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N-compact frames

Greg M. Schlitt
∗

Abstract. We investigate notions of N-compactness for frames. We find that the analogues
of equivalent conditions defining N-compact spaces are no longer equivalent in the frame
context. Indeed, the closed quotients of frame ‘N-cubes’ are exactly 0-dimensional Lindelöf
frames, whereas those frames which satisfy a property based on the ultrafilter condition
for spatial N-compactness form a much larger class, and better embody what ‘N-compact
frames’ should be. This latter property is expressible without reference to maximal ideals or
filters. We construct the co-reflections for both of the classes, (the ‘N-compactifications’),
which both restrict to the spatial N-compactification.
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0. Introduction.

Recall that a frame (locale, complete Heyting algebra) is a complete lattice L
which is meet-continuous: u ∧

∨
S =

∨
u∧ s(s ∈ S), for any u ∈ L and S ⊆ L. We

write the bottom as 0 and the top as e. A frame homomorphism preserves finite
meets and arbitrary joins. The canonical example of a frame is the lattice O(X)
of open subsets of a topological space X , and indeed frames may be thought of
as topological spaces in which the lattice of open subsets is taken as the primitive
notion. There are certain advantages to this approach; frames tend to be better
behaved than topological spaces, particularly under the taking of (co)products, (see
Proposition 2.5 for example), and often there are constructive arguments available
for a frame result where there are none for the analogous spatial result, (e.g. the
Tychonoff Theorem, see [Ke], [Ve], [Jo] but see also [Sc]).
We recall the definition of an N-compact space:

Definition 0.1. A topological space X is N-compact if it is homeomorphic to
a closed subspace of NI for some index set I, where N is the discrete space of
natural numbers.

The N-compact spaces are important tools in topology; they are the 0-dimensional
analogues of real-compact spaces, and play a similar role. Moreover, N-compact
spaces play a significant role in the study of the groups (and rings) C(X,Z). Such
groups occur as (particularly simple) examples of groups of global sections of sheaves
on frames and so in order to ‘lift’ the results about C(X,Z) to the more general con-
text, one must know what an N-compact frame is. This sort of lifting can be done;
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we consider some applications to Abelian Group theory in an upcoming paper, and
mention a couple of results below.
However, unlike cases such as compactness and paracompactness, it is not im-

mediately obvious what an ‘N-compact frame’ is. There are several equivalent
statements which define N-compact spaces, and the equivalences fail in the frame
context. We list a few of these for reference, in the form of a theorem expressing
their equivalence.
Recall that ζX denotes the universal 0-dimensional compactification of a topo-

logical space X , first described in [Ba]. A clopen ultrafilter on X is an ultrafilter
in BO(X), the lattice of complemented (clopen) elements of O(X). Such an ultra-
filter F has the countable intersection property if ∩S 6= ∅ for any countable
subset S ⊆ F , and is fixed if ∩F 6= ∅. The symbol N∗ denotes the one-point com-
pactification of N and a subspace X of Y is C(−,Z)-embedded if any continuous
function from X to Z extends to Y . A cardinal κ is ω-measurable if there is an
ultrafilter in P(κ) which has the countable intersection property, but is not fixed.

Theorem 0.2. Suppose X is a 0-dimensional sober space. Then these are equiv-
alent:

1. X is N-compact.
2. If X is a dense CZ-embedded subspace of a 0-dimensional sober space Y ,
then X = Y .

3. For any point x ∈ β0X \β0[X ] there is continuous function β0X
h
−→ N∗ such

that h ↾ β0[X ] ⊆ N and h(x) =∞.
4. Every clopen ultrafilter with the countable intersection property is fixed.

5. Any ring homorphism C(X,Z)
h
−→ Z is the evaluation map at some point

x0 ∈ X ; i.e. h(f) = f(x0) for all f ∈ C(X,Z).

The N-compact spaces were introduced by Engelking and Mrówka in [En, Mr],
where they were defined as in 0.1. Subsequent work has established the conditions
equivalent to the definition. The equivalences (1)↔ (2)↔ (5) are due to Mrówka
and Engelking in [En, Mr] and [Mr] respectively, and (1) ↔ (3)↔ (4) to Herrlich
in [He] and Chew in [Ch]. �

Remark. It follows immediately from the definitions that a discrete space is N-
compact iff it is of non-ω-measurable cardinality. It is consistent (with ZFC) that
ω-measurable cardinals do not exist. For later reference we note that the cardinals
ℵ1 and 2

ℵ0 are not ω-measurable, see [Je]. We note the following for future reference:

Proposition 0.3. The N-compactification of a 0-dimensional Hausdorff space X
is denoted νX , and may be constructed in these two ways:

1. Embed the space via the evaluation map into NC(X,N) and take the closure
of its image.

2. Form the space of all clopen ultrafilters with the countable intersection prop-
erty, with the usual ultrafilter space topology.

