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An integral estimate for weak solutions

to some quasilinear elliptic systems

Francesco Leonetti

Abstract. We prove an integral estimate for weak solutions to some quasilinear elliptic
systems; such an estimate provides us with the following regularity result: weak solutions
are bounded.

Keywords: quasilinear elliptic systems, weak solutions, integral estimates, regularity

Classification: 35J60, 35B45, 35D10

Let Ω be a bounded open subset of R
n and u ∈ R

N ; let us fix a real number
q ≥ 2; we set

(1) V (u) = (1 + |u|2)1/2, W (u) = V (q−2)/2(u)u.

We are concerned with weak solutions u :−→ R
N to the quasilinear system

(2) −
n

∑

i=1

Di

(

V q−2(u(x))

n
∑

j=1

N
∑

β=1

A
αβ
i j (x, u(x))Dju

β(x)

)

= 0

∀ x ∈ Ω, ∀ α = 1, . . . , N , where the coefficients Aαβ
i j are elliptic, that is, there exist

positive constants m,M such that

(3) m|ξ| ≤
n

∑

i,j=1

N
∑

α,β=1

A
αβ
i j (x, u)ξ

β
j ξ

α
i ≤M |ξ|2

∀ ξ ∈ R
nN , ∀ u ∈ R

N , ∀ x ∈ Ω. Quasilinear elliptic systems, considered just
before, arise, when we deal with the integral functional

(4)

∫

Ω

(

1 + |Dv(x)|2
)q/2

dx

and we write the Euler equation: after an integration by parts, we get a system of
type (2), (3), in which u is the gradient of the minimizer v of (4): [G], [M].
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In order to develop the regularity theory in Campanato’s spaces LP,λ, we need
good estimates for solutions to some particular systems, namely those in which the

coefficients A
αβ
i j (x, u) are constant:

(5) A
αβ
i j (x, u) ≡ A

αβ
i j .

This is the way, followed in the past, for dealing with the case q = 2 [G] and the
case of nonlinear systems of a different type [C1]. Throughout this paper, we are

concerned with systems (2), (3), in which the coefficients A
αβ
i j are constant, that

is, (5) holds. Before stating the estimate, we must say what we mean when we
talk about “weak solutions” to the elliptic systems (2), (3), (5): we agree that

u : Ω −→ R
N is a weak solution to (2), (3), (5), if

(6) u ∈ H1,2(Ω), V q−2(u)|u|2 ∈ L1(Ω), V q−2(u)|Du|2 ∈ L1(Ω)

and

(7)

∫

Ω
V q−2(u(x))

n
∑

i,j=1

N
∑

α,β=1

A
αβ
i j Dju

β(x)Diφ
α(x) dx = 0

for each test function φ : Ω −→ R
N such that

(8) φ ∈ H1,2(Ω), V q−2(u)|φ|2 ∈ L1(Ω), V q−2(u)|Dφ|2 ∈ L1(Ω).

Let us call ∗H1,20 (Ω;u) the set of all φ verifying (8). Campanato proved the
following estimate:

Theorem 1 (Campanato [C2]). Let u be a weak solution to (2), (3), (5); if the

coefficients Aαβ
i j satisfy

(9) Aαβ
i j = δi j δ

αβ ,

then

(10)

∫

B(x0,r)
|W (u)|2 dx ≤

(r

s

)n
∫

B(x0,s)
|W (u)|2 dx

∀ x0 ∈ Ω, ∀ r, s : 0 < r ≤ s < dist (x0, ∂Ω); where δi j , δ
αβ are Kronecker’s symbols

(δi j = 1, if i = 1 and δi j = 0, if i 6= j), B(x0, σ) = {x ∈ R
N : |x − x0| < σ} and

W (u) is defined in (1).

In the next lines we will prove the following
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Theorem 2. Let u be a weak solution to (2), (3), (5); if the coefficients A
αβ
i j satisfy

(11) Aαβ
i j = ai j b

αβ

for every i, j = 1, . . . , n and for every α, β = 1, . . . , N , where ai j , b
αβ are real

numbers such that there exist positive constants ν, L for which

ν|η|2 ≤
n

∑

i,j=1

ai jηjηi ≤ L|η|2 ∀ η ∈ R
n,(12)

ai j = aj i ∀ i, j = 1, . . . , n,(13)

det (bαβ) 6= 0,(14)

then, for c = (L/ν)n, we have

(15)

∫

B(x0,r)
|W (u)|2 dx ≤ c

(r

s

)n
∫

B(x0,s)
|W (u)|2 dx

∀ x0 ∈ Ω, ∀ r, s : 0 < r ≤ s < dist (x0, ∂Ω).

Remark. The inequality (15) tells us that |W (u)|2 is locally bounded; since |u| ≤
|W (u)| (because of (1) and q ≥ 2), we get that u is locally bounded, too.
Proof of Theorem 2: We will prove Theorem 2 by reducing to the case treated
by Campanato in this way:
Step 1. We get rid of the matrix (bαβ) by using the new test function ψ = tbφ,

where tb is the transpose of the matrix b = (bαβ).
Step 2. We find a linear transformation G : R

n −→ R
n such that its Jacobian

matrix diagonalizes the matrix a = (ai j) : JGa
tJG = Id.

