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Compactifications and uniformities on sigma frames

Joanne Walters

Abstract. A bijective correspondence between strong inclusions and compactifications in
the setting of σ-frames is presented. The category of uniform σ-frames is defined and
a description of the Samuel compactification is given. It is shown that the Samuel com-
pactification of a uniform frame is completely determined by the σ-frame consisting of its
uniform cozero part, and consequently, any compactification of any frame is so determined.
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1. Background.

A σ-frame is a lattice L which has countable joins and satisfies the (countable)
distribution law: x ∧

∨
xn =

∨
x ∧ xn (n ∈ I, countable) for x, xn ∈ L. A σ-

frame morphism h : L −→ M is a lattice morphism preserving countable joins. The
resulting category is denoted σFrm. An element a of L is said to be rather below b,
written a ≺ b, if there exists s ∈ L, called the separating element, such that a∧s = 0
and b ∨ s = e. A σ-frame L is regular if for each a ∈ L, there is a sequence (an) in
L with an ≺ a and a =

∨
an. L is normal if for each pair a, b in L with a ∨ b = e,

there exists u, v in L such that a ∨ u = e = b ∨ v and u ∧ v = 0. Banaschewski [2]
shows that every regular σ-frame is normal, and hence the rather below relation
interpolates. The full subcategory of regular σ-frames is denoted RegσFrm, and
is coreflective in σFrm. A σ-frame morphism h : L −→ M is dense if h(x) = 0
implies x = 0. In RegσFrm if h : L −→ M is dense then h is monic. An element
c ∈ L is compact if for any countable X ⊆ L with c ≤

∨
X , there exists finite

E ⊆ X with c ≤
∨

E. L is compact if e is compact (in other words every countable
cover has a finite subcover, where a countable X ⊆ L is a cover if

∨
X = e). An

ideal J ⊆ L is regular if for each x ∈ J there exists y ∈ J with x ≺ y, and J is
said to be countably generated if there exists a sequence (xn) in J such that for
each a ∈ J , a ≤ xn for some n. The full subcategory of compact regular σ-frames,
denoted KRegσFrm, is coreflective in RegσFrm with the coreflection functor
given by KσL, the σ-frame consisting of all countably generated regular ideals, and
the coreflection map given by join. This gives the Stone–Čech compactification
of a σ- frame as shown by Banaschewski and Gilmour [2]. Extending the notions
above to allow for arbitrary joins gives the definition of a frame, and the resulting
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category Frm [7]. An element a in a frame L is completely below b in L, written
a ≺≺ b, if there is a family {xi | i ∈Q∩[0, 1]} of elements of L satisfying x0 = a,
x1 = b and i ≤ j implies xi ≺ xj . L is completely regular if for each a ∈ L,
a =

∨
{x | x ≺≺ a}. An ideal J ⊆ L is completely regular if for each x ∈ J there

exists y ∈ J with x ≺≺ y. The full subcategory of compact regular frames, denoted
KRegFrm, is coreflective in Frm with the coreflection functor given by KL, the
frame consisting of all completely regular ideals, and the coreflection map given by
join. This gives the Stone–Čech compactification of a frame [3]. Obviously every
frame is a σ-frame, thus there is a forgetful functor U : σFrm −→ Frm. This has
a left adjoint, the covariant functor H defined by letting HL be the frame of all
σ-ideals of L where an ideal J ⊆ L is a σ- ideal if it is closed under countable joins.
Madden and Vermeer [8] show that this adjoint pair restricts to an equivalence of
RegσFrm and the category of regular Lindelöf frames.

