Comment.Math.Univ.Carolin. 32,1 (1991)9-14

m-medial n-quasigroups

ToMAS KEPKA

Abstract. For n > 4, every n-medial n-quasigroup is medial. If 1 < m < n, then there
exist m-medial n-quasigroups which are not (m + 1)-medial.
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Idempotent symmetric 3-medial 2-quasigroups (also known as distributive Stei-
ner quasigroups, idempotent Manin quasigroups, Hall triple systems, affine triple
systems, planarily affine Steiner—Kirkman (2, 3)-systems, etc., etc.) possess many
interesting algebraical, geometrical and combinatorial properties (see e.g. [1], [2], [5]
for some of them). Similarly, idempotent symmetric 3-quasigroups corresponding
to Steiner-Kirkman (3, 4)-systems, are 3-medial and, certainly, they are of some
combinatorial interest. On the other hand, it is not clear whether the same applies
to the general case of m-medial n-quasigroups, 1 < m < n2. In the present note, an
investigation is started in this respect. It is shown that every n-medial n-quasigroup
is medial for n > 4 and that for every 1 < m < n there exist m-medial n-quasigroups
which are not (m + 1)-medial.

1. Introduction.

An n-groupoid, where n > 1, is a non-empty set together with an n-ary operation
(usually denoted multiplicatively). If G is an n-groupoid, 1 < i < n and a =
(a1,...,an_1) € G, then we put T;o(r) =a1...a;—12a;...a,_1 foreachx € G.
This transformation T; , of G is called the i-th translation of G by a.

An n-groupoid G is said to be

- idempotent, if z...x = z for each z € G}

- commutative, if 1...zy, = Tp(1) - - - Tp(n) for all x1,...,zn, € G and any
permutation p of {1,2,...,n};

- medial, if (:1711 .. .xln) (x21 .. .Ign) . (xnl . xnn) = (xll . Inl) (:1712 . xng)
co(@1n o Tpp) forall 2 € G, 1 <4, <

- m-medial, where 1 < m, if every subgroupoid of G generated by at most m
elements is medial;

- symmetric if all the translations of G are involutions;

- an n-quasigroup if all the translations of G are permutations.

The following result is well known (see e.g. [6]):

Proposition 1.1. Let n > 2. The following conditions are equivalent for an n-
groupoid G:
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(i) G is a medial n-quasigroup.

(ii) There exist an abelian group G(+), pair-wise commuting automorphisms
f1,.-., fn of the group and an element s € G such that x1 ...xn, = f1(x1)+
<o+ fo(zn) + s for all 2y, ...z, € G.

_1]'

For n > 1, let Ry, designate the polynomial ring Z[a, ... an, al_l, Loy

Proposition 1.2. Let n > 2. The following conditions are equivalent for an n-
groupoid G:
(i) G is a medial n-quasigroup.
(ii) There exist an Ry-module G(+, ax) and an element s € G such that
T1...xp =a1x1 + -+ apxy + s foral z1,...,2, € G.

PRrROOF: If the condition (i) is satisfied, one may define a scalar multiplication on
G(+) (see 1.1) whose domain of operators is Ry, by setting «; - = = f;(z). O

Proposition 1.3. Let n > 2. The following conditions are equivalent for an n-
groupoid G:

(i) G is idempotent, symmetric and medial.

(ii) There exists an abelian group G(+) such that (n+1)x =0 and z1...2p =

—x1— - —xp=n(x1+ -+ xp) forall z,x1,...,2y € G.
PROOF: Let (i) be satisfied. First of all, 0 =0...0 =s. Next, 0 =50...0(b0...0)
= a1b+ anaib = a+ ana, b = 041_1(1, anpa = —a and an = —1. Similarly, o =
=y = —1. ]

2. Auxiliary results.

In this section, let ) be an n-quasigroup, where n > 2, and let ay,...,an € Q.
Put f =Ty, 9 = Tow, u = (a2,a3,...,an), v = (a1,a3,...,an) and = % y =
Y 2)g Y (y)as...an for all z,y € Q. Tt is easy to check that the 2-groupoid Q(x)
is a loop and e = aja2...ay is its neutral element.

