An integral estimate for weak solutions to some quasilinear elliptic systems

FRANCESCO LEONETTI

Abstract. We prove an integral estimate for weak solutions to some quasilinear elliptic systems; such an estimate provides us with the following regularity result: weak solutions are bounded.

Keywords: quasilinear elliptic systems, weak solutions, integral estimates, regularity Classification: 35J60, 35B45, 35D10

Let Ω be a bounded open subset of \mathbb{R}^n and $u \in \mathbb{R}^N$; let us fix a real number $q \geq 2$; we set

(1)
$$V(u) = (1 + |u|^2)^{1/2}, \quad W(u) = V^{(q-2)/2}(u) u.$$

We are concerned with weak solutions $u : \longrightarrow \mathbb{R}^N$ to the quasilinear system

(2)
$$-\sum_{i=1}^{n} D_i \left(V^{q-2}(u(x)) \sum_{j=1}^{n} \sum_{\beta=1}^{N} A_{ij}^{\alpha\beta}(x, u(x)) D_j u^{\beta}(x) \right) = 0$$

 $\forall x \in \Omega, \forall \alpha = 1, ..., N$, where the coefficients $A_{ij}^{\alpha\beta}$ are elliptic, that is, there exist positive constants m, M such that

(3)
$$m|\xi| \le \sum_{i,j=1}^{n} \sum_{\alpha,\beta=1}^{N} A_{ij}^{\alpha\beta}(x,u)\xi_{j}^{\beta}\xi_{i}^{\alpha} \le M|\xi|^{2}$$

 $\forall \xi \in \mathbb{R}^{nN}, \forall u \in \mathbb{R}^N, \forall x \in \Omega$. Quasilinear elliptic systems, considered just before, arise, when we deal with the integral functional

(4)
$$\int_{\Omega} \left(1 + |Dv(x)|^2\right)^{q/2} dx$$

and we write the Euler equation: after an integration by parts, we get a system of type (2), (3), in which u is the gradient of the minimizer v of (4): [G], [M].

This paper was written while the author was visiting the Centre for Mathematical Analysis, Canberra, on a C.N.R. grant. He gladly takes the opportunity to thank all the people in this Centre for their hospitality; a special thank is due to Neil Trudinger

F. Leonetti

In order to develop the regularity theory in Campanato's spaces $\mathfrak{L}^{P,\lambda}$, we need good estimates for solutions to some particular systems, namely those in which the coefficients $A_{i\,i}^{\alpha\beta}(x,u)$ are constant:

(5)
$$A_{ij}^{\alpha\beta}(x,u) \equiv A_{ij}^{\alpha\beta}.$$

This is the way, followed in the past, for dealing with the case q = 2 [G] and the case of nonlinear systems of a different type [C1]. Throughout this paper, we are concerned with systems (2), (3), in which the coefficients $A_{ij}^{\alpha\beta}$ are constant, that is, (5) holds. Before stating the estimate, we must say what we mean when we talk about "weak solutions" to the elliptic systems (2), (3), (5): we agree that $u: \Omega \longrightarrow \mathbb{R}^N$ is a weak solution to (2), (3), (5), if

(6)
$$u \in H^{1,2}(\Omega), \quad V^{q-2}(u)|u|^2 \in L^1(\Omega), \quad V^{q-2}(u)|Du|^2 \in L^1(\Omega)$$

and

(7)
$$\int_{\Omega} V^{q-2}(u(x)) \sum_{i,j=1}^{n} \sum_{\alpha,\beta=1}^{N} A_{ij}^{\alpha\beta} D_j u^{\beta}(x) D_i \phi^{\alpha}(x) dx = 0$$

for each test function $\phi: \Omega \longrightarrow \mathbb{R}^N$ such that

(8)
$$\phi \in H^{1,2}(\Omega), \quad V^{q-2}(u)|\phi|^2 \in L^1(\Omega), \quad V^{q-2}(u)|D\phi|^2 \in L^1(\Omega).$$