2. Strong inclusions and compactifications.

For any σ-frame L, a binary relation ⊳ on L is called a strong inclusion if the
following five conditions are satisfied:
For any elements x, y, a and b in L

(SI1) If x ≤ a ⊳ b ≤ y then x ⊳ y.
(SI2) ⊳ ⊆ L×L is a sublattice. That is 0 ⊳ 0, e ⊳ e, x, y ⊳ a, b implies x ⊳a ∧ b,

x ∨ y ⊳ a.
(SI3) If x ⊳ a then x ≺ a.
(SI4) If x ⊳ y then there exists z with x ⊳ z ⊳ y.
(SI5) If x ⊳ y then there exists a, b ∈ L with b ⊳ a, b ∨ y = e and a ∧ x = 0.

The pair (L, ⊳) is called a proximal σ-frame if ⊳ is a strong inclusion and moreover

(SI6) each element of L is a countable join of elements strongly included (or
strongly below) it. ⊳ is said to be compatible with L.

A σ-frame morphism h : (L, ⊳) −→ (M, ⊳′) is said to be proximal if h preserves
strong inclusions. That is, h × h [⊳] ⊆ ⊳′. These form the objects and morphisms
of a category denoted ProxσFrm. For a regular σ–frame L, the rather below
relation ≺ is a strong inclusion and hence (L,≺) is a proximal σ-frame. The only
conditions that need checking are (SI4) and (SI5) which follow from the result that
regularity implies normality for σ-frames [2]. The condition given in (SI3) shows
immediately that every proximal σ-frame is regular and, in fact, the rather below
relation ≺ is the “finest” strong inclusion compatible with a σ–frame, in the sense
that it contains any other such relation.
A σ-frame is said to be compact if any cover has a finite subcover. Any compact

regular σ-frame has a unique compatible strong inclusion which is precisely the
rather below relation: suppose (L, ⊳) is a compact proximal σ-frame and take a ≺ b.
Using the separating element,the fact that b is a countable join of elements strongly
below it and (SI5), gives that a ⊳ b. A σ-frame morphism h : M −→ L is called
a compactification of L if M is compact regular and h is dense and surjective. For
any given strong inclusion ⊳ on a σ-frame L , an ideal I of L is said to be strongly
regular if for each element x in I, there exists an element y in I with x ⊳ y. Now,
consider CσL, the set of all countably generated strongly regular ideals. Using the
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properties of these ideals, it follows that CσL is a σ-frame and, as every strongly
regular ideal is necessarily regular, CσL is a sub σ-frame of KσL, the compact
regular σ-frame of all countably generated regular ideals, and so is also compact [2].

Proposition 2.1. For a proximal σ–frame (L, ⊳), the join map ρL : CσL −→ L is

a compactification.

Proof: First it is necessary to show that CσL is regular as a σ-frame: Take an
ideal J in CσL, then J is generated by some sequence a1 ⊳ a2 ⊳ a3 . . . . For each n,
let Jn be the ideal generated by the sequence an = an0 ⊳ an1 ⊳ . . . an+1 obtained
by repeated interpolation. Then J =

∨
Jn. Moreover, for each n, applying (SI5)

to an+1 ⊳ an+2 gives elements bn, cn in L with cn ⊳ bn, cn ∨ an+2 = e and
bn ∧ an+1 = 0. Let In be the ideal generated by the sequence cn = cn0 ⊳ cn1 ⊳ . . . bn

again obtained by repeated interpolation. Then In is an element of CσL, In ∩ Jn =
0 and In ∨ Jn+2 = L. Hence Jn ≺ Jn+2 ⊆ J and consequently J is a countable
join of elements rather below it. Now each element of L is a countable join of
a sequence of elements strongly below one another, that is, for a in L, a =

∨
an with

a1 ⊳ a2 ⊳ . . . . Let J be the ideal generated by this sequence, then ρL (J) =
∨

an = a

and hence ρL is surjective. Since ρL is the restriction of κL : KσL −→ L to the
sub σ-frame of countably generated strongly regular ideals, it is a well defined dense
σ-frame morphism. �

For any proximal map h : (L, ⊳) −→ (M, ⊳′), h preserves the strong inclu-
sion and hence for each J in CσL, the ideal denoted by [h(J)] and generated by
h(a1) ⊳′ h(a2) ⊳′ . . . if a1 ⊳ a2 ⊳ . . . generates J , is an element of CσM . It is
straightforward to see that [h(J)] is not dependant on the choice of the generating
sequence for J . This shows that the assignment Cσ : ProxσFrm −→ KRegσFrm
is functorial.