The definition 0.1 of anN-compact space has an obvious interpretation for frames,
and these are our ‘Stone-N-compact’ frames defined in Section 2 below, following
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the route hitherto taken for realcompact frames (cf. [Ma, Ve]). While this is the
canonical translation of the definition into the language of frames, the proof of
Theorem 2.6 shows that there is a radical departure from the spatial situation;
all such ‘N-compact’ frames are Lindelöf. For similar reasons, the equivalences in
Theorem 0.2 break down for frames. We shall show in Section 2 that our definition
based on (4) of Theorem 0.2 captures the ‘right’ notion of what an N-compact
frame should be. In Section 3 we construct the co-reflections for both sorts of N-
compactness, and use these to establish some further results about the behaviour
of N-compact frames.
Where possible our arguments are constructive. We will discuss any use of (or

independence from) choice principles in our arguments.

1. Preliminaries.

The connection with topology provides the primary motivation for the study of
frames. If X is a topological space, then O(X), the lattice of open subsets of X , is

a spatial frame. With a continuous map X
φ
−→ Y we associate a frame morphism

O(Y )
O(φ)
−−−→ O(X) which takes the open set U to φ−1(U). To avoid this necessary

twisting of maps, many authors prefer to work in the category of locales, the formal
opposite of the category of frames. However in this paper we will stay entirely within
Frm, the category of frames and frame morphisms.
With every frame we can associate a topological space, called the spectrum of L,

denoted ΣL, and defined to be the space of completely prime filters; those filters
F in L such that

∨
S ∈ F iff S∩F 6= ∅ for any S ⊆ F . The sets {F ∈ ΣL | u ∈ F} for

u ∈ L are the open subsets of ΣL. The associations O(−) and Σ(−) are functorial,

and together form an adjoint-on-the-right pair Top
Σ
⇄
O

Frm.

The Boolean part BL of a frame L is the sub-lattice consisting of all the
complemented elements. The frame L is 0-dimensional if it is generated as a frame
by its Boolean part.

A frame L is compact (Lindelöf) if
∨
L S = e for a subset S ⊆ L implies that

S has a finite (countable) subset with the same join.

If D is a distributive lattice, ID is the frame of all ideals of D. The universal
0-dimensional compactification of a frame L is the frame of all ideals on the Boolean

part, denoted IBL, with the adjunction given by the frame morphism IBL
j
−→ L

which takes an ideal to its join in L (see [Ba1]). The compactification functor takes

a frame morphism L
φ
−→M to IBφ, which itself takes an ideal to the ideal generated

by its image under φ.

We recall that a nucleus r on a frame L is a closure operator which preserves
finite meets. The set of closed elements (u = r(u)) is then a frame, the quotient
frame L mod r, written [L]r.

A closed nucleus is one of the form r(u) = u ∨ v for some v ∈ L. A nucleus
is dense if r(0) = 0 and codense if r(u) = e implies u = e. Similarly, a frame
homomorphism φ is dense if φ(u) = 0 implies u = 0 and codense if φ(u) = e implies
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u = e. The following results are easy to establish.

Lemma 1.1. Suppose L
φ
−→M is a frame homomorphism. Then

(i) The map φ is 1-1 on the Boolean part of L if it is dense.
(ii) In the category of regular frames, φ is monic if it is dense.
(iii) If L is regular, φ is 1-1 iff it is codense.

Further background and more detail can be found in [Jo1].

2. N-compact frames.

The definition of an N-compact topological space has a natural translation into
the language of frames. We recall that the I-indexed copower of a frame L is

denoted L(I) and make the following definitions. (See [Jo1] for a description of
frame coproducts.)

Definition 2.1. A frame L is Stone-N-compact (‘S-N-compact’) if it is a closed
quotient of the frame O(N)(I) for some index set I.

Definition 2.2. A frame L is a CZ-quotient of a frameM , via the mapM
φ
−→ L,

if any O(Z)
ψ
−→ L factors through φ as shown. (Here Z is the discrete space of inte-

gers.)

