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Non-perfect rings and a theorem of Eklof and Shelah

Jan Trlifaj

Abstract. We prove a stronger form, A+, of a consistency result, A, due to Eklof and
Shelah. A+ concerns extension properties of modules over non-left perfect rings. We also
show (in ZFC) that A does not hold for left perfect rings.
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Recently, a significant extension of the theory of Whitehead modules from do-
mains to arbitrary non-left perfect rings has been performed by Paul C. Eklof and
Sharon Shelah ([3]). In [3, Theorem 2.1 and Corollary 2.2], they proved that the
assertion

A: “for any non-left perfect ring R and any uncountable cardinal κ such that
cf (κ) = ℵ0 and κ ≥ card (R) there is a non-projective κ+-free module M such that
card (M) = κ+ and ExtR (M, N) = 0 whenever N is a module with card (N) < κ ”

is consistent with ZFC + GCH. Their proof consists of two parts: the set theoretic
one showing consistency of the existence of certain ω-trees and the algebraic one
inferring A from the existence of the trees.
Independently, using consistency of a uniformization principle due to Shelah, we

proved a weaker form of A is consistent in the particular case of von Neumann
regular rings ([5, Lemma 2.4]). In the present paper, we show our approach can be
modified to obtain a simple proof of the consistency of A. Moreover, we show that
a stronger form of A, denoted by A+, is consistent, namely the expression “κ+-free”
can be replaced by “strongly κ+-free” (see Corollary 1.6 below). The point here is
that we use the definition of Ext via Hom-groups rather than via exact sequences.
We also work directly with the defining relations of modules rather than with the
tree-module structures.
The result of Eklof and Shelah is the best possible: we show in ZFC that for any

left perfect ring R there is a proper class C consisting of pairwise non-isomorphic
modules such that ExtR (M, N) 6= 0 for allN ∈ C and all non-projective modulesM
(Theorem 1.10).

Let M be a module. Then gen (M) denotes the minimum of cardinalities of
R-generating subsets of M . Further, M is said to be κ-free provided for each
submoduleN ⊆ M with gen (N) < κ there is a free module P ⊆ M such thatN ⊆ P
and gen (P ) < κ. Moreover,M is strongly κ-free provided foe each submodule N ⊆
M with gen (N) < κ there is a free module P ⊆ M such that N ⊆ P, gen (P ) < κ
and M/P is κ-free. A sequence (Mα | α < κ) is said to be a κ-filtration of M , if for
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all α < κ, Mα is a submodule of Mα+1 such that gen (Mα) < κ, Mα =
⋃

β<α Mβ

for all limit α < κ, and M =
⋃

α<κ Mα.
Let R be a ring. Then R is said to be completely reducible provided R is a ring

direct sum of a finite number of full matrix rings over skew fields.
Homomorphisms of (left R-)modules are written as acting on the right. Further

concepts and notation can be found e.g. in [1] and [2].

Definition 1.1. Let R be a non-left perfect ring. By [1, Theorem 28.4], there exist
elements ai ∈ R, i < ℵ0, such that (a0 . . . aiR | i < ℵ0) is a strictly decreasing chain
of principal right ideals of R. Let κ be an infinite cardinal and E be a subset of κ+

such that E ⊆ {α < κ+ | cf (α) = ℵ0}. Let (nν | ν ∈ E) be a ladder system, i.e.
for each ν ∈ E, let (nν(i) | i < ℵ0) be a strictly increasing sequence of non-limit
ordinals less that ν such that supi<ℵ0

nν(i) = ν.
Let (Rα | α < κ) be a system of free modules defined as follows: Rα = R

provided α ∈ κ+ \ E, and Rα = R(ℵ0) provided α ∈ E. For α ∈ κ+ \ E, denote by
1α the canonical generator of Rα, and for α ∈ E let {1α,i | i < ℵ0} be the canonical
basis of Rα. Note that by [1, Lemmas 28.1 and 28.2], for every ν ∈ E, the module

Sν =
∑

i<ℵ0

R(−1ν,i + ai · 1ν,i+1)

is a free submodule of Rν such that Rν/Sν is not projective. Put P = ⊕
∑

α<κ+ Rα

andQ =
∑

α∈E Qα, whereQα =
∑

i<ℵ0
Rgαi and gαi = (1nα(i)−1α,i+ai·1α,i+1) ∈

P , for all α ∈ E and i < ℵ0. Finally, put M = P/Q ∈ R-mod .