Proposition 2.2. ρL : CσL −→ (L, ⊳) is a proximal map.

Proof: Since CσL is compact, the unique strong inclusion is given by the rather
below relation ≺. Take I ≺ J in CσL with I and J generated by a1 ⊳ a2 ⊳ . . .

and b1 ⊳ b2 ⊳ . . . respectively. Let a =
∨

an and b =
∨

bn. Now, there exists K

in CσL with K ∩ I = { 0 } and K ∪ J = L. Hence there exists c ∈ K, d ∈ J

such that c ∨ d = e, and moreover, c ∧ an = 0 for each n, since an ∈ I. Thus
an ≺ d for each n, and hence a =

∨
an ≤ d. But d ⊳ b since J is strongly

regular, consequently a ⊳ b. �

Since dense implies monic in RegσFrm, ρL is a surjective monomorphism. If
L is compact, both L and CσL have unique strong inclusions given by the rather
below relation and so ρL will be an isomorphism in ProxσFrm.

Proposition 2.3. The full subcategory KRegσFrm is coreflective in ProxσFrm.

Proof: Since σ-frame morphisms preserve the rather below relation, KRegσFrm
is a full subcategory of ProxσFrm. Consider a proximal morphism h : (M,≺) −→
(L, ⊳) with M ∈ KRegσFrm. Since h preserves countable joins, ρL ◦ Cσ h =
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h ◦ ρM . ButM is compact, so ρM is an isomorphism, thus ρL ◦ Cσ h ◦ (ρM )
−1 = h.

That is, h factors via ρL. This factorisation is unique since ρL is dense and hence
monic. �

Proposition 2.4. Given any compactification h :M −→ L in RegσFrm, then the

binary relation derived from h, defined by x ⊳ y if and only if there exists a, b ∈ M

with a ≺ b and h(a) = x , h(b) = y, is a strong inclusion compatible with L.

Proof: (SI1) Take x′ ≤ x ⊳ y ≤ y′ in L, then since h is surjective and by the
definition of ⊳, there exists a, a′ , b, b′ ∈ M with a ≺ b and h(a) = x , h(a′) =
x′ , h(b) = y and h(b′) = y′. Now x′ = x′ ∧ x = h(a′) ∧ h(a) = h(a′ ∧ a) and
similarly y′ = h(b′ ∨ b). Since a′ ∧ a ≤ a ≺ b ≤ b ∨ b′, it follows that x′ ⊳ y′.
(SI2) 0 ⊳ 0 and e ⊳ e since 0 ≺ 0 , e ≺ e and h preserves the top and

the bottom. Take x, x′ ⊳ y, then there exists a, a′, b ∈ M with a, a′ ≺ b and
h(a) = x , h(a′) = x′ and h(b) = y. Now x ∨ x′ = h(a ∨ a′) and a ∨ a′ ≺ b,
hence x ∨ x′ ⊳ y. A similar argument shows that if x ⊳ y, y′ then x ⊳ y ∧ y′.
(SI3) If x ⊳ y with x = h(a) , y = h(b) and a ≺ b in M , then since h preserves

the rather below relation, x ≺ y.
(SI4) Take x ⊳ y as above. Since the rather below relation interpolates in

RegσFrm there exists c with a ≺ c ≺ b and hence x ⊳ h(c) ⊳ y.
(SI5) Take x ⊳ y as above. Since a ≺ b in M , there exists c ≺ d with

d ∧ a = 0 and c ∨ b = e. Now h(c) ⊳ h(d) and h(d) ∧ x = h(d) ∧ h(a) = 0.
Also h(c) ∨ y = h(c) ∨ h(b) = e.
(SI6) Since h is surjective, for each a ∈ L, a = h(x) for some x ∈ M . By the

regularity of M , x =
∨

xn with xn ≺ x. Hence h(xn) ⊳ h(x) and a =
∨

h(xn).
�

Proposition 2.5. For any proximal σ-frame (L, ⊳), the strong inclusion derived
from the compactification ρL : CσL −→ L is precisely ⊳.

