Sets invariant under projections onto one dimensional subspaces

SIMON FITZPATRICK, BRUCE CALVERT

Abstract. The Hahn-Banach theorem implies that if m is a one dimensional subspace of a t.v.s. E, and B is a circled convex body in E, there is a continuous linear projection P onto m with $P(B) \subseteq B$. We determine the sets B which have the property of being invariant under projections onto lines through 0 subject to a weak boundedness type requirement.

Keywords: convex, projection, Hahn–Banach, subsets of \mathbb{R}^2

Classification: 52ADY, 46A55

Definition. Let $B \subseteq \mathbb{R}^n$. We say B is invariant under projections onto lines to mean for all lines m through 0 there is a linear projection P from \mathbb{R}^n onto m with $P(B) \subseteq B$.

Notation. We will first let $B \subseteq \mathbb{R}^2$. We talk about the projection onto m along x, for $x \neq 0$, to mean the linear projection onto m with $N(P) \ni x$. For $\theta \in \mathbb{R}$, let $x(\theta) = (\cos \theta, \sin \theta) \in \mathbb{R}^2$, and let $\alpha(\theta) = \{\gamma \in (-\frac{\pi}{2}, \frac{\pi}{2}] : \text{the projection } P \text{ onto } \mathbb{R}x(\theta) \text{ along } x(\gamma) \text{ satisfies } P(B) \subseteq B\}$. We let $S(\theta) = \{t > 0 : tx(\theta) \in B\}$.

Lemma 1. Let *B* be a closed nonempty subset of \mathbb{R}^2 which is invariant under projections onto lines. For some θ , suppose there is a sequence $\varphi_n \to \theta$ and $\lambda_n \in \alpha(\varphi_n)$ and $\mu \in \alpha(\theta)$ such that $\lambda_n \neq \mu$ and $\liminf \sin^2(\lambda_n - \theta) > 0$ (i.e. λ_n stays away from $\theta \pmod{\pi}$). Then $S(\theta)$ is $(0, \infty)$ or (0, M] or $[M, \infty)$ for some M > 0.

PROOF: Suppose $0 < a < b < \infty$ with a, b in $S(\theta)$ but $(a, b) \cap S(\theta) = \emptyset$. Let P be the projection onto $\mathbb{R}x(\theta)$ along $x(\mu)$, and let P_n be the projection onto $\mathbb{R}x(\varphi_n)$ along $x(\lambda_n)$. Then $P^{-1}((a, b)x(\theta)) \cap B$ is empty and so, if $C_n = P_n^{-1}(P^{-1}(a, b)x(\theta) \cap \mathbb{R}x(\varphi_n)) \cap (0, \infty)x(\theta)$, then $C_n \cap B = \emptyset$. Because $\lambda_n \neq \mu, C_n \neq (a, b)x(\theta)$, and because λ_n stays away from $\theta \pmod{\pi}$, $C_n \rightarrow (a, b)x(\theta)$ as $n \rightarrow \theta$. Thus, since C_n is a multiple of $(a, b)n(\theta)$, C_n contains either $ax(\theta)$, or $bx(\theta)$, a contradiction.

Thus $S(\theta)$ is an interval. Suppose $S(\theta) = [a, b]$ with $0 < a < b < \infty$. Then $P_n([a, b]x(\theta)) \subseteq B$ and if $V_n = P(P_n([a, b]x(\theta)))$, then $V_n \subseteq B$. However, $V_n \neq [a, b]x(\theta)$ since $\lambda_n \neq \mu$ and $V_n \rightarrow [a, b]x(\theta)$ as $n \rightarrow \infty$ since λ_n stays away from θ (mod π). Thus V_n being a multiple of $[a, b]x(\theta)$, contains points of $(0, \infty)(\theta)$ not in $[a, b]x(\theta)$, a contradiction.

Hence $S(\theta) = (0, M], [M, \infty)$ or $(0, \infty)$.

Definition. We call an angle $\theta \in \mathbb{R}$ surrounded, if there are $\theta_n \to \theta, \theta_{2n} < \theta, \theta_{2n+1} > \theta$, and $\gamma \neq \theta$ so that $\gamma \in \alpha(\theta_n)$ for all n.

Lemma 2. Let B be a closed nonempty subset of \mathbb{R}^2 which is invariant under projections onto lines. For all $\theta \in \mathbb{R}$, one of the following holds.

(a) $\lim_{\varphi \to \theta^+} \sin(\alpha(\varphi) - \theta) = 0$,

(b) $\lim_{\varphi \to \theta^{-}} \sin(\alpha(\varphi) - \theta) = 0$,

(c) $S(\theta) = (0, M], [M, \infty)$ or $(0, \infty)$ for some M > 0,

(d) θ is surrounded.

PROOF: If (a) and (b) do not hold, there is $\theta_n \to \theta, \theta_{2n} < \theta, \theta_{2n+1} > \theta$ with $\liminf \sin^2(\lambda_n - \theta) > 0$ for some $\lambda_n \in \alpha(\theta_n)$. Unless there is $\gamma \in \alpha(\theta)$ such that $\lambda_n = \gamma$ for all large *n*, in which case θ is surrounded, Lemma 1 shows that (c) holds.