Lemma 1.2. (i) gen (M) = κ+.
(ii) If E is a stationary subset of κ+, then M is not projective.

(iii) If E is non-reflecting (i.e. E ∩ σ is not stationary in σ for all limit ordinals
σ < κ+), then M is strongly κ+-free.

Proof: (i) This follows easily from the fact that {1α+Q | α ∈ κ+ \E}∪{1α,i+Q |
α ∈ E, i < ℵ0} is an R-generating subset of M .
(ii) Put M0 = 0 and, for each 0 < α < κ+, Mα = (⊕

∑
β<α Rβ +Q)/Q. Then

(Mα | α < κ+) is a κ+-filtration of M .
AssumeM is projective. By [1, Corollary 26.2] there exist modules (Pα | α < κ+)

such that gen (Pα) ≤ ℵ0 for all α < κ+ and M = ⊕
∑

α<κ+ Pα. Put N0 = 0 and,

for each 0 < α < κ+, Nα = ⊕
∑

β<α Pβ . Clearly, (Nα | α < κ+) is a κ+-

filtration of M . Since the set C = {α < κ+ | Mα = Nα} is closed and cofinal
in κ+, there exists ν ∈ E ∩ C. Of course, D = C ∩ {α < κ+ | ν < α} is also
closed and cofinal in κ+, whence there is some µ ∈ E ∩ D. Then X = Nµ/Nν

is a projective module. On the other hand, put Y = ⊕
∑

ν<α<µ Rα. Then X =

Mµ/Mν = Mν+1/Mν + (Y +Mν)/Mν . By 1.1, (Y +Mν) ∩ Mν+1 ⊆ Mν , whence
Mν+1/Mν ≃ Rν/Sν is a non-projective direct summand of X , a contradiction.
(iii) First, we prove by induction on ν < κ+ that for any ∅ 6= A ⊆ E such

that sup (A) = ν there is a sequence (pa | a ∈ A) such that pa < ℵ0 for all
a ∈ A, and {{na(i) | pa < i < ℵ0} | a ∈ A} is a set of disjoint subsets of ν
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(cp. with [3, p. 15]). For ν = min (E), put pa = 0. If ν > min (E), there is
a closed and cofinal subset C ⊆ ν such that C ∩ E ∩ ν = ∅ and 0 ∈ C. Let f
be a strictly increasing function f : card (ν) → C. For each α < card (ν), put
Bα = {β | f(α) < β < f(α + 1)}. If A ∩ Bα 6= ∅, then by induction there are
(qa | a ∈ A ∩ Bα) such that {{na(i) | qa < i < ℵ0} | a ∈ A ∩ Bα} is a set of
disjoint subsets of f(α+1). For a ∈ A∩Bα, put sa = min {i < ℵ0 | f(α) < na(i)}.
Since A is a disjoint union of the sets A ∩ Bα, α < card (ν), it suffices to put
pa = max (qa, sa), for all a ∈ A ∩ Bα and α < card (ν). To complete the proof, we
show that for all α < κ+, the module Mα = (⊕

∑
β<α Rβ +Q)/Q is free, and for

all α < β < κ+, the module Mβ/Mα+1 is free. Put A = E ∩ α. By 1.1 and the
construction of (pa | a ∈ A), we see that {1a,i+Q | a ∈ A& pa < i < ℵ0}∪{1b+Q |
b < α& b /∈ A& non-(∃ a ∈ A∃ i < ℵ0 : pa < i& b = na(i))} is a free R-basis of
the module Mα. Finally, put A = E ∩ β. For each a ∈ A such that a > α, let
ra < ℵ0 be such that pa ≤ ra and α < na(i) for all ra < i < ℵ0. Then by 1.1,
{1a,i +Mα+1 | a ∈ A& a > α& ra < i < ℵ0} ∪ {1b +Mα+1 | α < b < β& b /∈
A& non-(∃ a ∈ A∃ i < ℵ0 : a > α& ra < i& b = na(i))} is a free R-basis of the
module Mβ/Mα+1. �

Lemma 1.3. Let κ be a cardinal such that cf (κ) = ℵ0. Consider the following
assertion

UPκ: “there exist a non-reflecting stationary subset E of κ+ satisfying E ⊆ {α <
κ+ | cf (α) = ℵ0} and a ladder system (nν | ν ∈ E) such that for each cardinal
λ < κ and each sequence (hν | ν ∈ E) of mappings from ℵ0 to λ there is a mapping
f : κ+ → λ such that ∀ ν ∈ E ∃ j < ℵ0 ∀ j < i < ℵ0 : f(nν(i)) = hν(i)”.
Then the assertion “UPκ holds for every uncountable cardinal κ such that
cf (κ) = ℵ0 ” is consistent with ZFC + GCH.