Proof: Let ⊳′ represent the strong inclusion derived from the compactification ρL .
That is, x ⊳′ y if and only if there exists I ≺ J in CσL with ρL (I) = x and
ρL (J) = y. Take x ⊳ y in L and interpolate to get x ⊳ z ⊳ y. Suppose that
x =

∨
xn, z =

∨
zn and y =

∨
yn with x1 ⊳ x2 . . . etc. . Assume, without

loss of generality that z ≤ yn for each n. Let I, J and K be the ideals generated
by (xn), (yn) and (zn). By (SI5), there exists b ⊳ a in L with b ∨ z = e and
a ∧ x = 0. Interpolate repeatedly between b ⊳ a and generate an ideal P ∈ CσL.
Then P ∩ I = { 0 } and P

∨
J = L, hence ≺ J . Since ρL (I) = x and ρL (J) = y,

x ⊳′ y. Take x ⊳′ y with I ≺ J in CσL with ρL (I) = x and ρL (J) = y. Suppose
that I is generated by (xn). There exists an ideal K such that K ∩ I = { 0 } and
K

∨
J = L and hence there exist elements c in K and d in J with c ∨ d = e.

Moreover, c ∧ xn = 0 for each n, so xn ≺ d for all n. Thus x =
∨

xn ≤ d and
since d ⊳ y, x ⊳ y. �

Proposition 2.6. Given any compactification h :M −→ L, the strong inclusion ⊳

derived from h gives rise to a compactification ρL : CσL −→ L which is isomorphic

to h.

Proof: Take any compactification h : M −→ L. Then h is dense and surjective,
and M is compact. Let ⊳ be defined as above and consider the associated com-
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pactification ρL : CσL −→ L. Since ρM : CσM −→ M is an isomorphism, each
element a of M is the image of a unique element of CσM , denoted by Ja. The map
g :M −→ CσL given by g(a) = [h(Ja)] is clearly a well-defined σ-frame morphism.
Take K in CσL, then K is generated by some sequence, say b1 ⊳ b2 ⊳ . . . in L. By
the definition of ⊳ and the denseness of h, there exists a sequence x1 ≺ x2 ≺ . . .

with bi = h(xi) for each i. Let x =
∨

xn, then h(x) =
∨

h(xn) =
∨

bn =
∨

K.
In fact, K is generated by h(x1) ⊳ h(x2) ⊳ . . . and hence K = [h(Jx)] where
Jx is the unique ideal associated with x and generated by (xn). Thus K = g(x)
which shows that g is surjective. Suppose g(a) = { 0 }, that is, [h(Ja)] = { 0 },
then h(x) = 0 for all x ∈ Ja. But h is dense, thus x = 0 for all x ∈ Ja, hence
Ja = { 0 }. Now a =

∨
Ja, so a = 0 and therefore g is dense and hence monic.

Since g is a σ-frame morphism, g preserves the rather below relation which gives
the unique strong inclusions on the compact σ-frames CσL and M . Thus g is an
isomorphism. �

3. Uniform sigma frames.

For any σ-frame L, a cover of L is a sequence (an) in L with
∨

an = e. One
cover A = (an) is said to refine another cover B = (bn), written A ≤ B, if for each
n there exists m with an ≤ bm. Two covers A and B are equivalent if A ≤ B

and B ≤ A. For an element x of L, and a cover A of L, the star of x w.r.t. A is
denoted by Ax and is given by

∨
{a ∈ A | a∧ x 6= 0}. The star of A, denoted A∗ is

the cover given by {Aa | a ∈ A}. The meet of two covers A and B, written A ∧ B,
is a cover defined pairwise as {a ∧ b | a ∈ A, b ∈ B}.A is said to star refine B,
written A ≤∗ B, if A∗ ≤ B.