Let us call ${}^{*}H_{0}^{1,2}(\Omega; u)$ the set of all ϕ verifying (8). Campanato proved the following estimate:

Theorem 1 (Campanato [C2]). Let u be a weak solution to (2), (3), (5); if the coefficients $A_{i\,i}^{\alpha\beta}$ satisfy

(9)
$$A_{ij}^{\alpha\beta} = \delta_{ij} \,\delta^{\alpha\beta},$$

then

(10)
$$\int_{B(x^0,r)} |W(u)|^2 dx \le \left(\frac{r}{s}\right)^n \int_{B(x^0,s)} |W(u)|^2 dx$$

 $\forall x^0 \in \Omega, \ \forall r, s: 0 < r \leq s < \text{dist} (x^0, \partial \Omega); \text{ where } \delta_{ij}, \delta^{\alpha\beta} \text{ are Kronecker's symbols}$ $(\delta_{ij} = 1, \text{ if } i = 1 \text{ and } \delta_{ij} = 0, \text{ if } i \neq j), \ B(x^0, \sigma) = \{x \in \mathbb{R}^N : |x - x^0| < \sigma\} \text{ and } W(u) \text{ is defined in (1).}$

In the next lines we will prove the following

Theorem 2. Let u be a weak solution to (2), (3), (5); if the coefficients $A_{ij}^{\alpha\beta}$ satisfy

(11)
$$A_{ij}^{\alpha\beta} = a_{ij} b^{\alpha\beta}$$

for every i, j = 1, ..., n and for every $\alpha, \beta = 1, ..., N$, where $a_{ij}, b^{\alpha\beta}$ are real numbers such that there exist positive constants ν, L for which

(12)
$$\nu |\eta|^2 \le \sum_{i,j=1}^n a_{ij} \eta_j \eta_i \le L |\eta|^2 \quad \forall \ \eta \in \mathbb{R}^n,$$

(13)
$$a_{ij} = a_{ji} \qquad \forall \ i, j = 1, \dots, n,$$

(14) $\det\left(b^{\alpha\beta}\right) \neq 0,$

then, for $c = (L/\nu)^n$, we have

(15)
$$\int_{B(x^{0},r)} |W(u)|^{2} dx \leq c \left(\frac{r}{s}\right)^{n} \int_{B(x^{0},s)} |W(u)|^{2} dx$$

 $\forall \ x^0 \in \Omega, \ \forall \ r,s: 0 < r \le s < {\rm dist} \, (x^0,\partial\Omega).$

Remark. The inequality (15) tells us that $|W(u)|^2$ is locally bounded; since $|u| \le |W(u)|$ (because of (1) and $q \ge 2$), we get that u is locally bounded, too.

PROOF OF THEOREM 2: We will prove Theorem 2 by reducing to the case treated by Campanato in this way:

Step 1. We get rid of the matrix $(b^{\alpha\beta})$ by using the new test function $\psi = {}^t b\phi$, where ${}^t b$ is the transpose of the matrix $b = (b^{\alpha\beta})$.

Step 2. We find a linear transformation $G : \mathbb{R}^n \longrightarrow \mathbb{R}^n$ such that its Jacobian matrix diagonalizes the matrix $a = (a_{ij}) : JGa^{t}JG = Id$.

Step 3. We consider the new function $v = u \circ G^{-1}$; we prove that v satisfies the hypotheses of Campanato's Theorem 1.

Step 4. We write the estimate (10) for v.

Step 5. We come back to u by changing variables and we get the estimate (15).

