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Sets invariant under projections onto one

dimensional subspaces

Simon Fitzpatrick, Bruce Calvert

Abstract. The Hahn–Banach theorem implies that if m is a one dimensional subspace of
a t.v.s. E, and B is a circled convex body in E, there is a continuous linear projection
P onto m with P (B) ⊆ B. We determine the sets B which have the property of being
invariant under projections onto lines through 0 subject to a weak boundedness type
requirement.
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Definition. Let B ⊆ Rn. We say B is invariant under projections onto lines to
mean for all lines m through 0 there is a linear projection P from Rn onto m with
P (B) ⊆ B.

Notation. We will first let B ⊆ R2. We talk about the projection onto m along x,
for x 6= 0, to mean the linear projection onto m with N(P ) ∋ x. For θ ∈ R, let
x(θ) = (cos θ, sin θ) ∈ R2, and let α(θ) = {γ ∈

(

−π
2 ,

π
2

]

: the projection P onto
Rx(θ) along x(γ) satisfies P (B) ⊆ B}. We let S(θ) = {t > 0 : tx(θ) ∈ B}.

Lemma 1. Let B be a closed nonempty subset of R2 which is invariant under
projections onto lines. For some θ, suppose there is a sequence ϕn → θ and λn ∈
α(ϕn) and µ ∈ α(θ) such that λn 6= µ and lim inf sin2(λn − θ) > 0 (i.e. λn stays

away from θ (mod π)). Then S(θ) is (0,∞) or (0,M ] or [M,∞) for some M > 0.

Proof: Suppose 0 < a < b <∞ with a, b in S(θ) but (a, b)∩S(θ) = ∅. Let P be the
projection onto Rx(θ) along x(µ), and let Pn be the projection onto Rx(ϕn) along
x(λn). Then P

−1((a, b)x(θ)) ∩ B is empty and so, if Cn = P−1
n (P

−1(a, b)x(θ) ∩
Rx(ϕn)) ∩ (0,∞)x(θ), then Cn ∩ B = ∅. Because λn 6= µ,Cn 6= (a, b)x(θ), and
because λn stays away from θ (mod π), Cn → (a, b)x(θ) as n → θ. Thus, since Cn

is a multiple of (a, b)n(θ), Cn contains either ax(θ), or bx(θ), a contradiction.
Thus S(θ) is an interval. Suppose S(θ) = [a, b] with 0 < a < b < ∞. Then

Pn([a, b]x(θ)) ⊆ B and if Vn = P (Pn([a, b]x(θ)), then Vn ⊆ B. However, Vn 6=
[a, b]x(θ) since λn 6= µ and Vn → [a, b]x(θ) as n → ∞ since λn stays away from θ
(mod π). Thus Vn being a multiple of [a, b]x(θ), contains points of (0,∞)(θ) not in
[a, b]x(θ), a contradiction.
Hence S(θ) = (0,M ], [M,∞) or (0,∞). �



228 S. Fitzpatrick, B.Calvert

Definition. We call an angle θ ∈ R surrounded, if there are θn → θ, θ2n <
θ, θ2n+1 > θ, and γ 6= θ so that γ ∈ α(θn) for all n.

Lemma 2. Let B be a closed nonempty subset of R2 which is invariant under
projections onto lines. For all θ ∈ R, one of the following holds.

(a) limϕ→θ+ sin(α(ϕ) − θ) = 0,

(b) limϕ→θ− sin(α(ϕ) − θ) = 0,

(c) S(θ) = (0,M ], [M,∞) or (0,∞) for some M > 0,
(d) θ is surrounded.

Proof: If (a) and (b) do not hold, there is θn → θ, θ2n < θ, θ2n+1 > θ with
lim inf sin2(λn − θ) > 0 for some λn ∈ α(θn). Unless there is γ ∈ α(θ) such that
λn = γ for all large n, in which case θ is surrounded, Lemma 1 shows that (c) holds.

�

Lemma 3. Let B be a nonempty closed subset of R2 which is invariant under
projections onto lines. The set of θ such that (a) or (b) of Lemma 1.2 hold, is
nowhere dense in R2.

Proof: If there were a sequence θn of angles of type (a) so that {θn : n ∈ N}
was dense in an open interval I, then for each j, sin2(α(ϕ) − ϕ) < j−1, if ϕ ∈
(θn, θn+εjn), where εjn > 0. Thus in a denseGδ set in I, we have sin

2(α(θ)−θ) = 0,
which is impossible. For (b), take (θn − εjn, θn). �

Lemma 4. Let B be a nonempty closed subset of R2 invariant under projections
onto lines. Suppose I is a nonempty open interval of angles and every θ ∈ I is
surrounded. Then either

(a) some S(θ) = (0,M ], [M,∞), on (0,∞), or else
(b) there is γ so that α(θ) = {γ} for all θ ∈ I.