It is easy to see that for any element x in L and covers A, B, C and D of L:

(1) x ≺ Ax.
(2) If A ≤∗ B then A(Ax) ≤ Bx.
(3) If A ≤∗ B and C ≤∗ D then A ∧ C ≤∗ B ∧ D.

A uniformity is a collection µ of covers of L such that the following two conditions
are satisfied:

(U1) µ is a filter with respect to ≤.
(U2) For each cover A in µ, there exists a cover B in µ with B ≤∗ A.

For elements a and b of L, a is said to be uniformly below b (relative to µ ),
written a ⊳µ b, or a ⊳ b when the context is clear, if there exists a cover A in µ

such that Aa ≤ b. A uniformity µ is said to be compatible with L if

(U3) each element a of L is a countable join of elements uniformly below it.

In such a case, (L, µ) is called a uniform σ-frame. A σ–frame morphism h :
(L, µ) −→ (M, ν) is uniform if h[A] ∈ ν whenever A ∈ µ. For such an h, h(a)⊳ν h(b)
whenever a ⊳µ b. These are the objects and morphisms of a category UniσFrm .

By the altering of axiom (U3) and allowing for covers and joins to be indexed
over any set, the definition of the categoryUniFrm of uniform frames and uniform
frame morphisms as defined by Frith is obtained [4]. It is not difficult to show that
this description is equivalent to that formulated by Pultr [9].
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Proposition 3.1. For any uniformity µ on a σ-frame L, ⊳µ is a compatible strong

inclusion.

Proof: (SI1), (SI2) and (SI3) follow as simple consequences of the properties of
covers. That the uniformly below relation interpolates (SI4) follows by using the
star-refinement property (U2) of a uniformity together with (2) above. Property
(SI6) follows immediately from the compatibility of µ with L. Thus it only re-
mains to verify that ⊳µ satisfies (SI5): suppose a ⊳ b ⊳ c with respect to µ, and
A ∈ µ is such that Aa ≤ b. By (U2), there exists B in µ with B ≤∗ A and
a ⊳ Ba ⊳ Aa ≤ b ⊳ c. Now let x =

∨
{ z ∈ B | z ∧ a = 0 } and

y =
∨

{ z ∈ B | z ∧ Ba = 0 }, then x separates a ≺ b, y ∨ c = e and y ⊳ x.
�

Since a uniform σ-frame morphism preserves the uniformly below relation, the
assignment of ⊳µ to µ defines a functor from UniσFrm to ProxσFrm. Conversely,
each proximal σ-frame has the natural compatible uniformity generated by the
collection β of all those finite covers A of L for which there is a finite cover B such
that if b ∈ B then there exists a ∈ A with b ⊳ a (written B ⊳ A). This assignment
too, is functorial since a proximal σ–frame morphism preserves strong inclusions:

Proposition 3.2. For any proximal σ-frame (L, ⊳) there exists a uniformity µ⊳

compatible with L such that the associated uniformly below relation is precisely ⊳ .

