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m-medial n-quasigroups

Tomáš Kepka

Abstract. For n ≥ 4, every n-medial n-quasigroup is medial. If 1 ≤ m < n, then there
exist m-medial n-quasigroups which are not (m + 1)-medial.
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Idempotent symmetric 3-medial 2-quasigroups (also known as distributive Stei-
ner quasigroups, idempotent Manin quasigroups, Hall triple systems, affine triple
systems, planarily affine Steiner–Kirkman (2, 3)-systems, etc., etc.) possess many
interesting algebraical, geometrical and combinatorial properties (see e.g. [1], [2], [5]
for some of them). Similarly, idempotent symmetric 3-quasigroups corresponding
to Steiner–Kirkman (3, 4)-systems, are 3-medial and, certainly, they are of some
combinatorial interest. On the other hand, it is not clear whether the same applies
to the general case of m-medial n-quasigroups, 1 ≤ m ≤ n2. In the present note, an
investigation is started in this respect. It is shown that every n-medial n-quasigroup
is medial for n ≥ 4 and that for every 1 ≤ m < n there existm-medial n-quasigroups
which are not (m+ 1)-medial.

1. Introduction.

An n-groupoid, where n ≥ 1, is a non-empty set together with an n-ary operation
(usually denoted multiplicatively). If G is an n-groupoid, 1 ≤ i ≤ n and a =
(a1, . . . , an−1) ∈ Gn−1, then we put Ti,a(x) = a1 . . . ai−1xai . . . an−1 for each x ∈ G.
This transformation Ti,a of G is called the i-th translation of G by a.
An n-groupoid G is said to be

- idempotent, if x . . . x = x for each x ∈ G;
- commutative, if x1 . . . xn = xp(1) . . . xp(n) for all x1, . . . , xn ∈ G and any

permutation p of {1, 2, . . . , n};
- medial, if (x11 . . . x1n) (x21 . . . x2n) . . . (xn1 . . . xnn) = (x11 . . . xn1) (x12 . . . xn2)

. . . (x1n . . . xnn) for all xij ∈ G, 1 ≤ i, j ≤ n;
- m-medial, where 1 ≤ m, if every subgroupoid of G generated by at most m
elements is medial;
- symmetric if all the translations of G are involutions;
- an n-quasigroup if all the translations of G are permutations.

The following result is well known (see e.g. [6]):

Proposition 1.1. Let n ≥ 2. The following conditions are equivalent for an n-
groupoid G:
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(i) G is a medial n-quasigroup.
(ii) There exist an abelian group G(+), pair-wise commuting automorphisms

f1, . . . , fn of the group and an element s ∈ G such that x1 . . . xn = f1(x1)+
· · ·+ fn(xn) + s for all x1, . . . , xn ∈ G.

For n ≥ 1, let Rn designate the polynomial ring Z[α1, . . . αn, α−1
1 , . . . α−1

n ].

Proposition 1.2. Let n ≥ 2. The following conditions are equivalent for an n-
groupoid G:

(i) G is a medial n-quasigroup.
(ii) There exist an Rn-module G(+, αx) and an element s ∈ G such that

x1 . . . xn = α1x1 + · · ·+ αnxn + s for all x1, . . . , xn ∈ G.

Proof: If the condition (i) is satisfied, one may define a scalar multiplication on
G(+) (see 1.1) whose domain of operators is Rn by setting αi · x = fi(x). �

Proposition 1.3. Let n ≥ 2. The following conditions are equivalent for an n-
groupoid G:

(i) G is idempotent, symmetric and medial.
(ii) There exists an abelian group G(+) such that (n+1)x = 0 and x1 . . . xn =

−x1 − · · · − xn = n(x1 + · · ·+ xn) for all x, x1, . . . , xn ∈ G.

Proof: Let (i) be satisfied. First of all, 0 = 0 . . . 0 = s. Next, 0 = b0 . . . 0(b0 . . .0)

= α1b + αnα1b = a + αna, b = α−1
1 a, αna = −a and αn = −1. Similarly, α1 =

· · · = αn−1 = −1. �

2. Auxiliary results.

In this section, let Q be an n-quasigroup, where n ≥ 2, and let a1, . . . , an ∈ Q.
Put f = T1,u, g = T2,v, u = (a2, a3, . . . , an), v = (a1, a3, . . . , an) and x > y =

f−1(x)g−1(y)a3 . . . an for all x, y ∈ Q. It is easy to check that the 2-groupoid Q(>)
is a loop and e = a1a2 . . . an is its neutral element.

