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Sets invariant under projections onto one
dimensional subspaces

SIMON FITZPATRICK, BRUCE CALVERT

Abstract. The Hahn—Banach theorem implies that if m is a one dimensional subspace of
a t.v.s. E, and B is a circled convex body in E, there is a continuous linear projection
P onto m with P(B) C B. We determine the sets B which have the property of being
invariant under projections onto lines through 0 subject to a weak boundedness type
requirement.
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Definition. Let B C R"™. We say B is invariant under projections onto lines to

mean for all lines m through 0 there is a linear projection P from R" onto m with
P(B) C B.

Notation. We will first let B C R?. We talk about the projection onto m along z,
for x # 0, to mean the linear projection onto m with N(P) > x. For 6 € R, let
2(0) = (cosf,sinf) € R?, and let a(f) = {y € (=%, 3] : the projection P onto
Rz (6) along x(v) satisfies P(B) C B}. We let S(8) = {t > 0: tz(0) € B}.

Lemma 1. Let B be a closed nonempty subset of R? which is invariant under
projections onto lines. For some 6, suppose there is a sequence p, — 6 and Ay, €
alen) and g € a(f) such that A\, # p and liminfsin?(\, — 0) > 0 (i.e. Ay, stays
away from 0 (mod 7)). Then S(0) is (0,00) or (0, M] or [M, c0) for some M > 0.

PROOF: Suppose 0 < a < b < oo with a, b in S(#) but (a,b)NS(8) = 0. Let P be the
projection onto Rx(f) along z(u), and let P, be the projection onto Rxz(py,) along
z(An). Then P~1((a,b)x()) N B is empty and so, if C, = Py (P~ (a,b)z(6) N
Rz(ppn)) N (0,00)z(0), then Cp, N B = (. Because A\, # u,Cp # (a,b)z(), and
because Ay, stays away from 6 (mod 7), Cyp, — (a,b)z(0) as n — 6. Thus, since Cy,
is a multiple of (a,b)n(d), Cy, contains either ax (), or bz (), a contradiction.

Thus S(0) is an interval. Suppose S(0) = [a,b] with 0 < a < b < co. Then
P, ([a,b]z(0)) C B and if V;, = P(Py([a,b]z(0)), then V;, C B. However, V;, #
[a, b]z(0) since Ay, # p and Vi, — [a,b]z(f) as n — oo since A, stays away from 6
(mod 7). Thus V}, being a multiple of [a, b]z(#), contains points of (0, c0)(f) not in
[a, b]z(0), a contradiction.

Hence S(0) = (0, M],[M, c0) or (0,00). O
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Definition. We call an angle § € R surrounded, if there are 6, — 6,02, <
0,02,4+1 > 0, and v # 6 so that v € a(6y,) for all n.

Lemma 2. Let B be a closed nonempty subset of R? which is invariant under
projections onto lines. For all 8 € R, one of the following holds.

(a) limg,_g+ sin(a(p) — 0) =
(b) lim o~ sin(a(p ) ) =
((g () (0, M],[M,0) o ( o0) for some M > 0,

0 is surrounded.

Proor: If (a) and (b) do not hold, there is 6, — 6,62, < 6,029,411 > 0 with
lim inf sin?(\, — 0) > 0 for some A, € a(f,). Unless there is v € a(f) such that

An, = 7 for all large n, in which case 6 is surrounded, Lemma 1 shows that (c) holds.
O

Lemma 3. Let B be a nonempty closed subset of R? which is invariant under
projections onto lines. The set of 6 such that (a) or (b) of Lemma 1.2 hold, is
nowhere dense in R?.

PRrROOF: If there were a sequence 6, of angles of type (a) so that {6, : n € N}
was dense in an open interval I, then for each j, sin?(a(p) — ¢) < j 7L, if ¢ €
(O, On+¢ejn), where £5,, > 0. Thus in a dense G set in I, we have sin?(a(0)—6) = 0,
which is impossible. For (b), take (05, — €jp, ). O

Lemma 4. Let B be a nonempty closed subset of R? invariant under projections
onto lines. Suppose I is a nonempty open interval of angles and every 6 € I is
surrounded. Then either

(a) some S(6) = (0, M],[M, ), on (0,00), or else

(b) there is y so that a(f) = {~} for all € I.