Proof: To show this collection β of covers generates a uniformity, it suffices to
check that any such cover consisting of two elements is star- refined by another
such cover: suppose {a, b} is such a cover, say refined by {c, d}. That is, c ⊳ a and
d ⊳ b. Interpolate to get c ⊳ c1 ⊳ c2 ⊳ a and d ⊳ d1 ⊳ d2 ⊳ b and then apply (SI5)
to c1 ⊳ c2 and d1 ⊳ d2. This gives elements y ⊳ x with y ∨ c2 = e, x ∧ c1 = 0
and t ⊳ s with t ∨ d2 = e and s ∧ d1 = 0. Hence {y, c2} ⊳ {x, a},{t, d2} ⊳ {s, b}
and {c, d} ⊳ {c1, d1} and then the cover C = {x, a} ∧ {s, b} ∧ {c1, d1} has the
required property and star-refines {a, b}. Suppose a ⊳ b, then for a ⊳ c ⊳ b there
exists y ⊳ x with y ∨ c = e and x ∧ c = 0, hence {x, b} ∈ β and {x, b}a = b,
thus a is uniformly below b and consequently µ⊳ is compatible with L. Conversely,
if a is uniformly below b then there exists A in β with Aa ≤ b. Take a finite cover
B ⊳ A, then since B is a cover and by (SI2), a ≤ Ba ⊳ Aa ≤ b, and hence by
(SI1), a ⊳ b. �

It was previously noted that the rather below relation is a strong inclusion, hence
every regular σ-frame has a compatible uniformity. Moreover, it follows from 3.1
that a uniform σ-frame is regular, thus a σ-frame is regular if and only if it is
uniformizable.
A uniform σ-frame (L, µ) is said to be precompact if each uniform cover has

a finite uniform refinement. Thus the uniformity µ⊳ of a proximal σ-frame is pre-
compact and contains any other compatible precompact uniformity which induces
the same strong inclusion ⊳. In fact, it is straightforward to show that µ⊳ is the
unique compatible precompact uniformity inducing ⊳. This shows that the category
of proximal σ-frames is isomorphic to the full subcategory of UniσFrm consisting
of precompact uniform σ-frames. This is the analogue of the result obtained by
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Frith [4] for proximal frames and precompact uniform frames which in turn corre-
sponds to this result of Smirnov for spaces. Using proofs analogous to those used
in the fundamental results of Ginsburg and Isbell [5] for uniform spaces, and by
considering the uniformity generated by all finite uniform covers, it can be shown
that precompact uniform σ-frames are coreflective in UniσFrm with the coreflec-
tion map given by the identity. Similarly in the frame setting, by considering the
uniformity generated by the collection of all countable uniform covers, the full sub-
category of separable uniform frames can be shown to be coreflective in UniFrm,
where a frame is defined to be separable if every uniform cover has a countable
uniform refinement. It also follows that, as in the case of spaces, every Lindelöf
uniform frame is separable.
The uniformly below relation ⊳µ on a uniform σ-frame(L, µ) as a strong inclusion

in the setting of UniσFrm gives rise to the compactification ρL : RσL −→ L

where RσL is the collection of all countably generated uniformly regular ideals of L.
From 2.3 above, it follows that the full subcategory KRegσFrm is coreflective in
UniσFrm. Banaschewski obtains the analogous result for frames by considering
RL, the collection of all the uniformly regular ideals. For spatial uniform frames,
that is, uniform spaces, this gives rise to the Samuel compactification. Thus the
above coreflections are called the Samuel compactification of the uniform σ-frame,
and uniform frames repectively. It should be noted that any compactification arising
from a compatible strong inclusion may be viewed as the Samuel compactification
of the uniform σ-frame (L, µ⊳) associated with that strong inclusion. In this way,
the Stone–Čech compactification is associated with the rather below relation. It is,
by (SI3), the largest of the Samuel compactifications of a given σ-frame in the sense
that it contains all other compactifications as sub σ-frames.

4. The cozero part of a uniform frame.

An ideal is called a σ–ideal if it is closed under countable joins. For any uniform
σ-frame (L, µ), consider HL the Lindelöf frame of all σ-ideals of L [7] and let Hµ