Proof: Assume (a) false, so that by Lemma 1, if ϕ ∈ I, ϕ2n+1 ↓ ϕ,ϕ2n ↑ ϕ, with
γϕ ∈ α(ϕn) for all n, with γϕ 6= ϕ, then α(ϕ) = {γϕ}.
Let γ0 ∈ I, α(ϕ0) = {γ}. Without loss of generality let γ0 > ϕ0 > γ0 − π.

For ξ ∈ (ϕ0, γ0) ∩ I, let θ = sup{λ < ξ : α(λ) ∋ γ0}. Either (a) θ = ξ, or (b)
θ < ξ and α(θ) ∋ γ0, or (c) θ < ξ, γ0 /∈ α(θ), but θn ↑ θ with γ0 ∈ α(θn). If (b)
holds, then γ0 = γθ, contradiction θ being a sup. If (c) holds, by Lemma 1, θ = γ0
contradicting ξ < γ0. Hence (a) holds and α(ξ) = {γ0}, since γ0 > ξ. Similarly for
ξ ∈ I, ξ ∈ (γ0−π, γ0), we have α(ξ) = {γ0}. Now I does not include γ0 (modulo π)
since, if it did, there would be θn ↑ γ0 (or θn ↓ γ0 − π) with γγ0 ∈ α(θn), γγ0 6= γ0,
contradicting α(θn) = γ0, since θn ∈ I. �

Lemma 5. Let B be a nonempty closed subset of R2 which is invariant under
projections onto lines. If there is an open interval of angles which are surrounded,

then B is a union of parallel lines, or B is contained in a line through 0, or there is
θ, and M,N > 0, such that (0,M ] ⊆ S(θ) ⊆ (0,W ], or [M,∞) ⊆ S(θ) ⊆ [N,∞).

Proof: Let I be an open interval of angles with α(x) = {γ} for each x ∈ I. Assume
B is not a union of parallel lines or a subset of Rx(γ). We can find an angle θ 6= γ
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(mod π) with α(θ) ∋ ψ, ψ 6= γ. Let P be the projection onto Rx(θ) along x(ψ), and
P be the projection onto Rx(θ) along x(γ). Then PPθ(x(θ)) = wθx(θ) for some wθ.
The set {wθ : θ ∈ I} is an open interval (w0, w1), w0 < w1, so that if w ∈ (w0, w1),
then wS(θ) ⊆ S(θ).

Suppose (w0, w1) ∩ (1,∞) 6= ∅. Then there are w2 and w3 in (w0, w1), 1 <

w2 < w3, and n ∈ N with wn+1
2 = wn

3 . Then [w
n
2 , w

n+1
2 ] = [wn

2 , w
n
3 ] so for

each x ∈ [wn
2 , w

n+1
2 ], we have xS(θ) ⊆ S(θ). Since w2S(θ) ⊆ S(θ), we have

x ∈ [wn+1
2 , wn+2

2 ] implying xS(θ) ⊆ S(θ), and so on, giving xS(θ) ⊆ S(θ) for all
x ≥ wn

2 . Note S(θ) 6= ∅, so taking y ∈ S(θ), [wn
2 y,∞) ⊆ S(θ).

If (w0, w1)∩(−∞,−1) 6= ∅, then (w20, w
2
1)∩(1,∞) 6= ∅ and we apply the argument

above with w20 and w
2
1 instead of w0 and w1.

If (w0, w1) ∩ (−1, 1) 6= ∅, then a similar argument gives (0, wny] ⊆ S(θ) for
y ∈ S(θ). Now the complement S(θ)′ is nonempty and invariant under {w−1, ;w ∈
(w0, w1)}. Hence when S(θ) ⊇ (0,M ], S(θ)

′ ⊇ [N,∞) for some N ∈ R, and when
S(θ) ⊇ [N,∞), S(θ)′ ⊇ (0,M ]. �

Lemma 6. Let B be a nonempty closed subset of R2 which is invariant under
projections onto lines. Let B contain (0, ε)x for some x 6= 0, ε > 0. Then B is one
of (a), (b) or (c) of Theorem 1.

Proof: We may suppose none of these hold. Hence there is a projection P onto
Ry for some Ry 6= Rx, not along x, giving εy > 0 with (0, εy]y ⊆ B, replacing y by
−y if required.
Let K = {y : [0, 1]y ⊆ B}. Suppose y, z ∈ K, linearly independent. Let P be

a projection on R(y + z), P (B) ⊂ B. P−1((y + z)/2) intersects (0, 1]y or (0, 1]z,
giving (y + z)/2 ∈ K. If y, z ∈ K and are linearly dependent, then (y + z)/2 ∈ K,
so K is a closed convex set invariant under projections onto lines.

