈ M0(S)} ∪ M1(S). For each

R ∈ M0(S), we define A′
SR

= {A ∈ A′ : F(A) ∈ SR}. Then,

A′ =
(

⋃

{ASR
: R ∈ M0(S)}

)

∪ {AS : S ∈ M1(S)}.

Notice that M1(S) is countable. It is sufficient to prove that there is a count-

able subcollection A′′
SR

of A′
SR

with
⋃

A′′
SR

=
⋃

A′
SR

for each R ∈ M0(S). Then

we let A′′ =
(
⋃

{A′′
SR

: R ∈ M0(S)}
)

∪ {AS : S ∈ M1(S)} which is clearly count-

able and also
⋃

A′′ =
⋃

A′.

Fix R ∈ M0(S). First, we claim that {
⋃

(S \R) : S ∈ TR} is point-countable.

Suppose not. Then there exists x ∈ X and {Sα : α < ω1 and Sα ∈ TR} such

that x ∈
⋃

(Sα \ R) for each α < ω1. Since TR is a ∆-system with room R,

(Sα \ R) ∩ (Sα′ \ R) = ∅ for any α 6= α′. Then for each α < ω1, there exists

Cα ∈ Sα ⊆ C such that x ∈ Cα, and also, Cα 6= Cβ if α 6= β. This contradicts

with the point-countable property of C.

We claim that D \
⋃

R =
⋃

A′
SR

=
⋃

A′
TR

. Since R ⊆ S for any S ∈ SR and

TR ⊆ SR, it is clear that D \
⋃

R ⊇
⋃

A′
SR

⊇
⋃

ATR
. Take any x ∈ D \

⋃

R.

Since
{
⋃

(S \ R) : S ∈ TR
}

is point-countable, there is an S1 ∈ SR such that

x /∈
⋃

S1 \ R. Hence, x ∈ D but x /∈
⋃

S1, i.e. x ∈ D \
⋃

S1. Therefore,

D \
⋃

R ⊆
⋃

A′
TR

.

Lastly, since the family
{
⋃

(S \ R) : S ∈ TR
}

is point-countable and TR is

uncountable, it is straightforward to see that
⋂
{
⋃

(S \R) : R ∈ TR
}

= ∅. Notice
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that
⋃

(S \ R) is closed for each S ∈ TR. By the Lindelöf property of X , there

exists a countable subset LR of TR such that
⋂
{
⋃

(S \ R) : S ∈ TR
}

= ∅. We

claim that
⋃

A′
SR

= D \
⋃

R ⊆
⋃

{AS : S ∈ LR}. Take any x ∈ D \
⋃

R. Since
⋂
{
⋃

(S \ R) : S ∈ LR

}

= ∅, there is an S2 ∈ LR such that x /∈
⋃

(S2 \ R).

Therefore, x /∈
⋃

S2. So x ∈ D \
⋃

S2 = AS2
⊆

⋃

{AS : S ∈ LR}. Hence, we

have that
⋃

A′
R = D \

⋃

R ⊆
⋃

{AS : S ∈ LR}. Let A′′
SR

= {AS : S ∈ LR} which

clearly satisfies the requirement. This finishes the proof. �

By Corollary 5 and the lemma above, the following result holds.

Corollary 8. Suppose that X is Lindelöf. Any σ-(CC) collection of subsets

of X is additively ℵ0-Noetherian.

In next section, we will give an example (Example 16) of an additively ℵ0-

Noetherian collection of sets which is not σ-(CC).

Lemma 9. Let X be a compact space. Any (CC) collection of subsets of X is

weakly σ-additively Noetherian.

Proof: Let A be a collection of subsets of X with property (CC). Let D and C

be the set and the collection, respectively, witnessing the (CC) property of A.

Without loss of generality, we assume that A is uncountable. Let A′ be any

uncountable subcollection of A. Next, we will show the following:

Property (∗). A′ can be written as
⋃

{A′
n : n ∈ ω} where for each

n ∈ ω there exists a finite A′′
n ⊂ A′

n such that
⋃

A′′
n =

⋃

A′
n.

We define F(A), S, and AS as in the proof of Lemma 7. Since A′ is un-

countable, S is uncountable too. Then, we define R(S), TR, A′
TR

, M0(S),

A′
SR

= {AS : S ⊃ R}, and M1(S) to be the same as in the proof of Lemma 7.

Recall that:

1. M0(S) and M1(S) are countable;

2. A′ =
(
⋃

{ASR
: R ∈ M0(S)}

)

∪ {AS : S ∈ M1(S)}.