PROOF: Assume (a) false, so that by Lemma 1, if ¢ € I, pon41 | ¢, 02n T ¢, with
Yo € a(pn) for all n, with v, # ¢, then a(p) = {v,}.

Let v9 € I,a(pg) = {~v}. Without loss of generality let v9 > pg > v — 7.
For £ € (p0,70) NI, let & = sup{A < £ : a(A) 2 v}. Either (a) 6 = ¢, or (b)
0 < & and a(f) > v, or (¢) 0 < &, ¢ af), but 6, T 0 with v9 € a(bn). If (b)
holds, then g = 7y, contradiction # being a sup. If (c) holds, by Lemma 1, § =
contradicting £ < 9. Hence (a) holds and «(§) = {0}, since 79 > £. Similarly for
&el e (yo—m ), we have a(§) = {10}. Now I does not include vy (modulo )
since, if it did, there would be 6, T vy (or 0y, | v0 — m) with vy € @(0n), Vv # Y0,
contradicting «(6n) = 7o, since 0, € I. 0

Lemma 5. Let B be a nonempty closed subset of R? which is invariant under
projections onto lines. If there is an open interval of angles which are surrounded,
then B is a union of parallel lines, or B is contained in a line through 0, or there is
0, and M, N > 0, such that (0, M] C S() C (0, W], or [M,00) C S(6) C [N, o).

PROOF: Let I be an open interval of angles with a(z) = {v} for each z € I. Assume
B is not a union of parallel lines or a subset of Rz(y). We can find an angle 6 # v
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(mod 7) with «(6) 3 v, # . Let P be the projection onto Rz () along x(¢)), and
P be the projection onto Rx(6) along x(7y). Then PPy(x(0)) = wyx(f) for some wy.
The set {wy : § € I} is an open interval (wg, w1 ), wy < wi, so that if w € (wg, w1),
then wS(60) C S(6).

Suppose (wg,w1) N (1,00) # (. Then there are wg and w3 in (wp,w1),1 <
wy < ws, and n € N with wg""'l = wj. Then [wg,wg"'l] = [wy,wy] so for
each = € [wg,wg"'l], we have xS(0) C S(6). Since w2S(0) C S(0), we have
x € [w§‘+1,w£‘+2] implying xS(0) C S(f), and so on, giving xS(0) C S(0) for all
z > wh. Note S(6) # 0, so taking y € S(6), [why, o) C S(6).

If (wg, w1)N(—00, —1) # 0, then (w3, w?)N (1, 00) # ) and we apply the argument
above with w% and w% instead of wg and wy.

If (wp,w1) N (—=1,1) # 0, then a similar argument gives (0,w"y] C S(#) for
y € S(#). Now the complement S(6)’ is nonempty and invariant under {w™!,;w €
(wo,w1)}. Hence when S(6) 2 (0, M],S(0) 2 [N, o00) for some N € R, and when
S(0) 2 [N, 00),S5(0) 2 (0, M]. O

Lemma 6. Let B be a nonempty closed subset of R? which is invariant under
projections onto lines. Let B contain (0,)x for some x # 0, > 0. Then B is one
of (a), (b) or (c) of Theorem 1.

PROOF: We may suppose none of these hold. Hence there is a projection P onto
Ry for some Ry # Rz, not along z, giving ey > 0 with (0,&,]y C B, replacing y by
—y if required.

Let K = {y: [0,1]y C B}. Suppose y,z € K, linearly independent. Let P be
a projection on R(y + z), P(B) € B. P~Y((y + 2)/2) intersects (0, 1]y or (0,1]z,
giving (y + z)/2 € K. If y,z € K and are linearly dependent, then (y + 2)/2 € K,
so K is a closed convex set invariant under projections onto lines.

Suppose there is w # 0, A, | 0, \pw ¢ K. Then let us project onto Rw along s.
We find K C (—o0,0]w + Rs. But since for all y, y or —y is in the cone generated
by K, we have (—c0,0) +Rs contained in this cone. It follows that (—e,e)s C K for
some ¢ > 0, and all projections onto Rt # Rs are along s, a contradiction. Hence,
for all w # 0, there exists € > 0,[0,e]w C K, and 0 € int K.