Observation 2.1. Let P be a subquasigroup of the n-quasigroup Q and suppose
that a1, . . . , an ∈ P and P is medial. By 1.2 (ii) there exist an Rn-module P (+, αx)
and an element s ∈ P such that x1 . . . xn = α1x1+· · ·+αnxn+s for all x1, . . . , xn ∈
P . Now, f−1(x) = α−1

1 x − α−1
1 α2a2 − · · · − α−1

1 αnan − α−1
1 s and g−1(y) =

α−1
2 y−α−1

2 α1a1−α−1
2 α3a3−· · ·−α−1

2 αnan−α−1
2 s, and hence x>y = x−α2a2−

· · · − αnan − s + y − α1a1 − α3a3 − · · · − αnan − s + α3a3 + · · · + αnan + s =
x+ y − α1a1 − α2a2 − · · · − αnan − s = x+ y − e for all x, y ∈ P . We have shown
that

(2.1.1) x > y = x+ y − e

for all x, y ∈ P .

Lemma 2.2. Let a, b, c ∈ Q be such that the subquasigroup generated by a, b, c, a1,
. . . , an is medial. Then a > b = b > a and a > (b > c) = (a > b)> c.

Proof: This follows easily from (2.1.1). �
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Now, put w = ee . . . e and denote by z the unique element of Q such that w>z =
e. For 1 ≤ i ≤ n and x ∈ Q, let gi(x) = (ee . . . exe . . . e)> z, where x is on the i-th
position. Clearly, these transformations gi are permutations.

Observation 2.3. Consider the situation from 2.1. Then e = w > z = w + z − e,
and so w + z = 2e. Further, ee . . . exe . . . e = w − αie + αix and we have gi(x) =
w − αie+ αix+ z − e = αix − αie+ e. Thus

(2.1.2) gi(x) = αi(x − e) + e

for all 1 ≤ i ≤ n and x ∈ P .

Lemma 2.4. Let a, b ∈ Q be such that the subquasigroup generated by a, b, a1,
. . . , an is medial. Then gi(a > b) = gi(a)> gi(b) for every 1 ≤ i ≤ n.

Proof: This follows easily from (2.1.) and (2.1.2). �

Lemma 2.5. Let a ∈ Q be such that the subquasigroup generated by a, a1, . . . , an

is medial. Then gigj(a) = gjgi(a) for all 1 ≤ i, j ≤ n.

Proof: This follows easily from (2.1.2). �

Lemma 2.6. Let P be a medial subquasigroup of Q such that a1, . . . , an ∈ P .
Then P (>) is an abelian group and gi | P are pair-wise commuting automorphisms
of P (>).

Proof: Use 2.2, 2.3 and 2.4. �

Lemma 2.7. Let P be a medial subquasigroup of Q such that a1, . . . , an ∈ P .
Then u1 . . . un = g1(u1)> · · · > gn(un)> w for all u1, . . . , un ∈ P .

Proof: By (2.1.1) and (2.1.2), g1(u1> · · ·> gn(un)> w = (α1(u1− e) + e)> · · ·>
(αn(un − e) + e) > w = α1u1 + · · · + αnun − α1e − · · · − αne + ne + w − ne =
α1u1 + · · ·+ αnun + s = u1 . . . un, since w = α1e+ · · ·+ αne+ s. �

3. Auxiliary results.

In this section, let Q be a 4-medial n-quasigroup, where n ≥ 2. For every a ∈ Q,

let ua = (a, a, . . . , a) ∈ Q(n−1), fa = T1,ua
, ga = T2,ua

, ea = aa . . . a ∈ Q and

xoay = f−1
a (x)g

−1
a (y)a . . . a for all x, y ∈ Q. By 2.2, Q(oa) is an abelian group and

ea is its neutral element.
Further, let wa = eaea . . . ea, waoaza = ea and let gi,a(x) = (eaea . . . eaxea . . . ea)

oaza, 1 ≤ i ≤ n. By 2.4 and 2.5, gi,a are pair-wise commuting automorphisms of
Q(oa), and hence they induce a structure of an Rn-module on Q(oa). We denote
by (α, x) −→ qax the corresponding scalar multiplication, so that αiqax = gi,a(x).

Lemma 3.1. xoby = xoa(eaobea) for all a, b, x, y ∈ Q.