Observation 2.1. Let P be a subquasigroup of the n-quasigroup @ and suppose
that aj,...,an € P and P is medial. By 1.2 (ii) there exist an R,-module P(+, ax)

and an element s € P such that 1 ...xn, = a1x1+- - -+aprn+sforall xq,...,xy €

P. Now, f~Nz) = 041_1:10 - al_lagag — =] apap — al_ls and g71(y) =

a;ly—az_lalal—az_ a3a3—---—a2_1anan—a2_ls, and hence z %y = x — aga2 —
c—opln —S+Y—ora] —a3a3 — - — Qplp — S+ a3a3 + -+ apnap + S =

T+Yy—ala; —agag — - —apap —s =x +y — e for all z,y € P. We have shown

that

(2.1.1) rTxy=x+y—e

for all z,y € P.

Lemma 2.2. Let a,b,c € Q be such that the subquasigroup generated by a, b, ¢, a1,
...yayn Is medial. Then axb=">bxa and ax (bxc) = (axb) % c.

PRrROOF: This follows easily from (2.1.1). O



m-medial n-quasigroups

Now, put w = ee...e and denote by z the unique element of ) such that wxz =
e. For1<i<nandzeQ,letg;(x) = (ee...exe...e) % z, where x is on the i-th
position. Clearly, these transformations g; are permutations.

Observation 2.3. Consider the situation from 2.1. Thene=w %z = w + z — ¢,
and so w 4+ z = 2e. Further, ee...exe...e = w — q;e + oyx and we have g;(x) =
w— e+ or+ 2 —e=qxr — aze +e. Thus

(2.1.2) gi(x) = aj(z —e)+e

foralll1<i<nandzx e P.

Lemma 2.4. Let a,b € Q be such that the subquasigroup generated by a,b, a1,
...,ayn Is medial. Then g;(a % b) = g;(a) % ¢;(b) for every 1 <i < n.

PRrROOF: This follows easily from (2.1.) and (2.1.2). O

Lemma 2.5. Let a € @ be such that the subquasigroup generated by a,ai,...,an
is medial. Then g;g;(a) = g;gi(a) for all 1 <i,j < n.

PRrROOF: This follows easily from (2.1.2). O

Lemma 2.6. Let P be a medial subquasigroup of ) such that ai,...,a, € P.
Then P(x) is an abelian group and g; | P are pair-wise commuting automorphisms
of P(x).

Proor: Use 2.2, 2.3 and 2.4. O
Lemma 2.7. Let P be a medial subquasigroup of @) such that ay,...,an € P.
Then wuq...up = g1(uy) % - % gn(un) % w for all uy,...,up € P.

PRrROOF: By (2.1.1) and (2.1.2), g1(u1 % - - % gn(up) *w = (a1 (ug —e) +¢€) % -+ %
(an(up —€e)+e)%xw = aquy + -+ anup —a1e — -+ — ape + ne + w — ne =
ajul + -+ aplp + S = U1 ... Up, Since w = aje + - - + ane + s. ]

3. Auxiliary results.

In this section, let @) be a 4-medial n-quasigroup, where n > 2. For every a € @,
let uqg = (a,a,...,a) € QU f, = T, 9o = Touy, €a = aa...a € Q and
zoqy = f7H@)gs ' (y)a...a for all 2,y € Q. By 2.2, Q(0g) is an abelian group and
eq 18 its neutral element.

Further, let wy = eq€q - . - €a, Wa0aZa = €q and let g; o(x) = (eqq ... €ateq - .. €q)
0aZa, 1 <4 < n. By 2.4 and 2.5, g; , are pair-wise commuting automorphisms of
Q(0q), and hence they induce a structure of an Ry-module on Qo). We denote
by (o, ) — gqx the corresponding scalar multiplication, so that a;qex = g; o (7).

Lemma 3.1. zopy = xog(eqopeq) for all a,b,z,y € Q.