Now K contains no lines since B doesn’t. Hence K N —K is a bounded convex
neighborhood of 0, with boundary D say. Now D N 0K # (), 9K is connected, and
D N oK is closed in 0K, so to show D = 0K, we want D N 0K open in 0K. If
we parametrize D and 0K by polar coordinates, giving radius r as a function of
angle 0, they are absolutely continuous, and a.e. (f) we have the derivative of r with
respect to € unique and equal for both curves since for all § there exist supporting
lines to K and K N —K which are parallel.

We claim K = B. Since K is a convex bounded neighborhood of 0, «(f) is
nondecreasing, apart from a jump from § to =, and has period 7. We may take
0 so that «(f) is not constant on a neighborhood of . And if ¢, — 0, A, €
alen), An # p € «af), then N\, stays away from 0 (mod =) since int(K) # 0.
By Lemma 1, S(0) is an interval (6,¢]. Here, the line Rz(f) intersects 0K at
a point not in the relative interior of a line segment of JK, we have a(f) = v for
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01 < 0 < 0y with S(01) = (0,e1] and S(f2) = (0,e2]. Hence S(0) is an interval for
each 6 € [61,602]. O

Lemma 7. Let B be a nonempty closed subset of R? which is invariant under
projections onto lines. Suppose there is wg € R?\ {0} and \,, — oo such that either
for all n, A\ wg € B, or for all n, Aywg ¢ B. Then B is either:

(a) contained in a line Rz,

(b) a union of parallel lines, or

(c) for every nonzero w in R?, there is Ay, — oo with either A\, w € B for all n,
or \pw ¢ B for all n.

PROOF: Assume neither (a) nor (b) hold.

(i) Suppose Apwg ¢ B, A, — oo. We claim this holds for all w # 0. Suppose
not. Let S = {v # 0: there exists M > 0, [M,c0)v C B}, so S # ), and let
zg € S. Take P a projection into Rwg along s, P(B) C B. Then S C Rs +
(=00, 0Jwg. Since (a) and (b) do not hold, there is y ¢ Rzp,y € S. Hence for
all v £0, v or —v is in S, and so the open half plane Rs + (—o00,0)wg C S.
It follows that s and —s are in S. Hence the projection onto Rz # Rs is
along s, giving (b).

(ii) Suppose A lwg € B for all n. Let S = {s € R?\ {0}: there exists ¢, | 0,
ens € B}. Suppose, to derive a contradiction, there is vy with (0,¢)vg ¢ B,
for some € > 0, we argue as in (i) to find S = Rt + (—o0, 0]vg, if we project
onto Rug along ¢, giving (b). O

Theorem 8. Let B be a closed nonempty subset of R? and suppose there is w €
R2, w # 0, and \,, — 00, such that A;lw € Bor \yw ¢ B.

For every one dimensional subspace m, there exists a linear projection P : R?
— m with P(B) C B iff B is one of:

(a) a subset, containing 0, of a line through 0,
(b) a union of parallel lines, containing 0,
(¢) a bounded convex symmetric neighborhood of 0.

ProoF: This follows from Lemmas 1 to 7. [l

Proposition 9. Let B be a nonempty closed subset of R", such that for all w in
an n — 1 dimensional subspace W, there is a sequence (wy,) in (0,00)w N B tending
to 0, or a sequence (wy,) in (0,00)w N B’, ||wg|| — occ.
B is invariant under projections onto lines iff B is one of:
(a) S+ E,FE a subspace, 0 € S C ¢, ¢ a 1 dimensional subspace, { N E = {0}, 5
not convex and symmetric,
(b) B+ E, B the unit ball in a subspace M, given by a norm, and E a subspace
with M 1 E = {0}.

PROOF: <= Straightforward.
= Suppose (b) does not hold. We claim there is e; # 0 with BNRe; not convex
or not symmetric about 0.
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If B is not symmetric, this is immediate. Suppose B is not convex, so there are
a,bin B with (a 4+ 0)/2 ¢ B. We may assume {a, b} linearly independent. There
isw # 0 in (Ra + Rb) N W. Hence B N (Ra + Rb) is a union of parallel lines on
a subset of a line, and is not convex, giving eq.