Proof: By [4, §2] or [3, §2]. �

Lemma 1.4. Let κ be a cardinal such that cf (κ) = ℵ0 and card (R) ≤ κ. Assume
UPκ holds. LetM = P/Q be the module corresponding to the E and (nν(i) | ν ∈ E)
from UPκ by 1.1. Then ExtR (M, N) = 0 for all N ∈ R-mod such that card (N)
< κ.

Proof: Since P is a free module, we have ExtR (M, N) = HomR (Q, N)/τ ◦
HomR (P, N), τ being the inclusion of Q into P . Hence, we are to prove that
every x ∈ HomR (Q, N) is a restriction of some y ∈ HomR (P, N), i.e. x = τy. Take
x ∈ HomR (Q, N). Let b : N → λ be a bijection of N onto λ = card (N). Using the
notation of 1.1, for each ν ∈ E, we define hν : ℵ0 → λ by hν(i) = b(gνix) for all
i < ℵ0. By UPκ, there exists f : κ+ → λ such that ∀ ν ∈ E∃ jν < ℵ0 ∀ jν < i <
ℵ0 : hν(i) = f(nν(i)). Define y ∈ HomR (P, N) as follows: Take α < κ+.

(I) If α = nν(i) for some ν ∈ E and jν < i < ℵ0, put 1αy = b−1f(α);
(II) If α does not satisfy (I) and α /∈ E, put 1αy = 0;
(III) If α ∈ E, put 1α,iy = 0 provided i > jα. For 0 ≤ i ≤ jα, define 1α,iy by
induction on i (downwards): If there exist ν ∈ E and k > jν such that nα(i) =
nν(k), put 1α,iy = b−1f(nα(i)) − gαix + ai · 1α,i+1y. If there are no ν ∈ E and
k > jν such that nα(i) = nν(k), put 1α,iy = −gαix+ ai · 1α,i+1.
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It remains to prove that gαix = gαiy for all α ∈ E and i < ℵ0. Put β = nα(i).
Of course, gαiy = 1βy − 1α,iy + ai · 1α,i+1y. We distinguish the following three
cases:
(1) i > jα. Then 1βy = b−1f(β) = b−1hα(i) = gαix and 1α,iy = 1α,i+1y = 0,
whence gαiy = gαix;
(2) i ≤ jα, but there exist ν ∈ E and k > jν such that β = nν(k). Then 1βy =

b−1f(β) and 1α,iy = b−1f(β)− gαix+ ai · 1α,i+1y, whence gαiy = gαix;
(3) i ≤ jα and there are no ν ∈ E and k > jν such that β = nν(k). Then 1βy = 0
and 1α,iy = −gαix+ ai · 1α,i+1y whence gαiy = gαix, q.e.d. �

Theorem 1.5. Let κ be a cardinal such that cf (κ) = ℵ0 and UPκ holds. Let

R be a non-left perfect ring with card (R) ≤ κ. Then there is a non-projective
strongly κ+-free module M such that card (M) = κ+ and ExtR (M, N) = 0 for all
N ∈ R-mod with card (N) < κ.

Proof: By 1.2 and 1.4. �

Corollary 1.6. Consider the following assertion

A+: “for any non-left perfect ring R and any uncountable cardinal κ such that
cf (κ) = ℵ0 and κ ≥ card (R) there is a non-projective strongly κ+-free module
M such that card (M) = κ+ and ExtR (M, N) = 0 for all N ∈ R-mod with
card (N) < κ ”.
Then A+ is consistent with ZFC + GCH.

Proof: By 1.3 and 1.5. �

The following proposition shows (in ZFC) that the extension properties of “small”
non-projective modules may depend strongly on the particular structure of the non-
left perfect ring R.