M
φ

// L

O(Z)

bb
ψ

==zzzzzzzz

(Of course, this is the analogous property to one space being C(−,Z)-embedded
in another.)

Definition 2.3. If L is a frame, and I ∈ IBL, we say that I is σ-proper if∨
L S 6= eL for any countable S ⊆ I, and that I is completely proper if

∨
L I 6= eL.

We quote the following result from [Sc].

Proposition 2.4. The 0-dimensional Lindelöf coreflection of a frame L is the frame

[IBL]sL
, where IBL

sL−→ IBL is the nucleus defined by

sLI = {
∨

L

S | S ⊆ I countable },

with adjunction [IBL]sL

j
−→ L the map taking an ideal to its join in L.

Since by Proposition 2.4 the category of 0-dimensional Lindelöf frames is core-
flective in the category of frames, we obtain the following result, first proved in
[Do, St].
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Proposition 2.5. The frame coproduct of a family of 0-dimensional Lindelöf fra-
mes is Lindelöf.

Remark. We recall that a product of (0-dimensional) Lindelöf spaces need not be
Lindelöf; the Sorgenfrei line is a counterexample, see [St, Se].
The following result is similar in nature to Theorem 2.1 of [Ma, Ve].

Theorem 2.6. For a 0-dimensional frame L, the following are equivalent:

1. If L is a dense CZ-quotient of a 0-dimensional frame M , then L = M
(i.e. the map is an isomorphism).

2. L is S-N-compact.
3. L is Lindelöf.
4. If I ∈ IBL is σ-proper, then it is completely proper.

Proof: (1→ 2) Denote by ZLE the set of frame homomorphisms from O(Z) to L.

Then the canonical frame ‘evaluation map’ O(Z)(ZLE) F
−→ L is surjective since L is

0-dimensional. It follows that L is a CZ-quotient of O(Z)
(ZLE) and therefore of its

closure, with which, as a dense quotient, it must coincide. Since O(Z) ∼= O(N), L
is S-N-compact.
(2 → 3) follows from Proposition 2.5 above, and the obvious fact that a closed

quotient of a Lindelöf frame is again Lindelöf.
(3→ 4) Trivial.
(4 → 3) If e =

∨
L uα, consider I, the ideal in BL generated by {↓(uα)}α. This

is not completely proper and therefore not σ-proper. Thus there are wn ∈ I so that∨
L wn = e. Each wn is dominated by a finite join uα1 ∨ · · · ∨ uαN

, so that some
countable subset of the uα’s covers e.
(3 → 1) Suppose that L is a dense CZ-quotient of a 0-dimensional frame M ,

via M
φ
−→ L. Since M is 0-dimensional and hence regular, it suffices to show by

Lemma 1.1 that φ is co-dense.
Suppose that φ(u) = e. Since u =

∨
α vα for some vα ∈ BM, e = φ(u) =∨

α φ(vα). By hypothesis, there is a countable subfamily {vαn
}n∈Z so that

∨
Z
φ(vαn

)
= e. We can suppose that this is an increasing list, and by subtracting off com-
mon intersections, produce countably many wn ∈ BM, (n ∈ Z), which are pairwise
disjoint and have

∨
Z
wn =

∨
Z
vαn
≤ u.

Now let O(Z)
ψ
−→ L be the map determined by requiring ψ({n}) = φ(wn). By

hypothesis there is a map O(Z)
ψ
−→M so that φψ = ψ. Since φψ({n}) = ψ({n}) =

φ(wn), we must have ψ(n) = wn, since the dense map φ is 1-1 on complemented
elements (Lemma 1.1). Then e =

∨
Z
ψ(n) =

∨
Z
wn ≤ u, so that u = e. �

Remark. Note that our proof of the implication 4→ 3 used the Axiom of Count-
able Choice in choosing the covers of the wn’s, and in asserting that a countable
union of finite sets is countable. We also made an implicit use of choice principles
in the proof of the 2→ 3, in that we used Proposition 2.5. In fact it follows quickly
form 3 → 2 (which holds in ZF), and Theorem 3.1 of [Sc] that one cannot prove
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that 2→ 3 holds in ZF, and indeed that it is equivalent in consistency strength to
the Axiom of Countable Choice.

Example. The frame O(Q)⊕O(Q) is a nonspatial frame ([Jo1]) which is Lindelöf
(as it is countably generated) and is therefore S-N-compact.