be generated by {↓ A | A ∈ µ} where ↓ A = {↓ a | a ∈ A}. It is straight forward
to show that Hµ is a separable uniformity compatible with HL and, moreover this
assignment of a uniform frame to a uniform σ-frame is functorial. The underlying
σ-frame of a completely regular frame L need not be regular (for example a space
which is completely regular but not perfectly normal) and is in fact, only regular if it
equals the cozero part of L, the largest regular sub σ-frame of L. Thus a structured
version of the functor Coz, rather than the forgetful functor is considered: An
element a of a uniform frame (L, µ) is uniformly cozero if a = h ((0, 1]) for some
uniform frame morphism h : Ω[0, 1] −→ (L, µ)where Ω[0, 1] is the frame of all the
open sets of the unit interval. Let CozuL denote the set of all the uniformly cozero
elements of L. Obviously Cozu L is a subset of Coz L, the σ-frame of all elements
which are cozero elements for some frame morphism of L. The following series of
results using the Samuel compactification RL of the uniform frame (L, µ), show
that Cozu L is a regular σ-frame which generates L as a frame:

Lemma 4.1. For a uniform frame (L, µ), Cozu L = ρL (Coz RL ).

Proof: For a compact regular frame, every cozero element is uniformly cozero,
and thus since uniform frame maps preserve uniform cozero elements, ρL (Coz RL )
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⊆ Cozu L. Take any a ∈ Cozu L, say a = h ((0, 1]), then h factors via RL since
Ω [0, 1] is compact and hence Cozu L ⊆ ρL (Coz RL ). �

Since RL is compact and regular, and hence spatial, CozRL is a regular σ-frame.
The image of a regular σ-frame is regular, hence ρL (Coz RL ) is a regular
σ-frame and thus so is Cozu L. Since RL is spatial, it can be shown using properties
of cozero sets in Lindelöf spaces, that Coz RL consists of precisely the countably
generated uniformly regular ideals.

Lemma 4.2. The uniform cozero elements of a uniform frame (L, µ) are precisely
those elements which are the join of a sequence of elements uniformly below each

other.

Proof: Let a ∈ Cozu L, then a = ρL (J) for some J ∈ Coz RL. Now J is
countably generated, say by a1 ⊳ a2 ⊳ . . . , thus a =

∨
J =

∨
an. Conversely,

take a =
∨

an with an ⊳ an+1. Let J = { x ∈ L | x ≤ an, for some n }.
Then J is a countably generated uniformly regular ideal, hence in Coz RL. Since
a =

∨
J , a ∈ Cozu L. �

Lemma 4.3. CozuL generates L as a frame.

Proof: Let J ∈ RL. For each b ∈ J choose a sequence b ⊳ b1 ⊳ b2 ⊳ . . .

in J . Let Jb be the uniformly regular ideal generated by this sequence, then each
Jb ∈ Coz RL and J is the join of all the Jb’s , thus Coz RL generates RL as
a frame. For each a ∈ L, since ρL is surjective, a = ρL (J) for some J in RL.
Thus a = ρL (

∨
Jb) =

∨
ρL (Jb) and ρL (Jb) ∈ Cozu L for each Jb. Hence each

element of L is the join of uniform cozero elements. �

Let Cozu µ be the collection of all countable uniform covers consisting of uni-
formly cozero elements. That any uniformity has a basis of uniformly cozero covers
follows immediately from the following:

Lemma 4.4. If a ⊳ b in (L, µ) then there exists c ∈ Cozu L such that a ≤ c ≤ b.

Proof: Let a ⊳ b in (L, µ), then by repeated interpolation, there exists a sequence
a ⊳ x1 ⊳ x2 ⊳ . . . ⊳ b. Put c =

∨
xn, then by the lemma above c ∈ Cozu L. �

Proposition 4.5. Cozu µ is a uniformity compatible with Cozu L. Moreover,

(Cozu L, Cozu µ) generates the separable coreflection of (L, µ).

Proof: For any uniformity µ, the collection of countable uniform covers is a uni-
form basis, and any uniformity has a basis of uniform covers consisting of uni-
formly cozero elemets. Thus Cozu µ contains a countable cozero basis and hence
is a uniformity on a σ-frame. Compatibility follows since each element of Cozu L

is a countable join of uniform cozero elements relative to µ and hence relative to
Cozu µ. The frame uniformity generated by Cozu µ is obviously separable, and by
the very definition of Cozu µ, it is precisely the uniformity obtained by the separa-
ble coreflection.