Proposition 1.7. (i) Let R = k[y, D] be the ring of all differential polynomials in
one indeterminate y over a universal differential field k with the differentiation D.
Then R is not left perfect, but ExtR (M, N) 6= 0 for all non-injective modules N
and all finitely generated non-projective modules M .
(ii) Let R be a simple countable non-completely reducible von Neumann regular
ring. Then R is not left perfect, but ExtR (M, N) 6= 0 for all non-projective modules
M such that gen (M) ≤ ℵ0 and all non-zero modules N such that gen (N) ≤ ℵ0.
However, there exist a simple non-projective module S and a non-injective moduleN
such that ExtR (S, N) = 0.
(iii) Let R be a self-injective non-left perfect ring (e.g. let R be the maximal left
quotient ring of a non-completely reducible von Neumann regular ring). Then there
exists a non-projective module M such that gen (M) = ℵ0 and ExtR (M, N) = 0
for all finitely generated modules N .

Proof: (i) By [6, Theorem 9.3].
(ii) By [6, Theorem 10.4].

(iii) Let ai, i < ℵ0 be as in 1.1. Let 1i, i < ℵ0 be the canonical basis of F = R(ℵ0)

and let G =
∑

i<ℵ0
R(1i − ai · 1i+1) ⊆ F . Put M = F/G. By [1, Lemmas 28.1

and 28.2], F and G are free modules , M is not projective, and gen (M) = ℵ0. If

gen (N) < ℵ0, we have N ≃ R(n)/X for some n < ℵ0 and a submodule X ⊆ R(n).



Non-perfect rings and a theorem of Eklof and Shelah 31

As the sequence 0 → G → F → M → 0 is exact, we get 0 = ExtR (G, X) →
Ext2R (M, X) → Ext2R (F, X) = 0, whence Ext2R (M, X) = 0. Since the sequence

0 → X → R(n) → N → 0 is exact and R is left self-injective, we have 0 =

ExtR (M, R(n))→ ExtR (M, N)→ Ext2R (M, X) = 0, whence ExtR (M, N) = 0.
�

Theorem 1.8. Let R be a left perfect ring.

(i) For any non-projective module M there is a simple module SM such that

ExtR (M, SM ) 6= 0.
(ii) There exists a module N such that ExtR (M, N) 6= 0 for all non-projective
modules M .

Proof: (i) Since R is left perfect, there exists a projective cover ofM , i.e. a projec-
tive module P and a non-zero superfluous submodule K ⊆ P such that M ≃ P/K.
By [1, Theorem 28.4], there exists a maximal submodule L of K. Put SM = K/L.
Let x ∈ HomR (K, SM ) be the projection of K onto K/L. Assume there exists
y ∈ HomR (P, SM ) such that τy = x, τ being the inclusion of K into P . Then
Ker (y) is a maximal submodule of P and by [1, Proposition 9.13], K ⊆ Rad (P ) ⊆
Ker (y) ⊂ P . Thus τy = 0, a contradiction.
Hence HomR (K, SM )/τ ◦HomR (P, SM ) = ExtR (M, SM ) 6= 0.

(ii) Denote by V a representative set of the class of all simple modules. Put N =
⊕

∑
S∈V S. Then ExtR (M, N) ≃ ExtR (M, SM ) ∔ X , for an abelian group X .

Thus, by (i), ExtR (M, N) 6= 0. �

Definition 1.9. Let R be a ring. Define W = {N ∈ R-mod | ExtR (M, N)
6= 0 for all non-projective M ∈ R-mod }.

Theorem 1.10. Let R be a ring. Consider the following assertions:

(i) R is left perfect;
(ii) W 6= ∅;
(iii) There exists a proper class C such that C ⊆ W and no two distinct elements

of C are isomorphic.

Then (i) implies (ii), and (ii) is equivalent to (iii). The implication (iii) ⇒ (i) is
independent of ZFC + GCH.

Proof: (i) implies (ii) by 1.8 (ii). If N ∈ W , then also {N (κ) | κ ≥ card (N)} ⊆ W

and N (κ) 6≃ N (λ) for all cardinals κ 6= λ ≥ card (N). Hence (ii) is equivalent to (iii).
By 1.6, the implication (iii) ⇒ (i) is consistent with ZFC + GCH. On the other
hand, by [6, Theorem 10.8 (ii)], (non-(i) & (ii)) is consistent with ZFC + GCH.

�

Remark 1.11. Let R be a left perfect ring. Denote by I the class of all injective
modules. Clearly, always W ⊆ R-mod \I. Despite 1.10 (iii), almost never W =
R-mod \I. Indeed, if R is left non-singular, then W = R-mod \I, if and only if
either R = S or R = T or R = S ⊞ T , where S is a completely reducible ring and
there exists a skew field K such that T is Morita equivalent to the upper triangular
matrix ring of degree two over K (see [6, Theorems 3.4 and 8.1]).
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