We have seen that although it is a natural notion, S-N-compactness is some-
what restrictive. For when one admits the Axiom of Countable Choice (‘CC’), all
S-N-compact frames are Lindelöf. Thus one can have an N-compact space X (for
instance ω1 with the discrete topology), such that O(X) is not S-N-compact, and
the notion hence fails to be a ‘conservative’ one. That is to say, the spatial notion
is not preserved under the passage to frames, and the concept is not properly lifted
(or co-lifted!) from the class of topological spaces to the larger class of frames. As
we have mentioned, the statement that S-N-compact frames are Lindelöf depends
upon CC, so that in ZF it is consistent that there are more S-N-compact frames
than Lindelöf frames. But one could show nothing more in ZF about S-N-compact
frames than about Lindelöf frames.
Of course this all follows from the preservation of the Lindelöf property under

frame coproducts, a desirable thing to have. But it demands a change in what one
views as the fundamental notion of N-compactness. There are other alternatives
available; towards these we make the following definitions.

Definition 2.7. Let L be a frame. An ideal I ∈ IBL is super-σ-proper if any
proper ideal I ′ ⊇ I is σ-proper.
We remark that the improper ideal is super-σ-proper, since the condition is vacu-
ously fulfilled.

Definition 2.8. A 0-dimensional frame L is Herrlich-N-compact
(‘H-N-compact’) if any proper I ∈ IBL which is super-σ-proper is completely
proper.

Remark. The definition looks less mysterious if we for the moment assume the
Boolean Ultrafilter Theorem. Then a frame L is H-N-compact iff every maximal
ideal in BL which is σ-proper is completely proper. This then resembles the state-
ment (4) of Theorem 0.2, and indeed we have

Lemma 2.9. For a space X , O(X) is H-N-compact iff X is N-compact.

Proof: (→) Suppose that F is a ultrafilter with the countable intersection property
in BO(X). Then F∗ = {U∗ :∈ F} is a maximal ideal in BO(X) which is σ-proper.
So F∗ is completely proper, implying that F is fixed.
(←) Suppose that I ∈ JBO(X) has the property of the definition. If I ′ ⊇ I

is some maximal ideal extending I, it is σ-proper by hypothesis, and therefore
completely proper, by considerations like those in (→). This implies that I is
completely proper. �

Remark. Lemma 2.9 tells us that this notion of an N-compact frame is a conserva-
tive one. Note that we need the Boolean Ultrafilter Theorem for the← implication.
This is not too surprising however, since the definition of H-N-compact frames is
based on condition (4) of Theorem 0.2 which explicitly mentions ultrafilters.
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Remark. N-compact spaces are defined as in 0.1, but usually the property (4) of
Theorem 2.6 is the easiest to understand and work with. Considering the complexity
of the frame coproduct construction, it seems that the same is true for frames as
well.

Remark. Note the similarity between Definition 2.8 and condition (4) of Theo-
rem 2.6, and thus between the two notions of an N-compact frame.

One can use the Lemma and the Boolean Ultrafilter Theorem to provide a for-
mulation of spatial N-compactness which is a cover condition. We have not seen
this mentioned in the literature, but it may not be new.

Corollary 2.10. A 0-dimensional space X is N-compact iff for every cover S of X
by clopen sets which has no finite subcovers, there is a larger (clopen) cover T ⊇ S
which also contains no finite subcovers, but does contain a countable subcover.

Remark. That any Lindelöf frame is H-N-compact is easy to see. Then by Theo-
rem 2.6 any S-N-compact frame is H-N-compact. As a corollary of Theorem 3.9 we
will obtain this result without any set theoretic assumptions.

Non-spatial examples of S-N-compact and H-N-compact frames are easy to find:

Lemma 2.11. If B is a complete Boolean algebra, then

(i) B is S-N-compact iff any antichain in B is countable.
(ii) B is H-N-compact if any antichain in B is of non-measurable cardinality.

Proof (i): If S ⊆ B is an antichain which is uncountable, then by adjoining
another element of B if necessary we have a cover with no countable subcover, so
that B is not Lindelöf and therefore not S-N-compact. This is necessity. Towards
sufficiency, we suppose that (uα)α∈κ is a cover of eB , for some cardinal κ. Define
vβ =

∨
α≤β uα, and then set wβ = vβ+1 ∧ v

∗
β for β > 0 and w0 = v0. Then the

wβ are pairwise disjoint, so that there is a γ ∈ κ with wα = 0 if α > γ, for γ some
countable ordinal. This implies that vβ = vα if β > α, so that there is a countable
subcover of the cover (uα)α∈κ. By Theorem 2.6 (3→ 2), B is S-N-compact.