Step 3. We consider the new function v = u ◦ G−1; we prove that v satisfies the
hypotheses of Campanato’s Theorem 1.
Step 4. We write the estimate (10) for v.
Step 5. We come back to u by changing variables and we get the estimate (15).

The previous technique, consisting in diagonalizing the matrix and changing
variables, has been employed in [FH], [L]. Now we will exploit all the details. Since

bαβ is constant, we have

(16)
∑

α,β

bαβ Dju
βDiφ

α =
∑

β

Dju
βDi

(

∑

α

bαβ φα)

;

we set ψβ =
∑N

α=1 b
αβ φα; since we assumed det (bαβ) 6= 0, we have

(17) ψ ∈ ∗H
1,2
0 (Ω;u) ⇐⇒ φ ∈ ∗H

1,2
0 (Ω;u).
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We recall that u satisfies (7) with A
αβ
i j = ai jb

αβ : by means of (16) and (17), we
get

(18)

∫

Ω
V q−2(u(x))

n
∑

i,j=1

ai j

N
∑

α,β=1

Dju
β(x)Diψ

β(x) dx = 0

for every ψ ∈ ∗H
1,2
0 (Ω;u). Now we are looking at the matrix a = (ai j): it is real,

symmetric and positive, so we can find an orthonormal basis for R
n consisting of

eigenvectors of the matrix a: let w1, w2, . . . , wn be such a basis where each ws has
the scalar components ws

j , j = 1, . . . , n. Let λ
s be the real positive (because of

the ellipticity (12)) eigenvalue corresponding to the eigenvector ws; let us consider
the following linear transformation G : R

n −→ R
n, where every component Gs is

defined in this way:

Gs(x) =
n

∑

j=1

(λs)−1/2ws
jxj .

Let JG = (JGrs) r, s = 1, . . . , n be the Jacobian matrix of the linear transforma-
tion G; such a matrix diagonalizes the matrix a = (ai j), that is,

(19)

n
∑

i,j=1

JGriai j JGsj = δrs ∀ r, s = 1, . . . , n;

moreover, we have

L−n/2 ≤ | det JG| ≤ ν−n/2,(20)

1

L
|x− y|2 ≤ |G(x) −G(y)|2 ≤ 1

ν
|x− y|2 ∀ x, y ∈ R

n.(21)

We set v = u ◦ G−1 and we get v ∈ H1,2(G(Ω)), V q−2(v)|v|2 ∈ L1(G(Ω)),
V q−2(v)|Dv|2 ∈ L1(G(Ω)). We set z = ψ ◦ G−1, x = G−1(y) and we change the
variables in (18): we get

(22)

∫

G(Ω)
V q−2(v(y))

n
∑

r,s=1

(

n
∑

i,j=1

JGriai jJGsj
)

N
∑

β=1

Dsv
β(y) ·Drz

β(y) dy = 0

∀ z ∈ ∗H1,20 (G(Ω); v).

We agree that Du,Dψ mean derivatives with respect to x of u and ψ, while
Dv,Dz mean derivatives with respect to y of v and z. Since JG diagonalizes the
matrix a, that is, (19) holds, we have proved that v satisfies

(23)

∫

G(Ω)
V q−2(v)

n
∑

s=1

N
∑

β=1

Dsv
βDsz

β dy = 0 ∀ z ∈ ∗H1,20 (G(Ω); v).
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So we can apply Campanato’s Theorem 1:

(24)

∫

B(y0,t)
|W (v)|2 dy ≤

(

t

R

)n ∫

B(y0,R)
|W (v)|2 dy,

∀ y0 ∈ G(Ω), ∀ t, R : 0 < t ≤ R < dist (y0, ∂G(Ω)).

Let x0 belong to Ω and let r,R satisfy 0 < r ≤ √
νR ≤

√
LR < dist (x0, ∂Ω),

where ν and L are the constants in the ellipticity assumption (12); in this case
R < dist (G(x0), ∂G(Ω)) and, using (20), (21), (24), we get

∫

B(x0,r)
|W (u)|2 dx ≤ Ln/2

∫

B(G(x0),r/
√

ν)
|W (u)|2 dx ≤

≤ Ln/2
(

r/
√
ν

R

)n ∫

B(G(x0),R)
|W (v)|2 dy ≤

≤ Ln/2
(

r/
√
ν

R

)n

ν−n/2
∫

B(x0,
√

LR)
|W (u)|2 dx =

=

(

L

ν

)n (

r√
LR

)n ∫

B(x0,
√

LR)
|W (u)|2 dx.

We have proved the following inequality

(25)

∫

B(x0,
√

LR)
|W (u)|2 dx ≤

(

L

ν

)n (

r√
LR

)n ∫

B(x0,
√

LR)
|W (u)|2 dx

for x0 ∈ Ω and 0 < r ≤ √
νR ≤

√
LR < dist (x0, ∂Ω).

It is easy to check that (25) still remains true when
√
νR < r ≤

√
LR, so the

previous inequality (25) holds for 0 < r ≤
√
LR < dist (x0, ∂Ω). We set s =

√
LR

and we get our thesis (15):
∫

B(x0,r)
|W (u)|2 dx ≤

(

L

ν

)n (r

s

)n
∫

B(x0,s)
|W (u)|2 dx.
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