PrROOF: Denote by P the subquasigroup generated by z,y,a,b. Then P is medial
and let P(+, azx,s) be a corresponding pointed Rp-module (see 1.2). By (2.1.1),
U0aV = U+ v — eq and uopv = u + v — ¢ for all u,v € P. Hence xoqy0q(€q0peq) =
TH+y+2e,—2e,—€p =T+ Yy —ep=2x0pYy. O

11
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Lemma 3.2. o;qpx = (@;qax)oq(aiqpeq) for all a,b,x € Q and 1 < i < n.

PrROOF: Let P be the subquasigroup generated by x,a,b and consider a corre-
sponding pointed Rp-module P(+,az,s). By (2), a;qau = q;u — azeq + €4 and

aipu = a;u — azep + e for each u € P. Consequently, («;qqx)oq(aiqpeq) =
o — ajeq + eq)og(ieq — qiep + €p) = T — ajeq + eq + aieq — aiep +ep — eq =
;T — Qiep + ep = QqpT. O

In the remaining part of this section, suppose that @ is n-medial. Further, let
a€Q,e=eq,w=wg, % =0 and 0 = qg.

Lemma 3.3. There is a transformation h of @ such that x1 ...z, = (ajoxy) *
-+ % (apoxy) ¥ h(xy) for all z1,..., 2y € Q.

ProOOF: Put b = x1 and denote by P the subquasigroup generated by x1,...,Zn.
Then P is medial and we have 1 ...z, = (a1qpz1)0p . . . 0p(angpn)opwy by 2.7.
However, by 3.1 and 3.2, we can write 21 ... zp = (@1qpx1) % - - % (n@p@n ) ¥ wp %71,
where r = (eope) % - - - % (eope) (n-times), and z1 ...xn = (agowy) % - - % (poxy) *
wp % r % ¢, where t = (ayqpe) % - -+ % (anqpe). Now, it is enough to put h(zy) =
h(b) = wp % r % t. O

Lemma 3.4. 21 ...z = (ajoxy) ¥ - - % (apoxy) ¥ w for all x1,..., 2y € Q.

ProOOF: With respect to 3.3, we have to show that h(y) = w for every y € Q. Denote
by P the subquasigroup generated by y and a and let P(+, ax, s) be a corresponding
pointed module. Then ye...e = (ajoy) * h(y) by 3.3. But ye...e = a1y + age +
<-4 ape+ s and (ayoy) % h(y) = (10y) + h(y) —e=o1y —aje+e+ h(y) —e =
a1y —aje+ h(y). Thus h(y) = aje+---+ane+s=ee...e = w. O

4. Main results.

Construction 4.1. Let 2 < m < n, let p be a prime dividing n and let Q(+, F’) be
an m-ary ring satisfying the following identities: px = 0; F(x1,...2m) = 0 whenever
x; = xj forsome i < j; F(F(21,...,Zm),¥2,---,ym) = F(y1, F(x1,...,2m),y3, ...,
ym) = - = Fly1,.- ., ym—1, F(x1,...,2m)) = 0. Now define an n-ary operation
on @by z1...0p = 21+ -+ xn + F(z1,...,2m). In this way, we get an n-
groupoid Q.

Lemma 4.1.1. The n-groupoid @ is an (m — 1)-medial n-quasigroup and zzx...x
=0 for every x € Q.

PROOF: Let 1 <4 < m,ay,...,ap, € Q,a = (a1,...,8;—1,0i41,--.,0n) € Q1)
and T = T; 4. Further, let b =a; +---+a;_1 +a;41+--+ap and v € Q. If
i <m,then T(z) = x+b+F(a1,...,ai—1,2, 011, .. am) =z +b+ f(zx), T?(z) =
x4+ 2b+2f(z) + ¢, where ¢ = F(ay,...,a;—1,am41 + -+ + anyair1,-..,am), and
TF(x) = z + kb + kf(z) + (k(k — 1)/2)c for k > 3. Consequently, TP = idg
(TP = idg provided that p is odd). If m < i, then T'(z) = 2 + b+ F(a1,...,am)
and TP = idg. We have proved that every translation of @ is a permutation, i.e.
Q@ is an n-quasigroup.
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Now, let ay,...,am—1 € Q and let P be the subgroup generated by these elements
in the additive group Q(+) of the m-ary ring. Then F | P(™) = 0, so that P is
a subring as well. However, then P is a subquasigroup which is clearly medial. O

Lemma 4.1.2. Suppose that 3 < n and F' # 0. Then the n-quasigroup @ is not
m-medial.