Proof (ii): Suppose B is not H-N-compact. Then there is a maximal ideal I in B
so that I is σ-proper but not completely proper. Using Zorn’s lemma, we can find
a maximal antichain S in I, and we clearly must have

∨
S = e. Let F ⊆ P(S) be

defined by requiring X ∈ F iff
∨
X /∈ I. Then F is a non-principal ultrafilter on S

with the countable intersection property, so that |S| must be measurable. �

We know of no counterexample to necessity for (ii), but are unable to show that
it holds.

3. Frame N-compactifications.

We construct the S-N-compactification and H-N-compactification. Both of these
restrict to the classical N-compactification on spatial frames.

3.1. The S-N-compactification.
Since we showed in Theorem 2.6 that the S-N-compact frames are exactly the

0-dimensional Lindelöf frames, the coreflection from Frm to the subcategory of
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0-dimensional Lindelöf frames mentioned in Proposition 2.4 is the S-N-compactifi-
cation. However, in [Sc] we showed that such a coreflection cannot be shown to exist
in ZF; in fact asserting its existence is near to asserting the Axiom of Countable
Choice. We can however easily construct the S-N-compactification in ZF; we proceed
just as we do in the spatial case; (1) of Proposition 0.3.

Given a 0-dimensional frame L, we form the evaluation morphismO(Z)(ZLE) F
−→ L,

which is a quotient mapping as L is 0-dimensional, and then the closure of this map-
ping, g (see [Jo1, p. 51]). We obtain the diagram =xydash10
=xyatip10 =xybtip10 =xybsql10 =xycirc10
cmat10 =xycmbt10

O(Z)(ZLE)

g

%%JJJJJJJJJ

F // L

clL

h

>>
~

~
~

~
~

~~
~

with h a dense map.

Proposition 3.1. For a 0-dimensional frame L, the frame νSL = cl (L) defined
above is the Stone-N-compactification, with coreflection map h.

The proof of this fact proceeds as for the spatial case, and requires no choice
principles. �

Theorem 3.2. Let X be a 0-dimensional space. Then Σ(νSO(X)) ∼= νX .

Proof: The spectrum functor transfers coproducts to products. �

Note that as a consequence of Proposition 3.1 the subcategory of S-N-compact
frames is closed under frame coproducts and closed quotients, as we would expect.

3.2. The H-N-compactification.
We construct the coreflection from the category of frames to the subcategory

of H-N-compact frames. Since a compact frame is H-N-compact, there should be
a frame map from IBL to the universal H-N-compactification of L (if this exists).
We use this observation to construct the H-N-compactification as a quotient of IBL.

For any frame L, define IBL
h
−→ IBL by

hI = {u ∈ BL∩ ↓(
∨

L

I) | I ⊆ J, J super-σ-proper =⇒ u ∈ J}.

Lemma 3.3. The map h is a nucleus.

Proof: (i) Clearly I ⊆ hI.
(ii) We have only to show that hI ∩ hK ⊆ h(I ∩K), since h is order preserving.

Towards this, fix u ∈ hI ∩ hK. Then u ≤
∨
L ∧

∨
LK =

∨
L(I ∩K), so u satisfies

the first criterion for membership in h(I ∩K).
Suppose that J ⊇ I ∩K is a super-σ-proper ideal. We must show that u ∈ J .

Note that J ∨I is an ideal containing J and is therefore itself super-σ-proper. Since



N-compact frames 181

J ∨ I contains I, u ∈ J ∨ I, as u ∈ h(I). We can similarly show that u ∈ J ∨K, so
that u ∈ J = (J ∨K) ∧ (J ∨ I), as desired.
(iii) Towards showing that h2I ⊆ hI, note first that if u ∈ h2I, then u ≤

∨
L hI ≤∨

L I.

Now suppose u ∈ h2I, and I ⊆ J , J super-σ-proper. Then hI ⊆ J , by definition
of hI. As u ∈ h2I, u ∈ J , and altogether we have u ∈ hI. �

We will eventually define the H-N-compactification of L to be [IBL]h. The

coreflection map [IBL]h
jL−→ L will be the join map, defined by jLI =

∨
L I, a frame

homomorphism by an easy argument. When we must be careful to distinguish
among nuclei, we will subscript them appropriately.

Lemma 3.4. If L is H-N-compact then jL is an isomorphism.