Hence, to prove that A′ has property (∗), it is sufficient to show that for each

R ∈ M0(S) there exists a finite subcollection A′′
R ⊂ A′

SR
such that

⋃

A′′
R =

⋃

A′
SR

.

Fix R ∈ M0(S). It is shown in the proof of Lemma 7 that D \
⋃

R =
⋃

A′
SR

=
⋃

A′
TR

. Recall that the family {
⋃

(S \ R) : S ∈ TR} is point-countable and TR is

uncountable, so
⋂

{
⋃

(S \ R) : R ∈ TR} = ∅. Then, by the compact property

of X , there exists a finite subset LR of TR such that
⋂

{
⋃

(S \R) : S ∈ TR} = ∅.

Let A′′
R = {AS : S ∈ LR} which is clearly finite. Using a similar approach as in

the proof of Lemma 7, it is straightforward to verify that
⋃

A′′
SR

=
⋃

A′
SR

. This

finishes the proof. �
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3. Characterizing Corson compacta

Almost subbases were introduced by G. Dimov in [7] where, among other

things, he used them to characterize the subspaces of Eberlein compacta. We

say that a family α of subsets of a space X is an almost subbase of X , with

respect to a family {fV : X → [0, 1]}V∈α of continuous functions, if V = f−1

V (0, 1]

for V ∈ α and the family α∪ {X \ f−1

V [1/n, 1] : V ∈ α, n ∈ N} is a subbase of X .

An almost subbase of X is a family α for which such a family of functions exists.

Theorem 10. If a space X has a point-countable almost subbase, then it has

a point-σ-(CC) base.

Proof: Let α be a point-countable almost subbase of X . Let B be the base

generated by α. An element in B is of the form,
⋂

{Ui : i = 1, . . . , n} ∩
(
⋂

{X \

f−1

Vj
[1/nj, 1] : j = 1, . . . ,m}

)

where Ui, Vj ∈ S for i = 1, . . . , n and j = 1, . . . ,m.

We show that B is point-σ-(CC).

Fix x ∈ X and a finite subcollection {U1, . . . , Un} of S with x ∈ Ui for

i = 1, . . . , n. We define U =
⋂

{Ui : i = 1, . . . , n}. Since S is point-countable, it

is sufficient to show that the subcollection BU
x of Bx is (CC), where BU

x ’s elements

are in the form U ∩
(
⋂

{X \ f−1

Vj
[1/nj, 1] : j = 1, . . . ,m}

)

= U \
⋃

{f−1

Vj
[1/nj, 1]:

j = 1, . . . ,m} . Choose D = U and C = {f−1

V [1/m, 1] ∩ Gn : m ∈ N and V ∈ S}.

It is straightforward to verify that D and C satisfy the requirements for BU
x be-

ing (CC). �

A point network for X is a collection W = {W(x) : x ∈ X} where each W(x)

is a collection of subsets of X containing x such that whenever x ∈ U , U open,

there is an open V (x, U) with x ∈ V (x, U) ⊆ U such that, whenever y ∈ V (x, U)

then x ∈ W ⊆ U (x ∈ W ⊆ V , respectively) for some W ∈ W(y). Point networks

are also known as “condition (F)”, and as the “Collins–Roscoe structuring mech-

anism” after the authors who introduced them in [6]. The term “point network”

was suggested by G. Gruenhage. In fact, in [12] G. Gruenhage pointed out that

a collection W = {W(x) : x ∈ X} is a point network if and only if for any subset A

of X ,
⋃

{W(x) : x ∈ A} contains a network at every point in Ā. A space is said to

satisfy condition (G) if it has a countable point network. It is a long-standing open

problem raised in [5] whether a space satisfying open (G) (or, having a countable

open point network) has a point-countable base. In [9], the author and P. Gart-

side gave uniform characterizations of Ebertein, Talagrand and Gul’ko compacta

in terms of point networks, bases and almost bases, but their approach failed for

the class of Corson compacta.

Next, we show that any compact space with σ-(CC) point network is Corson

through several lemmas. Note that a σ-(CC) point network for a space X means

that W(x) is σ-(CC) for each x ∈ X .
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The following lemma is implied by the definitions directly.

Lemma 11. Any space with a point-σ-(CC) base has a strong σ-(CC) point

network.

By Lemma 3, it is straightforward to show the following result.

Lemma 12. If X has a σ-(CC) point network, so does X2.

Moreover, the property having a σ-(CC) point network is preserved by taking

countable product.

