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Mean quadratic convergence of signed random measures

P. Jacob, P.E. Oliveira∗

Abstract. We consider signed Radon random measures on a separable, complete and lo-
cally compact metric space and study mean quadratic convergence with respect to vague
topology on the space of measures. We prove sufficient conditions in order to obtain mean
quadratic convergence. These results are based on some identification properties of signed
Radon measures on the product space, also proved in this paper.
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1. Introduction.

In this paper we propose to study mean quadratic convergence of sequences of
signed Radon random measures with respect to vague convergence. This type of
convergence has already been studied, in a different setting, by Bonkian [2]. Here we
prove some sufficient conditions, similar to those of Bonkian, for the Radon signed
measure setting. The conditions we shall prove reflect the difficulties that the vague
topology on the space of signed Radon measures raises. As a matter of fact this
space, in general, is not even metrizable as it follows from the classical article of
Varadarajan [10] and Oliveira [8]. We will start by proving some non random results
concerning the identification of signed Radon measures and the vague convergence
on non negative Radon measures on the product space. This is essential to the study
of the mean quadratic convergence, as this notion is defined in terms of a vague
convergence in the product space. In what concerns the random case, we note that
in the signed case the difficulties are always connected with the characterization of
relative compactness, as it is usual in the signed measures space.
In what follows, let (S, d) be a separable, complete and locally compact metric

space, B the ring of relatively compact Borel sets of S, Cc(S) the Banach space
of real valued continuous functions with compact support defined on S. Moreover,
letMc be the space of real valued Radon measures on S, endowed with the vague
topology, and M+

c the subspace of Mc of non negative Radon measures. Given
a measure µ ∈ Mc, we denote µ = µ+ − µ− the Hahn–Jordan decomposition of µ.
A random measure is a measurable function ξ defined on some probability space
taking values almost surely on the space Mc with the Borel σ-algebra associated
with the vague topology.

2. Some results in the non random case.

Let us define the following set of functions on S× S

H = {f ⊗ g(s, t) = f(s)g(t) : f, g ∈ Cc(S)} .
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Evidently H ⊂ Cc(S × S), the space of real valued continuous functions with
compact support defined on S×S. We shall prove that this set of functions identifies
the elements ofMc(S×S) and determines vague convergence inM+

c (S×S).

Theorem 2.1. The set H identifies the elements of Mc(S × S), that is, if µ ∈
McS× S and µh = 0, for each h ∈ H , then µ = 0.

Proof: Let A and B be open bounded subsets of S. As S is a normal space, there
exists an increasing sequence {hk} of functions belonging to H which converges to
A × B. Every open bounded subset of S × S is obtained by forming numerable
unions of sets of the form A × B, where A and B are open bounded subsets of S.
Moreover, the class of sets A×B, where A and B are open bounded subsets of S, is
closed under the formation of finite intersections. Then, if the measures µ+ = µ−

on H , they coincide on the class of subsets of S×S of the form A×B, A and B open
bounded subsets of S. As µ+ and µ− are regular measures, it follows µ+ = µ−, so
µ = 0. �

Theorem 2.2. Let {µn} be a sequence in M+
c (S × S). If, for each h ∈ H , the

sequence {µnh} converges, the sequence {µn} is vaguely convergent inM
+
c (S×S).

Proof: Let f ∈ Cc(S × S). As S is a numerable union of compact sets, there
exists a compact K ⊂ S such that supp (f) ⊂ K × K. Moreover, as the space
S is normal, there exists a continuous function, g, taking the value 1 on K, the
value 0 on the complement of a compact neighborhood of K and with values on
[0, 1]. Putting t = g1IK , we obtain a continuous function with compact support such
that |f | ≤ t ⊗ t. By hypothesis, the sequence {µn(t ⊗ t)} is convergent, so {µnf}
is a bounded sequence. Then, from [7, Proposition 9.8.7], it follows that {µn} is
vaguely relatively compact. Let µ0 be a measure belonging to the closure of {µn}.
Then, for every ε > 0 and h ∈ H , the vague neighborhood of µ0

{ν ∈ M+
c (S× S) : |νh − µ0h| < ε}

contains an infinity of terms of the converging sequence {µnh}. So

µ0h = lim
n→∞

µnh,

and this equality is verified for every function h ∈ H . According to the preceding
theorem, it follows that µ0 is the only measure belonging to the closure of {µn}, so
{µn} converges vaguely to µ0. �

3. Mean quadratic convergence.

Define mean quadratic convergence as (cf. Bonkian [2])

Definition 3.1. A sequence of random measures {ξn} converges in quadratic mean
to the random measure ξ if the sequence of measures

E [(ξn − ξ)⊗ (ξn − ξ)]

converges vaguely to the zero measure on S× S.

As in the setting studied by Bonkian, this definition is justified by the following
equivalences.
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Theorem 3.2. Let {ξn} be a sequence of non negative random measures and ξ

a non negative random measure. The following conditions are equivalent

(1) E [(ξn − ξ)⊗ (ξn − ξ)]
v

−→ 0.
(2) For each function f ∈ Cc(S), ξnf −→ ξf in quadratic mean.
(3) For each B ∈ B, such that ξ(fr(B)) = 0 p.s., where fr(B) represents the
frontier of the set B, ξn(B) −→ ξ(B), in quadratic mean.