Proof: If u ∈ L then ↓(u) ∩ BL is hL-closed, so that jL is onto. We thus need
only to show that jL is co-dense, by Lemma 1.1.
Suppose that I ∈ [IBL]h and jLI =

∨
L I = e, so that I is not completely proper.

If I were proper, since it is h-closed, there would be a proper super-σ-proper ideal
J ⊇ I. But since L is H-N-compact such a J would be completely proper, which is
impossible as the sub-ideal I is not. Thus I is not proper, so that jL is co-dense.

�

Lemma 3.5. The frame [IBL]h is H-N-compact.

Proof: We first show that

B [IBL]h ∼= BL via,

J
α
−→

∨

L

J

↓(u) ∩BL
β
←− u

Note that the range of α is indeed as claimed, since if J ∈ B [IBL]h with com-
plement J∗, then J ∩ J∗ = 0BL, so that

αJ ∧ αJ∗ =
∨

L

J ∧
∨

L

J∗ =
∨

L

J ∩ J∗ = 0L,

and h(J ∨ J∗) = EBL, so that

eL =
∨

L

(J ∨ J∗) =
∨

L

J ∨
∨

L

J∗ = αJ ∨ αJ∗.

One can show in similar fashion that
(i) α, β are both Boolean algebra homomorphisms, and
(ii) αβ = idL.
It is also easy to see that βα = idB[IBL]h . For suppose J ∈ B[IBL]h. Then∨
L J is complemented (see the paragraph above), and we must show that

∨
L J ∈ J .

Towards this, assume that J ⊆ K and K is super-σ-proper. Then K ∨ J∗ = EIBL,
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so that v ∨
∨
L J

∗ = e for some v ∈ K. Since K is an ideal, it follows that
∨
L J is

in K, since
∨
L J

∗ = (
∨
L J)

∗.

Now towards our goal of showing that [IBL]h is H-N-compact, suppose that
I ∈ IB[IBL]h is a super-σ-proper ideal. We must show that I is completely proper.
First note that the image of I under α is an ideal in BL, α[I].

Claim 3.6. α[I] is h-closed.

Proof: It is enough to show that α[I] is super-σ-proper.
Towards this, suppose that α[I] ⊆ K and that K is proper. We must show that

K is σ-proper. First note that I ⊆ β[K], and since β[K] is proper, it is σ-proper.
Let {un | n ∈ ω} be a countable subset of K. We know that

∨

[IBL]h

β(un) 6= E[IBL]h (Inequality 3.1)

since β[K] is σ-proper. Now if it were the case that
∨
L un = eL, we could reason

as follows.
∨

[IBL]h

β(un) = (
∨

IBL

β(un))

= {v ∈ BL∩ ↓
∨

L

∨

IBL

β(un) |
∨

IBL

β(un) ⊆ H, H super-σ-proper⇒ v ∈ H}

= {v ∈ BL |
∨

IBL

β(un) ⊆ H, H super-σ-proper⇒ v ∈ H}

so that because of Inequality 3.1, there must be some proper super-σ-proper ideal H
which contains

∨
IBL β(un). But such an H could not be σ-proper, as

∨
L un = eL.

This is a contradiction, so that we must have
∨
L un 6= eL. Hence K is σ-proper,

so that α[I] is super-σ-proper, and thus h-closed.
We must finish by observing that I ⊆ B [IBL]h∩ ↓α[I] which implies that I

is completely proper, since α[I] 6= E[IBL]h . We have shown that [IBL]h is H-N-
compact.

�

Towards showing that the map [IBL]h
jL−→ L is universal as a map from an

H-N-compact frame to L, we prove the following lemma. Recall the definition of
the functor IB from Section 1.

Lemma 3.7. If M
φ
−→ L is a frame homomorphism, then

[IBM ]hM

φ
−→ [IBL]hL

defined by,

I 7−→ hL(IBφ(I))

is a frame homomorphism.

Proof: It is clear that φ preserves finite meets and is thus order-preserving. To
see that it transfers arbitrary joins, it is enough to see that, given a collection of
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elements {Iα}α of [IBM ]hM
, we have

φ (
∨

[IBM ]h

Iα) ⊆
∨

[IBL]h

φIα .