Lemma 13. If Xn has a σ-(CC) point network for each n ∈ ω, then so does
∏

n∈ω Xn.

Proof: For each n ∈ ω, let Wn = {Wn(xn) : xn ∈ Xn} be the point network

for Xn. Then for each x = (xn) ∈
∏

n∈ω Xn, define W(x) =
{
∏n

i=0
Wi ×

∏

m>nXm : n ∈ ω and Wi ∈ Wi(xi) for each i = 0, 1, . . . , n
}

. Since property

(CC) is finitely productive, it is straightforward to verify that W(x) is σ-(CC)

and {W(x) : x ∈
∏

n∈ω Xn} satisfies condition (F). �

The following game was introduced by G. Gruenhage in [11]. Consider the

game G(H,X) of length ω played in X , where H is a closed subset of X . There

are two players, O and P . In nth round, O chooses an open set On containing H ,

and P chooses pn ∈ On. We say that the player O wins the game if pn converges

to H , i.e. any open superset of H contains all but finite manly pn’s. In the

same paper, G. Gruenhage proved that a compact space X is Corson if and

only if O has a winning strategy in G(∆, X2) where ∆ is the diagonal of X2.

In [12], G. Gruenhage proved that if X is countably compact and monotonically

ω-monolithic, then O has a winning strategy in G(H,X) for any closed subset H

of X . Using a similar strategy, we show that the same result holds for countably

compact spaces with an additively ℵ0-Noetherian point network.

Lemma 14. If X is a countably compact with an additively ℵ0-Noetherian point

network, then O has a winning strategy in space G(H,X) for any closed subset H

of X .

Proof: Let W = {W(x) : x ∈ X} be the point network of X such that W(x) is

additively ℵ0-Noetherian for each x ∈ X . Let H be a closed subset of X . We

will show that O has a winning strategy in the game G(H,X). The player O

chooses O0 = X , and P responses with p0. Suppose p0, p1, . . . , pn−1 are P ’s

choices so far. Fix i < n. Let Ni = {W : W ∈ W(pi) and W ∩ H = ∅}. Since

W(pi) is additively ℵ0-Noetherian, we could fix a countable subcollection, listed

as {Nj,i : j ∈ ω}, of Ni such that
⋃

{Nj,i : j ∈ ω} =
⋃

Ni. Then we pick On such

that H ⊂ On ⊂ On−1 and Nj,i ∩On = ∅ for all i, j < n.
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Next, we show that this is a winning strategy for the player O. Since X is

countably compact, it is sufficient to show that any A = {pn : n < ω} has no

cluster point in X \ H . Suppose, for a contradiction, that p is a cluster point

of A and not in H . Take an open neighborhood U of p such that U ∩ H = ∅.

Then there exists an m0 ∈ ω such that pm0
∈ U and there is an W ⋆ ∈ W(pm0

)

with p ∈ W ⋆ ⊂ U . Then there is an m1 ∈ ω such that W ⋆ ⊆ Nm1,m0
. Let

m∗ = max{m1,m0}+ 1. Then p /∈ Om∗
, i.e. p /∈ {pn : n > m∗} which contradicts

with the fact that p is a cluster point of A. �

Next, we will prove the main result.

Theorem 15. Let X be compact. The following are equivalent:

1) X is Corson.

2) X has a point-σ-(CC) base.

3) X has a σ-(CC) strong point network.

4) X has a σ-(CC) point network.

Proof: If X is Corson, then it has a point-countable almost subbase by [8].

Hence it has a point-σ-(CC) base by Lemma 10. This proves that 1) implies 2).

Suppose that X has a point-σ-(CC) base. By Lemma 11, it has a σ-(CC)

point network. Hence 2) implies 3). It is clear that 3) implies 4).

Now we suppose that X has a σ-(CC) point network. By Lemma 12, X2 has

a σ-(CC) point network, hence an additively ℵ0-Noetherian point network by

Corollary 8. Then by Lemma 14, player O has a winning strategy in G(∆, X2).

By [11], X is Corson. We finish the proof of 4) implies 1). �

Example 16. There is a collection of subsets of a space which is additively ℵ0-

Noetherian but not σ-(CC).

Proof: Let X be the double arrow space. The authors in [9] pointed out that X

is a non-Corson compact space with an additively ℵ0-Noetherian base B. Then

the base B is not point-σ-(CC) by Theorem 15. Hence at some element x in X ,

Bx is additively ℵ0-Noetherian, but not σ-(CC). �

Question. Is there a non-Corson compact space which has a weakly σ-additively

Noetherian point network?
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