The previous technique, consisting in diagonalizing the matrix and changing variables, has been employed in [FH], [L]. Now we will exploit all the details. Since $b^{\alpha\beta}$ is constant, we have

(16)
$$\sum_{\alpha,\beta} b^{\alpha\beta} D_j u^{\beta} D_i \phi^{\alpha} = \sum_{\beta} D_j u^{\beta} D_i \left(\sum_{\alpha} b^{\alpha\beta} \phi^{\alpha} \right);$$

we set $\psi^{\beta} = \sum_{\alpha=1}^{N} b^{\alpha\beta} \phi^{\alpha}$; since we assumed det $(b^{\alpha\beta}) \neq 0$, we have

(17)
$$\psi \in {}^*H^{1,2}_0(\Omega; u) \Longleftrightarrow \phi \in {}^*H^{1,2}_0(\Omega; u).$$

F. Leonetti

We recall that u satisfies (7) with $A_{ij}^{\alpha\beta} = a_{ij}b^{\alpha\beta}$: by means of (16) and (17), we get

(18)
$$\int_{\Omega} V^{q-2}(u(x)) \sum_{i,j=1}^{n} a_{ij} \sum_{\alpha,\beta=1}^{N} D_{j} u^{\beta}(x) D_{i} \psi^{\beta}(x) dx = 0$$

for every $\psi \in {}^*H_0^{1,2}(\Omega; u)$. Now we are looking at the matrix $a = (a_{ij})$: it is real, symmetric and positive, so we can find an orthonormal basis for \mathbb{R}^n consisting of eigenvectors of the matrix a: let w^1, w^2, \ldots, w^n be such a basis where each w^s has the scalar components $w_j^s, j = 1, \ldots, n$. Let λ^s be the real positive (because of the ellipticity (12)) eigenvalue corresponding to the eigenvector w^s ; let us consider the following linear transformation $G : \mathbb{R}^n \longrightarrow \mathbb{R}^n$, where every component G_s is defined in this way:

$$G_s(x) = \sum_{j=1}^{n} (\lambda^s)^{-1/2} w_j^s x_j.$$

Let $JG = (JG_{rs})$ r, s = 1, ..., n be the Jacobian matrix of the linear transformation G; such a matrix diagonalizes the matrix $a = (a_{ij})$, that is,

(19)
$$\sum_{i,j=1}^{n} JG_{ri}a_{ij} JG_{sj} = \delta_{rs} \qquad \forall r, s = 1, \dots, n;$$

moreover, we have

(20)
$$L^{-n/2} \le |\det JG| \le \nu^{-n/2},$$

(21)
$$\frac{1}{L}|x-y|^2 \le |G(x) - G(y)|^2 \le \frac{1}{\nu}|x-y|^2 \quad \forall \ x, y \in \mathbb{R}^n$$

We set $v = u \circ G^{-1}$ and we get $v \in H^{1,2}(G(\Omega)), V^{q-2}(v)|v|^2 \in L^1(G(\Omega)), V^{q-2}(v)|Dv|^2 \in L^1(G(\Omega))$. We set $z = \psi \circ G^{-1}, x = G^{-1}(y)$ and we change the variables in (18): we get

(22)
$$\int_{G(\Omega)} V^{q-2}(v(y)) \sum_{r,s=1}^{n} \left(\sum_{i,j=1}^{n} JG_{ri}a_{ij}JG_{sj} \right) \sum_{\beta=1}^{N} D_{s}v^{\beta}(y) \cdot D_{r}z^{\beta}(y) \, dy = 0$$
$$\forall \ z \in {}^{*}H_{0}^{1,2}(G(\Omega);v).$$

We agree that $Du, D\psi$ mean derivatives with respect to x of u and ψ , while Dv, Dz mean derivatives with respect to y of v and z. Since JG diagonalizes the matrix a, that is, (19) holds, we have proved that v satisfies

(23)
$$\int_{G(\Omega)} V^{q-2}(v) \sum_{s=1}^{n} \sum_{\beta=1}^{N} D_s v^{\beta} D_s z^{\beta} dy = 0 \qquad \forall \ z \in {}^*H_0^{1,2}(G(\Omega); v).$$

So we can apply Campanato's Theorem 1:

(24)
$$\int_{B(y^0,t)} |W(v)|^2 \, dy \le \left(\frac{t}{R}\right)^n \int_{B(y^0,R)} |W(v)|^2 \, dy,$$

 $\forall \ y^0 \in G(\Omega), \ \forall \ t, R: \ 0 < t \le R < \operatorname{dist}(y^0, \partial G(\Omega)).$

Let x^0 belong to Ω and let r, R satisfy $0 < r \le \sqrt{\nu}R \le \sqrt{L}R < \text{dist}(x^0, \partial \Omega)$, where ν and L are the constants in the ellipticity assumption (12); in this case $R < \text{dist}(G(x^0), \partial G(\Omega))$ and, using (20), (21), (24), we get

$$\begin{split} \int_{B(x^{0},r)} |W(u)|^{2} \, dx &\leq L^{n/2} \int_{B(G(x^{0}),r/\sqrt{\nu})} |W(u)|^{2} \, dx \leq \\ &\leq L^{n/2} \left(\frac{r/\sqrt{\nu}}{R}\right)^{n} \int_{B(G(x^{0}),R)} |W(v)|^{2} \, dy \leq \\ &\leq L^{n/2} \left(\frac{r/\sqrt{\nu}}{R}\right)^{n} \nu^{-n/2} \int_{B(x^{0},\sqrt{L}R)} |W(u)|^{2} \, dx = \\ &= \left(\frac{L}{\nu}\right)^{n} \left(\frac{r}{\sqrt{L}R}\right)^{n} \int_{B(x^{0},\sqrt{L}R)} |W(u)|^{2} \, dx. \end{split}$$

We have proved the following inequality

(25)
$$\int_{B(x^0,\sqrt{L}R)} |W(u)|^2 dx \le \left(\frac{L}{\nu}\right)^n \left(\frac{r}{\sqrt{L}R}\right)^n \int_{B(x^0,\sqrt{L}R)} |W(u)|^2 dx$$

for $x^0 \in \Omega$ and $0 < r \le \sqrt{\nu}R \le \sqrt{L}R < \text{dist}(x^0, \partial \Omega)$.

It is easy to check that (25) still remains true when $\sqrt{\nu R} < r \leq \sqrt{LR}$, so the previous inequality (25) holds for $0 < r \leq \sqrt{LR} < \text{dist}(x^0, \partial\Omega)$. We set $s = \sqrt{LR}$ and we get our thesis (15):

$$\int_{B(x^{0},r)} |W(u)|^{2} dx \leq \left(\frac{L}{\nu}\right)^{n} \left(\frac{r}{s}\right)^{n} \int_{B(x^{0},s)} |W(u)|^{2} dx.$$

References

- [C1] Campanato S., Elliptic systems with nonlinearity q greater or equal to two. Regularity of the solution of the Dirichlet problem, Ann. Mat. Pura Appl. 147 (1987), 117–150.
- [C2] Campanato S., Fundamental interior estimates for a class of second order elliptic operators, in: Partial Differential Equations and Calculus of Variations, Essays in honor of Ennio De Giorgi, Birkhäuser, Boston, 1989.
- [FH] Fusco N., Hutchinson J., Partial regularity for minimizers of certain functionals having non quadratic growth, Ann. Mat. Pura Appl. 155 (1989), 1–24.
- [G] Giaquinta M., Multiple integrals in the calculus of variations and nonlinear elliptic systems, Princeton University Press, Princeton, 1983.
- [L] Leonetti F., On the regularity of w-minima, to appear in Boll. Un. Mat. Ital.
- [M] Morrey C.B., Jr., Multiple Integrals in the Calculus of Variations, Springer Verlag, New York, 1966.

DIPARTIMENTO DI MATEMATICA PURA ED APPLICATA, UNIVERSITÀ DEGLI STUDI DI L'AQUILA, 67100 L'AQUILA, ITALY