(We will suppress mention of an index set for the indices α to avoid complicating
the notation.) We begin by noting that

∨

[IBL]h

φIα =
∨

[IBL]h

hLIBφ(Iα) =

= hL(
∨

IBL

hLIBφ(Iα)) = hL(
∨

IBL

IBφ(Iα))

so it is enough to show that

hL (IBφ (
∨

[IBM ]h

Iα)) ⊆ hL (
∨

IBL

IBφ (Iα)) (Inequality 3.2)

Fix v in the left-hand side of the Inequality 3.2. From the definition of h, we see
that we have two criteria to verify in order to see that v is in the right-hand side.
Towards the first, we have

v ∈ hL(IBφ(
∨

[IBM ]h

Iα)) =

= hL(IBφ(hM
∨

IBM

Iα)), so that,

v ≤
∨

L

IBφ(hM
∨

IBM

Iα) =
∨

L

φ[hM
∨

IBM

Iα] =

= φ(
∨

M

hM (
∨

IBM

Iα)) = φ(
∨

M

∨

IBM

Iα) since hM (−) ⊆↓
∨

M

(−) =

=
∨

L

φ[
∨

IBM

Iα] =
∨

L

IBφ(
∨

IBM

Iα) =
∨

L

∨

IBL

IBφ(Iα),

so v satisfies the first criterion for membership in the right-hand side of Inequal-
ity 3.2. To see that it satisfies the second, suppose that

∨
IBL IBφ(Iα) ⊆ H , for H

some super-σ-proper element of IBL. We must show that v ∈ H . If we can show
that φ [hM (

∨
IBM Iα)] ⊆ H , then IBφ (hM (

∨
IBM Iα)) ⊆ H , so that v ∈ H , by

hypothesis on v.

Claim 3.8. φ [hM (
∨

IBM Iα)] ⊆ H .

Proof: If H is improper, we are done. Otherwise, fix u ∈ hM (
∨

IBM Iα) and let
K =

∨
IBM{L | IBφ(L) ⊆ H}. Then K is proper since H is. We assert that if

K ′ ∈ IBM is a proper ideal which contains K, then IBφ(K ′) ∨H is proper. For
if not, there are elements w ∈ K ′ and p ∈ H so that φw ∨ p = eL. Then it follows
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that φ(w∗) ≤ p and hence that φ(w∗) is in H (where w∗ denotes the complement
of w.) Then ↓(w∗) ⊆ K ⊆ K ′, so that both w and w∗ are in K ′, so that e ∈ K ′,
contradicting the propriety of K ′.
Thus IBφ(K ′) ∨ H is proper for any such K ′, and since it contains H it is

σ-proper. But this implies that K ′ is also σ-proper and hence that K is super-σ-
proper. Now the definition ofK and the hypothesis onH imply that

∨
IBM Iα ⊆ K,

since IBφ(
∨

IBM Iα) =
∨

IBL IBφ(Iα), and so by hypothesis on u, we have u ∈ K.
Thus φu ∈ φ[K] ⊆ H , as desired. (Claim) � (Lemma) �

We can now prove the

Theorem 3.9. For an arbitrary frame L the map [IBL]h
jL−→ L is universal as

a map from H-N-compact frames to L.

Proof: Suppose that we are given an H-N-compact frame M and a frame homo-

morphismM
φ
−→ L. We can form the diagram =xydash10

=xyatip10 =xybtip10 =xybsql10 =xycirc10
cmat10 =xycmbt10

[IBL]hL

jL // L

[IBM ]hM

φ

OO

jM // M

φ′
dd

φ

OO

and by considering the form of φ, see without trouble that the outer square com-
mutes. Since jM is an isomorphism, we can find a map φ

′ making the upper triangle
commute. This map is unique since jL is dense and therefore monic. �

Definition 3.10. The full subcategory of H-N-compact frames will be denoted
H-N-Frm. The coreflection from Frm to H-N-Frm supplied by Theorem 3.9 we
denote by νH .

Corollary 3.11. The subcategory H-N-Frm is closed under frame coproducts and
closed quotients.

Proof: Any coreflective subcategory is closed under all colimits, and hence by
Theorem 3.9 H-N-Frm is closed under frame coproducts. Towards the second as-
sertion, we first show that it holds for ‘clopen’-quotients; those of the form ↑(u) for
some complemented u.
Let L be an H-N-compact frame and u ∈ BL. If I is a proper super-σ-proper

ideal in B(↑(u)), then I ′ = {v ∈ BL | v ∨ u ∈ I} is a proper super-σ-proper ideal
in BL. By hypothesis I ′ is completely proper, and as it contains I, I is also.
Now if L is H-N-compact and u ∈ L is any element, we know that u =

∨
vα

for vα some elements in BL. It follows that the frame ↑(u) is the colimit in Frm
of the diagram with vertices the frames ↑(vα) and maps the canonical ↑(vα) →
↑ (vβ) obtained when vα ≤ vβ . Since H-N-Frm is closed under colimits, ↑ (u) is
H-N-compact. �
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Corollary 3.12. Any S-N-compact frame is H-N-compact.