�
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Since uniform frame morphisms preserve uniformly cozero elements, a frame
morphism restricts to a σ-frame morphism between the corresponding uniformly
cozero parts. Thus Cozu : UniFrm −→ UniσFrm is functorial. For regular
Lindelöf frames, the countable elements (where an element a is countable if whenever
a ≤

∨
X for some set X , there exists a countable subset Y ⊆ X with a ≤

∨
Y ) are

precisely the cozero elements [7]. It follows from the results above that for a Lindelöf
uniform frame, the countable elements are precisely the uniformly cozero elements.
By considering the unit ηL : (L, µ) −→ Cozu(HL,Hµ) defined by ηL(x) =↓ x

and the counit εL : HCozu (L, µ) −→ (L, µ) given by the join map, the following
proposition can easily be checked:

Proposition 4.6. H is left adjoint to Cozu.

For a Lindelöf uniform frame, as in the case of frames,HCozu (L, µ) is isomorphic
to (L, µ) and any uniform σ-frame (L, µ) is isomorphic to Cozu H (L, µ) (cf. [8] for
frames). Hence these are the fixed objects of the adjunction. It is now possible to
obtain an alternative description of the Samuel compactification RL of a uniform
frame (L, µ) via the corresponding compactification in UniσFrm of its cozero part.

Proposition 4.7. For any uniform frame (L, µ),

CozRL ∼= RσCozuL.

Proof: Since RL is compact, Coz RL is a compact regular σ-frame and hence has
a unique uniformity. The uniform frame morphism ρL : RL −→ (L, µ) restricts to
a uniform σ-frame morphism ρL : CozRL −→ (CozuL, Cozuµ). By the coreflection
property this factors via Rσ Cozu L, say by h. That is, ρL = ρCozu L◦h. Now define
f : Cozu L −→ Coz RL by f(a) = {x ∈ Cozu L | x ⊳ a}. Since each element of
Cozu L is a countable join of elements of Cozu L uniformly below it, this is a count-
ably generated uniformly regular ideal, hence f is a well-defined σ- frame morphism
and moreover since Coz RL is compact, f : (Cozu L, Cozu µ) −→ Coz RL is uni-
form. Also f ◦ ρL = idCozu L and it follows that f ◦ ρCozu L is inverse to h. Hence
Coz RL ∼= Rσ Cozu L. �

Applying the functor H to the isomorphism described above and observing that
RL is Lindelöf and hence RL ∼= H Coz RL, one gets the following proposition
which shows that the Samuel compactification of a uniform frame is completely
determined by its uniformly cozero part:

Proposition 4.8. For any uniform frame (L, µ),

R(L, µ) ∼= HRσCozuL.

As mentioned earlier, any compactification of a regular σ-frame may be viewed
as the Samuel compactifition of the associated proximal, and hence precompact
uniform σ-frame. The same observation can be made for frames, and thus the
proposition above shows that any compactification of a completely regular frame is
determined by a regular σ-frame, namely the one consisting of all the “uniformly”
cozero elements.
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[3] Banaschewski B., Mulvey C., Stone–Čech compactification of Locales I., Houston J. of Math.
6, 3 (1980), 301–312.

[4] Frith J.L., The Category of Uniform Frames, Cahier de Topologie et Geometrie, to appear.
[5] Gilmour C.R.A., Realcompact Alexandroff spaces and regular σ-frames, Math. Proc. Cam-
bridge Philos. Soc. 96 (1984), 73–79.

[6] Ginsburg S., Isbell J.R., Some operators on uniform spaces, Trans. Amer. Math. Soc. 36
(1959), 145–168.

[7] Johnstone P.T., Stone Spaces, Cambridge Studies in Advanced Math. 3, Cambridge Univ.
Press, 1982.
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