PRrROOF: Let aj,...,am € Q be such that F(ay,...,am) # 0. Denote by P the
subquasigroup generated by these elements and suppose that P is medial. Since
ajal ...a; = 0, we have also 0 € P. By 1.2, there exists a pointed R,-module

P(%,ax,s) such that z1 ...z, = ajx] % - % apay % s for all x1,...,2, € P.
Let e € P be the neutral element of the abelian group P(x). We have 21 + --- +
Tn + F(x1,...,2m) = @1o1 % -+ % aney % s for all x1,...,2y € P. In particular,

1 =airy*¥ag0x---xap0xs,e=exag0x---xap0x%s, e=a0% - -%xap0x%s
and z1 = a1r] * e = apx1. Similarly, xo = aoxs, etc., and we have proved that
1+ +an+ F(z1,...,2m) =21 % - %2 %s. Consequently, z+y = zxyx2e
for all z,y € P, and therefore 1 + -+ + xp + F(x1,...,Tm) = T1 % -+ ¥ Ty ¥
F(z1,...,2m) % u, where u = 2e % --- % 2e (n-times). Now, we conclude that
Ty ¥ XTIy ¥S=x1 %%z % Fa1,...,2m) %u, s=F(x1,...,2m) *u and
F | P(™) is constant. Since 0 € P, F' | P(™) =0, a contradiction. O

Example 4.2. Let 2 < m < n,3 < n, let p be the least prime dividing n and let
q= ZI(,m+1). For z; = (2;5) € Q,1<i<m,1 <j<m+1, put F(zq,...,2m) =
(0,...,0det X) € Q, X = (), 1<r s<m- Then Q(+, F) is an m-ary ring satisfying
the identities from 4.1 and F # 0. Now, the corresponding n-quasigroup (see 4.1)
is (m — 1)-medial but not m-medial.

Theorem 4.3. Let n > 4.

(i) If m > n, then every m-medial n-quasigroup is medial.
(ii) If 1 < m < n, then there exists an m-medial n-quasigroup which is not
(m + 1)-medial.

PrOOF: (i) This follows from 3.4 and 1.2.
(ii) See 4.2. O

Example 4.4. Let n > 3 and Q = Z§n+1). Define an n-ary ring Q(+, F) in the
same way as in 4.2 and consider the corresponding n-quasigroup ). Then @ is
(n — 1)-medial. For n > 4, @ is not n-medial and for n = 3, Q is 3-medial and not
4-medial. For n odd, @ is idempotent and symmetric.

Remark 4.5. By 3.4, every m-medial 3-quasigroup is medial for m > 4. On
the other hand, by 4.2 and 4.4, for every 1 < m < 3 there exists an m-medial
3-quasigroup which is not (m + 1)-medial.

Remark 4.6. Obviously, for m > 4, every m-medial 2-quasigroup is medial and it
is easy to show that, for m = 1,2, there exists an m-medial 2-quasigroup which is
not (m+ 1)-medial. As concerns the 3-medial 2-quasigroups, the following example

is well known (see [4]): Let Q = Z§4) and zxy = —x—y+(0,0,0, z123y2 —x2w3Yy1 —
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x1Y2y3 + xay1y3) for all z,y € 0. Then Q() is an idempotent symmetric 3-medial
2-quasigroup and it is not medial. By [7], every non-medial 3-medial 2-quasigroup
contains at least 81 elements and, by [3], there exist up to isomorphism just 35
non-medial 3-medial 2-quasigroups of order 81.

Remark 4.7. Every 1-groupoid, and hence every 1-quasigroup, is medial.
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