Let F be the linear span of B, of dimension m. Suppose b € B\ Rej. Then
BN (Rej +Rb) is a union of parallel lines, S+Reg say, since BNRe; is not symmetric
or not convex. If m > 2, take b ¢ Rej + Reg, b € B, giving es ¢ Re; + Rey with
S+ Reg C B.

Continuing, we have a basis (e1,...em) of F with S 4+ Re; C B for i > 2. We
see that S+ F C B, where E = Reg + - - - + Rey,. But if P(B) C B and P projects
F on Rejy, then P(E) ={0},s0 BC S+ E, giving B=S+ E. O

Example 10. We give the simplest example of a closed nonempty subset B of R™
which is invariant under projections onto lines, but which has, for all z # 0, (0,&)x C
B’ for some ¢ > 0 and [M, o)z C B for some M.

B = m{:v cx; € (o0, —1]U {0} U[1,00)}.
i=1

Problem 11. How can one describe all such sets as the above (by other than their
defining property of being invariant under projections onto lines)?

Theorem 12. Let B be a nonempty closed subset of a real locally convex topo-
logical vector space E, whose closed subspaces are barrelled. Suppose for all w in
a hyperplane W, there is a sequence A\, — oo with \yw ¢ B or )\I;Iw € B.

For all one dimensional subspaces m, there exists a continuous linear projection
P : E — m such that P(B) C B is one of:

(a) a closed convex circled subset whose linear hull is closed,
(b) S+ F, where0 € S, S a closed subset of a one dimensional subspace ¢, S not
both convex and symmetric, F' a closed linear subspace not containing ¢.

PROOF: = Suppose for all finite dimensional subspaces X of F, BN X is a closed
convex circled set. Then B is a closed convex circled set. Let G denote its linear hull.
If G is not closed, we can take a one dimensional subspace m C G with mNG = {0}.
Let P be a projection on m with P(B) C B. Since P(B) CmnNB = {0},P =0
on G by linearity and on G by continuity, contradicting P being the identity on m.
Hence G is closed.

Otherwise, by Theorem 1.9, there is a finite dimensional subspace X with BNX =
S 4+ Fx, where S is a subset of a 1 dimensional subspace ¢, not both convex and
symmetric, and F'y is a linear subspace, S & Fx. For Y a finite dimensional
subspace, Y O X, we have BNY = S + Fy, Fy a linear subspace, S & Fy. Let
F=cl(V){Fy :Y > X}. Now claim B =S+ F and ¢ & F. Projecting onto ¢ with
P,P(B) C B, we have Fyy C N(P) for all Y, and N(P) is closed, giving F' C N(P)
and ¢ & F. If b € B, take Y a finite dimensional subspace containing b and X, so
be S+ Fy CS+F. Since forall Y, S+ Fy C B and B is closed, S+ F C B,
proving the claim.
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<= Let H be the linear hull of B. Note H is closed. Suppose m & H,m = Rz,
say. Take a nonempty convex open neighborhood A of z,, not intersecting H. By
Mazur’s theorem, a geometrical version of Hahn—Banach, ([1, II, Theorem 3.1]),
there is a closed hyperplane in E containing M and not intersecting A. This gives
a continuous linear f: E — R with f(H) =0, f(zm) =1, and put Py = f(y)xm.

Suppose m C B, m = Rxy, say, take a continuous linear f : E — R with f(xm)
=1 and put Py = f(y)xm. Now suppose m C H,m & B. In case (a), since H is
barrelled, B is a neighborhood of 0 in H, being a barrel in it. We let m = Rz,
where 2y, is in the boundary of B in H. By the First Separation Theorem ([1, II,
Theorem 9.1, Corollary]), there is a closed real hyperplane in H supporting B at
ZTm, giving f : H — R linear, continuous, with f(z,,) = 1. Extending f to F [1, II,
Theorem 4.2]) gives Py = f(y)zm as required.

In case (b), take a closed hyperplane in H containing F', but not x;,, by Mazur’s
theorem as above, i.e. a continuous linear f : H — R with f(z,,) = 1. Extending
f to E gives Py = f(y)am as required. O
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