Proof: 1⇒2: For each function f ∈ Cc(S), f ⊗ f ∈ Cc(S × S). According to
Fubini’s theorem,

(1) E [(ξn − ξ)⊗ (ξn − ξ)](f ⊗ f) = E [(ξnf − ξf)2],

so 1⇒2 follows.
2⇒1: Taking account of (1) and the preceding theorem the implication follows.
1⇒3: Let B ∈ B be such that ξ(fr(B)) = 0 p.s. . Then ξ⊗ξ(fr(B×B)) = 0 p.s. .

The sequences {E (ξn ⊗ ξn)}, {E (ξn ⊗ ξ)} and {E (ξ ⊗ ξn)} converge vaguely to
E (ξ ⊗ ξ), so {E (ξ2n(B))} and {E (ξn(B)ξ(B))} converge to E (ξ

2(B)). It follows
then that the sequence {ξn(B)} converges in quadratic mean to ξ(B).
3⇒1: For every A, B ∈ B such that ξ(fr(A)) = ξ(fr(B)) = 0 p.s., the sequences

{E (ξn(A)ξn(B))} and {E (ξn(A)ξ(B))} converge to E (ξ(A)ξ(B)). Now to finish
this proof, we may proceed as in the proof of Theorem 3.1 of Billingsley [1]. �

It is evident that Condition 1 still implies Condition 2, if we are interested in
signed random measures. However, the converse implication is in general false. In
order to obtain this implication, we must suppose the relative compactness of the
set {E (ξn ⊗ ξm)}.

Theorem 3.3. Let {ξn} be a sequence of random measures and ξ a random mea-
sure such that:

(1) For every f ∈ Cc(S), ξnf converges in quadratic mean to ξf .
(2) The set {E (ξn ⊗ ξm)} is vaguely relatively compact inMc(S× S).

Then ξn converge in quadratic mean to ξ.

Proof: Let µ be a measure belonging to the closure of the set {E (ξn ⊗ ξm)}.
Proceeding as in the proof of Theorem 2.2, it follows µh = limn,m→∞E (ξn⊗ξm)h,
for every h ∈ H . So, according to Theorem 2.1, it follows that there exists only one
such measure, which proves the theorem. �

Corollary 3.4. Let {ξn} be a sequence of random measures and ξ a random mea-
sure such that

(1) For every f ∈ Cc(S), ξnf converges in quadratic mean to ξf .
(2) There exists a non negative random measure γ such that, for every n ∈ N,

|ξn| ≤ γ.

Then ξn converges in quadratic mean to ξ.

Proof: For every n, m ∈ N,

|E (ξn ⊗ ξm)| ≤ E |ξn ⊗ ξm| ≤ E (γ ⊗ γ).
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Then, according to [7, Proposition 9.8.7], the set {E (ξn⊗ξm)} is vaguely relatively
compact inMc(S×S), so this corollary is proved as the preceding theorem. �

If we restrict ourselves toM+
c (S×S), the fact of supposing {E (ξn⊗ξm)} vaguely

convergent implies the mean quadratic convergence of the sequence {ξn}.

Theorem 3.5. Let {ξn} be a sequence of non negative random measures such that
{E (ξn ⊗ ξm)} is vaguely convergent to µ ∈M+

c (S×S). Then {ξn} converges in
quadratic mean to a non negative random measure ξ verifying µ = E (ξ ⊗ ξ).

Proof: For every f ∈ Cc(S), {ξnf} is a Cauchy sequence in quadratic mean, so
it is also a Cauchy sequence in probability. Let ρ be the metric corresponding to
the vague topology in M+

c proposed by Kallenberg [5, page 95]. As this metric
depends only on a numerable amount of functions of Cc(S), it follows that {ξn} is
a Cauchy sequence in probability in the complete metric space (M+

c , ρ). Moreover,
the space of random variables defined on a probability space (Ω,F ,P) taking values
in (M+

c , ρ), with the semi-distance

ρ′(ξ, η) = inf{ε > 0 : P {ρ(ξ, η) ≤ ε} ≥ 1− ε}

is also complete. Then {ξn} converges in probability to a non negative random
measure ξ ([9, page 94]). Then, the mean quadratic limit of the sequence {ξnf} is
ξf , for every f ∈ Cc(S). Then, according to Theorem 2.1, µ = E (ξ ⊗ ξ) follows.

�

Corollary 3.6. Let {ξn} be a sequence of non negative random measures such that
for every f ∈ Cc(S), {ξnf} converges in quadratic mean. Then the sequence {ξn}
converges in quadratic mean.

Proof: As the sequence {ξnf} converges in quadratic mean for every function
f ∈ Cc(S), it follows that {E (ξn⊗ξm)h} converges for every h ∈ H . So, according
to Theorem 2.2 the quadratic mean convergence of the sequence {ξn} follows. �

This enables us to prove a generalization of Corollary 3.4.

Corollary 3.7. Let {ξn} be a sequence of random measures such that:

(1) For every f ∈ Cc(S), {ξnf} converges in quadratic mean.
(2) There exists a non negative random measure γ such that for every n ∈ N,

|ξn| ≤ γ.

Then {ξn} converges in quadratic mean.

Proof: If {ξnf} converges in quadratic mean, then the non negative random
measures ηn = ξn+γ verify the conditions of the preceding corollary, so ηn converges
in quadratic mean to a non negative random measure η. So {ξnf} converges in
quadratic mean to ηf − γf = ξf . According to Corollary 3.4 it follows that {ξn}
converges in quadratic mean to ξ. �
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caré, 15 (1979), no4, 355–373.

[5] Kallenberg O., Random Measures, Academic Press, 1976.
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