Proof: By Corollary 3.11 we need only show that O(N) is H-N-compact. This
follows easily (and in ZF) from the fact that any cover of O(N) has a countable
refinement. �

Theorem 3.13. The H-N-compactification is conservative, so that νHO(X) ∼=
O(νX) for any 0-dimensional Hausdorff space X .

Proof: If we can show that νHO(X) is spatial, then the co-universal properties

of νHO(X)
j
−→ O(X) and the natural map O(νX) → O(X) together imply the

existence of the isomorphism. Since νHO(X) is regular, we can see that it suffices
to show that any proper element I is dominated by a maximal element. Now one
of the following holds:
(i)

∨
O(X) I = eL. In this case, since I is hO(X)-closed, there must be a proper

super-σ-proper J ∈ IBO(X) so that I ⊆ J . Then J can be expanded to a maximal
element of IBO(X), which is then also super-σ-proper, and hence hO(X)-closed.

(ii)
∨

O(X) I 6= eL. In this case there is a maximal element P of O(X) such that∨
O(X) I ≤ P . Then ↓(P ) ∩BO(X) is hO(X)-closed and maximal in IBO(X), and

is hence a maximal element of νHO(X) containing I. �

Now it is clear that the S-N-compactification of a frame will in general differ from
the H-N-compactification, since the first of these will always be a Lindelöf frame.
However we can show that after a spatial reflection, the two compactifications co-
incide;

Lemma 3.14. For any frame L, ΣνSL = ΣνHL.

Proof: We know that νSL = [IBL]sL
and νHL = [IBL]hL

, where sL is the
nucleus of Proposition 2.4. It is not difficult to show that the maximal elements of
[IBL]sL

and [IBL]hL
are maximal in IBL, and it is easy to see that the sL-closed

maximal ideals are exactly the hL-closed maximal ideals, so that the spectrums
coincide. The topologies coincide since they both have a base consisting of sets of
the form {P maximal | u /∈ P}, for u ∈ BL. �

Corollary 3.15. For any frame L, ΣνSL (= ΣνHL) is N-compact.

Proof: We know that νSL is a closed quotient of O(N)
(I) for some index set I. It

follows that ΣνSL is a closed subspace of ΣO(N)(I) = NI , and is hence N-compact.
�

4. H-N-compact frames and sheaves.

We mention a couple of results which will be proved in an upcoming paper.
As we noted in the introduction, N-compact spaces play an important role in the

study of the groups and rings C(X,Z). (Se especially [Ed, Oh] and [Mr2], and as
an example, consider (5) of Theorem 0.2.) In [Mr2], Mrówka proved the following
result. A subspace K ⊆ X is said to be a support for a group homomorphism

C(X,Z)
h
−→ Z if f | K = 0 implies that h(f) = 0.
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Proposition 4.1. A space X is N-compact iff any group homomorphism from
C(X,Z) to Z has compact support.

In a forthcoming paper we extend Mrówka’s result up to the class of groups of
global sections of sheaves on frames, with H-N-compact frames playing the role of
N-compact spaces. We can then use that theorem to prove the following proposition,
a frame theoretic analogue of statement 5 of Theorem 0.2. Here the group ZLE is
the group of all frame homomorphisms from O(Z) to the frame L, the analogue of
the group of continuous functions C(X,Z).

Definition 4.2. For a frame L, a ring homomorphism ZLE
h
−→ Z is evaluation

at a prime element p of L if h(ξ) = n iff ξ({n}) � p.

Remark. One can easily check that for an arbitrary prime p, a map defined in
this way is indeed a ring homomorphism. For a spatial frame L = O(X) these
correspond to the homomorphisms C(X,Z)→ Z which are the evaluation maps for
various points of X .

Theorem 4.3. A 0-dimensional frame L is H-N-compact iff any ring homomor-
phism ZLE −→ Z is the evaluation map for some prime element of L.

Thus we see that the frame analogues of the statements in Theorem 0.2 fall into
two equivalence classes; 1 ↔ 2 (Theorem 2.6) and 4 ↔ 5 (Theorem 4.3). The
statement 3 does not seem to have a natural frame counterpart.
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