Proof: Denote by P the subquasigroup generated by x, y, a, b. Then P is medial
and let P (+, αx, s) be a corresponding pointed Rn-module (see 1.2). By (2.1.1),
uoav = u+ v − ea and uobv = u+ v − eb for all u, v ∈ P . Hence xoayoa(eaobea) =
x+ y + 2ea − 2ea − eb = x+ y − eb = xoby. �
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Lemma 3.2. αiqbx = (αiqax)oa(αiqbea) for all a, b, x ∈ Q and 1 ≤ i ≤ n.

Proof: Let P be the subquasigroup generated by x, a, b and consider a corre-
sponding pointed Rn-module P (+, αx, s). By (2), αiqau = αiu − αiea + ea and
αiqbu = αiu − αieb + eb for each u ∈ P . Consequently, (αiqax)oa(αiqbea) =
αix − αiea + ea)oa(αiea − αieb + eb) = αix − αiea + ea + αiea − αieb + eb − ea =
αix − αieb + eb = αiqbx. �

In the remaining part of this section, suppose that Q is n-medial. Further, let
a ∈ Q, e = ea, w = wa, > = oa and o = qa.

Lemma 3.3. There is a transformation h of Q such that x1 . . . xn = (α1ox1) >

· · · > (αnoxn)> h(x1) for all x1, . . . , xn ∈ Q.

Proof: Put b = x1 and denote by P the subquasigroup generated by x1, . . . , xn.
Then P is medial and we have x1 . . . xn = (α1qbx1)ob . . . ob(αnqbxn)obwb by 2.7.
However, by 3.1 and 3.2, we can write x1 . . . xn = (α1qbx1)> · · ·>(αnqbxn)>wb >r,
where r = (eobe)> · · ·> (eobe) (n-times), and x1 . . . xn = (α1ox1)> · · ·> (αnoxn)>
wb > r > t, where t = (α1qbe) > · · · > (αnqbe). Now, it is enough to put h(x1) =
h(b) = wb > r > t. �

Lemma 3.4. x1 . . . xn = (α1ox1)> · · · > (αnoxn)> w for all x1, . . . , xn ∈ Q.

Proof: With respect to 3.3, we have to show that h(y) = w for every y ∈ Q. Denote
by P the subquasigroup generated by y and a and let P (+, αx, s) be a corresponding
pointed module. Then ye . . . e = (α1oy) > h(y) by 3.3. But ye . . . e = α1y + α2e+
· · ·+ αne+ s and (α1oy)> h(y) = (α1oy) + h(y)− e = α1y − α1e+ e+ h(y)− e =
α1y − α1e+ h(y). Thus h(y) = α1e+ · · ·+ αne+ s = ee . . . e = w. �

4. Main results.

Construction 4.1. Let 2 ≤ m ≤ n, let p be a prime dividing n and let Q(+, F ) be
anm-ary ring satisfying the following identities: px = 0;F (x1, . . . xm) = 0 whenever
xi = xj for some i < j; F (F (x1, . . . , xm), y2, . . . , ym) = F (y1, F (x1, . . . , xm), y3, . . . ,
ym) = · · · = F (y1, . . . , ym−1, F (x1, . . . , xm)) = 0. Now define an n-ary operation
on Q by x1 . . . xn = x1 + · · · + xn + F (x1, . . . , xm). In this way, we get an n-
groupoid Q.

Lemma 4.1.1. The n-groupoid Q is an (m−1)-medial n-quasigroup and xx . . . x
= 0 for every x ∈ Q.

Proof: Let 1 ≤ i ≤ n, a1, . . . , an ∈ Q, a = (a1, . . . , ai−1, ai+1, . . . , an) ∈ Q(n−1)

and T = Ti,a. Further, let b = a1 + · · · + ai−1 + ai+1 + · · · + an and x ∈ Q. If

i ≤ m, then T (x) = x+ b+F (a1, . . . , ai−1, x, ai+1, . . . , am) = x+ b+ f(x), T 2(x) =
x + 2b + 2f(x) + c, where c = F (a1, . . . , ai−1, am+1 + · · ·+ an, ai+1, . . . , am), and

T k(x) = x + kb + kf(x) + (k(k − 1)/2)c for k ≥ 3. Consequently, T 2p = idQ

(T p = idQ provided that p is odd). If m < i, then T (x) = x + b + F (a1, . . . , am)
and T p = idQ. We have proved that every translation of Q is a permutation, i.e.
Q is an n-quasigroup.
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Now, let a1, . . . , am−1 ∈ Q and let P be the subgroup generated by these elements

in the additive group Q(+) of the m-ary ring. Then F | P (m) = 0, so that P is
a subring as well. However, then P is a subquasigroup which is clearly medial. �

Lemma 4.1.2. Suppose that 3 ≤ n and F 6= 0. Then the n-quasigroup Q is not
m-medial.