Suppose there is w 6= 0, λn ↓ 0, λnw /∈ K. Then let us project onto Rw along s.
We find K ⊆ (−∞, 0]w + Rs. But since for all y, y or −y is in the cone generated
by K, we have (−∞, 0)+Rs contained in this cone. It follows that (−ε, ε)s ⊆ K for
some ε > 0, and all projections onto Rt 6= Rs are along s, a contradiction. Hence,
for all w 6= 0, there exists ε > 0, [0, ε]w ⊆ K, and 0 ∈ intK.
Now K contains no lines since B doesn’t. Hence K ∩ −K is a bounded convex

neighborhood of 0, with boundary D say. Now D ∩ ∂K 6= ∅, ∂K is connected, and
D ∩ ∂K is closed in ∂K, so to show D = ∂K, we want D ∩ ∂K open in ∂K. If
we parametrize D and ∂K by polar coordinates, giving radius r as a function of
angle θ, they are absolutely continuous, and a.e. (θ) we have the derivative of r with
respect to θ unique and equal for both curves since for all θ there exist supporting
lines to K and K ∩ −K which are parallel.
We claim K = B. Since K is a convex bounded neighborhood of 0, α(θ) is

nondecreasing, apart from a jump from π
2 to

−π
2 , and has period π. We may take

θ so that α(θ) is not constant on a neighborhood of θ. And if ϕn → θ, λn ∈
α(ϕn), λn 6= µ ∈ α(θ), then λn stays away from θ (mod π) since int(K) 6= ∅.
By Lemma 1, S(θ) is an interval (θ, ε]. Here, the line Rx(θ) intersects ∂K at
a point not in the relative interior of a line segment of ∂K, we have α(θ) = γ for



230 S. Fitzpatrick, B.Calvert

θ1 ≤ θ ≤ θ2 with S(θ1) = (0, ε1] and S(θ2) = (0, ε2]. Hence S(θ) is an interval for
each θ ∈ [θ1, θ2]. �

Lemma 7. Let B be a nonempty closed subset of R2 which is invariant under
projections onto lines. Suppose there is w0 ∈ R

2 \{0} and λn → ∞ such that either
for all n, λ−1n w0 ∈ B, or for all n, λnw0 /∈ B. Then B is either:

(a) contained in a line Rx,
(b) a union of parallel lines, or
(c) for every nonzero w in R2, there is λn → ∞ with either λ−1n w ∈ B for all n,
or λnw /∈ B for all n.

Proof: Assume neither (a) nor (b) hold.

(i) Suppose λnw0 /∈ B, λn → ∞. We claim this holds for all w 6= 0. Suppose
not. Let S = {v 6= 0 : there exists M > 0, [M,∞)v ⊆ B}, so S 6= ∅, and let
z0 ∈ S. Take P a projection into Rw0 along s, P (B) ⊆ B. Then S ⊆ Rs+
(−∞, 0]w0. Since (a) and (b) do not hold, there is y /∈ Rz0, y ∈ S. Hence for
all v 6= 0, v or −v is in S, and so the open half plane Rs+ (−∞, 0)w0 ⊆ S.
It follows that s and −s are in S. Hence the projection onto Rx 6= Rs is
along s, giving (b).

(ii) Suppose λ−1n w0 ∈ B for all n. Let S = {s ∈ R2 \ {0}: there exists εn ↓ 0,
εns ∈ B}. Suppose, to derive a contradiction, there is v0 with (0, ε)v0 /∈ B,
for some ε > 0, we argue as in (i) to find S = Rt+ (−∞, 0]v0, if we project
onto Rv0 along t, giving (b). �

Theorem 8. Let B be a closed nonempty subset of R2 and suppose there is w ∈
R2, w 6= 0, and λn → ∞, such that λ−1n w ∈ B or λnw /∈ B.
For every one dimensional subspace m, there exists a linear projection P : R2

→ m with P (B) ⊆ B iff B is one of:

(a) a subset, containing 0, of a line through 0,
(b) a union of parallel lines, containing 0,
(c) a bounded convex symmetric neighborhood of 0.

Proof: This follows from Lemmas 1 to 7. �

Proposition 9. Let B be a nonempty closed subset of Rn, such that for all w in
an n− 1 dimensional subspace W , there is a sequence (wk) in (0,∞)w ∩B tending
to 0, or a sequence (wk) in (0,∞)w ∩B′, ‖wk‖ → ∞.
B is invariant under projections onto lines iff B is one of:

(a) S + E,E a subspace, 0 ∈ S ⊆ ℓ, ℓ a 1 dimensional subspace, ℓ ∩ E = {0}, S
not convex and symmetric,

(b) B+E,B the unit ball in a subspaceM , given by a norm, and E a subspace
with M ∩ E = {0}.