Proof: Let a1, . . . , am ∈ Q be such that F (a1, . . . , am) 6= 0. Denote by P the
subquasigroup generated by these elements and suppose that P is medial. Since
a1a1 . . . a1 = 0, we have also 0 ∈ P . By 1.2, there exists a pointed Rn-module
P (>, αx, s) such that x1 . . . xn = α1x1 > · · · > αnxn > s for all x1, . . . , xn ∈ P .
Let e ∈ P be the neutral element of the abelian group P (>). We have x1 + · · · +
xn + F (x1, . . . , xm) = α1x1 > · · · > αnxn > s for all x1, . . . , xn ∈ P . In particular,
x1 = α1x1>α20> · · ·>αn0>s, e = e>α20> · · ·>αn0>s, e = α20> · · ·>αn0>s
and x1 = α1x1 > e = α1x1. Similarly, x2 = α2x2, etc., and we have proved that
x1+ · · ·+xn+F (x1, . . . , xm) = x1> · · ·> xn > s. Consequently, x+ y = x> y > 2e
for all x, y ∈ P , and therefore x1 + · · · + xn + F (x1, . . . , xm) = x1 > · · · > xn >

F (x1, . . . , xm) > u, where u = 2e > · · · > 2e (n-times). Now, we conclude that
x1 > · · · > xn > s = x1 > · · · > xn > F (x1, . . . , xm)> u, s = F (x1, . . . , xm)> u and

F | P (m) is constant. Since 0 ∈ P , F | P (m) = 0, a contradiction. �

Example 4.2. Let 2 ≤ m ≤ n, 3 ≤ n, let p be the least prime dividing n and let

q = Z
(m+1)
p . For xi = (xij) ∈ Q, 1 ≤ i ≤ m, 1 ≤ j ≤ m + 1, put F (x1, . . . , xm) =

(0, . . . , 0 det X) ∈ Q, X = (xrs),1≤r,s≤m. Then Q(+, F ) is an m-ary ring satisfying

the identities from 4.1 and F 6= 0. Now, the corresponding n-quasigroup (see 4.1)
is (m − 1)-medial but not m-medial.

Theorem 4.3. Let n ≥ 4.

(i) If m ≥ n, then every m-medial n-quasigroup is medial.
(ii) If 1 ≤ m < n, then there exists an m-medial n-quasigroup which is not
(m+ 1)-medial.

Proof: (i) This follows from 3.4 and 1.2.
(ii) See 4.2. �

Example 4.4. Let n ≥ 3 and Q = Z
(n+1)
2 . Define an n-ary ring Q(+, F ) in the

same way as in 4.2 and consider the corresponding n-quasigroup Q. Then Q is
(n − 1)-medial. For n ≥ 4, Q is not n-medial and for n = 3, Q is 3-medial and not
4-medial. For n odd, Q is idempotent and symmetric.

Remark 4.5. By 3.4, every m-medial 3-quasigroup is medial for m ≥ 4. On
the other hand, by 4.2 and 4.4, for every 1 ≤ m ≤ 3 there exists an m-medial
3-quasigroup which is not (m+ 1)-medial.

Remark 4.6. Obviously, for m ≥ 4, every m-medial 2-quasigroup is medial and it
is easy to show that, for m = 1, 2, there exists an m-medial 2-quasigroup which is
not (m+1)-medial. As concerns the 3-medial 2-quasigroups, the following example

is well known (see [4]): Let Q = Z
(4)
3 and x>y = −x−y+(0, 0, 0, x1x3y2−x2x3y1−
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x1y2y3 + x2y1y3) for all x, y ∈ 0. Then Q(>) is an idempotent symmetric 3-medial
2-quasigroup and it is not medial. By [7], every non-medial 3-medial 2-quasigroup
contains at least 81 elements and, by [3], there exist up to isomorphism just 35
non-medial 3-medial 2-quasigroups of order 81.

Remark 4.7. Every 1-groupoid, and hence every 1-quasigroup, is medial.
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