Proof: ⇐= Straightforward.
=⇒ Suppose (b) does not hold. We claim there is e1 6= 0 with B∩Re1 not convex

or not symmetric about 0.
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If B is not symmetric, this is immediate. Suppose B is not convex, so there are
a, b in B with (a + b)/2 /∈ B. We may assume {a, b} linearly independent. There
is w 6= 0 in (Ra + Rb) ∩W . Hence B ∩ (Ra + Rb) is a union of parallel lines on
a subset of a line, and is not convex, giving e1.
Let F be the linear span of B, of dimension m. Suppose b ∈ B \ Re1. Then

B∩(Re1+Rb) is a union of parallel lines, S+Re2 say, since B∩Re1 is not symmetric
or not convex. If m > 2, take b /∈ Re1 + Re2, b ∈ B, giving e3 /∈ Re1 + Re2 with
S + Re3 ⊆ B.
Continuing, we have a basis (e1, . . . em) of F with S + Re1 ⊆ B for i ≥ 2. We

see that S +E ⊆ B, where E = Re2 + · · ·+Rem. But if P (B) ⊂ B and P projects
F on Re1, then P (E) = {0}, so B ⊆ S + E, giving B = S + E. �

Example 10. We give the simplest example of a closed nonempty subset B of Rn

which is invariant under projections onto lines, but which has, for all x 6= 0, (0, ε)x ⊆
B′ for some ε > 0 and [M,∞)x ⊆ B for some M .

B =

n
⋂

i=1

{x : xi ∈ (−∞,−1] ∪ {0} ∪ [1,∞)}.

Problem 11. How can one describe all such sets as the above (by other than their
defining property of being invariant under projections onto lines)?

Theorem 12. Let B be a nonempty closed subset of a real locally convex topo-
logical vector space E, whose closed subspaces are barrelled. Suppose for all w in
a hyperplane W , there is a sequence λk → ∞ with λkw /∈ B or λ−1

k
w ∈ B.

For all one dimensional subspaces m, there exists a continuous linear projection
P : E → m such that P (B) ⊆ B is one of:

(a) a closed convex circled subset whose linear hull is closed,
(b) S+F , where 0 ∈ S, S a closed subset of a one dimensional subspace ℓ, S not
both convex and symmetric, F a closed linear subspace not containing ℓ.

Proof: =⇒ Suppose for all finite dimensional subspaces X of E, B ∩X is a closed
convex circled set. Then B is a closed convex circled set. LetG denote its linear hull.
If G is not closed, we can take a one dimensional subspacem ⊆ G withm∩G = {0}.
Let P be a projection on m with P (B) ⊆ B. Since P (B) ⊆ m ∩ B = {0}, P = 0
on G by linearity and on G by continuity, contradicting P being the identity on m.
Hence G is closed.
Otherwise, by Theorem 1.9, there is a finite dimensional subspaceX withB∩X =

S + FX , where S is a subset of a 1 dimensional subspace ℓ, not both convex and
symmetric, and FX is a linear subspace, S  FX . For Y a finite dimensional
subspace, Y ⊇ X , we have B ∩ Y = S + FY , FY a linear subspace, S  FY . Let
F = cl(V ){FY : Y ≥ X}. Now claim B = S+F and ℓ  F . Projecting onto ℓ with
P, P (B) ⊆ B, we have FY ⊆ N(P ) for all Y , and N(P ) is closed, giving F ⊆ N(P )
and ℓ  F . If b ∈ B, take Y a finite dimensional subspace containing b and X , so
b ∈ S + FY ⊆ S + F . Since for all Y , S + FY ⊆ B and B is closed, S + F ⊆ B,
proving the claim.
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⇐= Let H be the linear hull of B. Note H is closed. Suppose m  H,m = Rxm

say. Take a nonempty convex open neighborhood A of xm not intersecting H . By
Mazur’s theorem, a geometrical version of Hahn–Banach, ([1, II, Theorem 3.1]),
there is a closed hyperplane in E containing M and not intersecting A. This gives
a continuous linear f : E → R with f(H) = 0, f(xm) = 1, and put Py = f(y)xm.
Suppose m ⊆ B,m = Rxm say, take a continuous linear f : E → R with f(xm)

= 1 and put Py = f(y)xm. Now suppose m ⊆ H,m  B. In case (a), since H is
barrelled, B is a neighborhood of 0 in H , being a barrel in it. We let m = Rxm

where xm is in the boundary of B in H . By the First Separation Theorem ([1, II,
Theorem 9.1, Corollary]), there is a closed real hyperplane in H supporting B at
xm, giving f : H → R linear, continuous, with f(xm) = 1. Extending f to E [1, II,
Theorem 4.2]) gives Py = f(y)xm as required.
In case (b), take a closed hyperplane in H containing F , but not xm, by Mazur’s

theorem as above, i.e. a continuous linear f : H → R with f(xm) = 1. Extending
f to E gives Py = f(y)xm as required. �
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