Lemma 3. Let B be a nonempty closed subset of \mathbb{R}^2 which is invariant under projections onto lines. The set of θ such that (a) or (b) of Lemma 1.2 hold, is nowhere dense in \mathbb{R}^2 .

PROOF: If there were a sequence θ_n of angles of type (a) so that $\{\theta_n : n \in \mathbb{N}\}$ was dense in an open interval I, then for each j, $\sin^2(\alpha(\varphi) - \varphi) < j^{-1}$, if $\varphi \in (\theta_n, \theta_n + \varepsilon_{jn})$, where $\varepsilon_{jn} > 0$. Thus in a dense G_{δ} set in I, we have $\sin^2(\alpha(\theta) - \theta) = 0$, which is impossible. For (b), take $(\theta_n - \varepsilon_{jn}, \theta_n)$.

Lemma 4. Let B be a nonempty closed subset of \mathbb{R}^2 invariant under projections onto lines. Suppose I is a nonempty open interval of angles and every $\theta \in I$ is surrounded. Then either

- (a) some $S(\theta) = (0, M], [M, \infty)$, on $(0, \infty)$, or else
- (b) there is γ so that $\alpha(\theta) = \{\gamma\}$ for all $\theta \in I$.

PROOF: Assume (a) false, so that by Lemma 1, if $\varphi \in I, \varphi_{2n+1} \downarrow \varphi, \varphi_{2n} \uparrow \varphi$, with $\gamma_{\varphi} \in \alpha(\varphi_n)$ for all n, with $\gamma_{\varphi} \neq \varphi$, then $\alpha(\varphi) = \{\gamma_{\varphi}\}.$

Let $\gamma_0 \in I, \alpha(\varphi_0) = \{\gamma\}$. Without loss of generality let $\gamma_0 > \varphi_0 > \gamma_0 - \pi$. For $\xi \in (\varphi_0, \gamma_0) \cap I$, let $\theta = \sup\{\lambda < \xi : \alpha(\lambda) \ni \gamma_0\}$. Either (a) $\theta = \xi$, or (b) $\theta < \xi$ and $\alpha(\theta) \ni \gamma_0$, or (c) $\theta < \xi, \gamma_0 \notin \alpha(\theta)$, but $\theta_n \uparrow \theta$ with $\gamma_0 \in \alpha(\theta_n)$. If (b) holds, then $\gamma_0 = \gamma_\theta$, contradiction θ being a sup. If (c) holds, by Lemma 1, $\theta = \gamma_0$ contradicting $\xi < \gamma_0$. Hence (a) holds and $\alpha(\xi) = \{\gamma_0\}$, since $\gamma_0 > \xi$. Similarly for $\xi \in I, \xi \in (\gamma_0 - \pi, \gamma_0)$, we have $\alpha(\xi) = \{\gamma_0\}$. Now I does not include γ_0 (modulo π) since, if it did, there would be $\theta_n \uparrow \gamma_0$ (or $\theta_n \downarrow \gamma_0 - \pi$) with $\gamma_{\gamma_0} \in \alpha(\theta_n), \gamma_{\gamma_0} \neq \gamma_0$, contradicting $\alpha(\theta_n) = \gamma_0$, since $\theta_n \in I$.

Lemma 5. Let B be a nonempty closed subset of \mathbb{R}^2 which is invariant under projections onto lines. If there is an open interval of angles which are surrounded, then B is a union of parallel lines, or B is contained in a line through 0, or there is θ , and M, N > 0, such that $(0, M] \subseteq S(\theta) \subseteq (0, W]$, or $[M, \infty) \subseteq S(\theta) \subseteq [N, \infty)$.

PROOF: Let *I* be an open interval of angles with $\alpha(x) = \{\gamma\}$ for each $x \in I$. Assume *B* is not a union of parallel lines or a subset of $\mathbb{R}x(\gamma)$. We can find an angle $\theta \neq \gamma$

(mod π) with $\alpha(\theta) \ni \psi, \psi \neq \gamma$. Let P be the projection onto $\mathbb{R}x(\theta)$ along $x(\psi)$, and P be the projection onto $\mathbb{R}x(\theta)$ along $x(\gamma)$. Then $PP_{\theta}(x(\theta)) = w_{\theta}x(\theta)$ for some w_{θ} . The set $\{w_{\theta} : \theta \in I\}$ is an open interval $(w_0, w_1), w_0 < w_1$, so that if $w \in (w_0, w_1)$, then $wS(\theta) \subseteq S(\theta)$.

Suppose $(w_0, w_1) \cap (1, \infty) \neq \emptyset$. Then there are w_2 and w_3 in $(w_0, w_1), 1 < w_2 < w_3$, and $n \in \mathbb{N}$ with $w_2^{n+1} = w_3^n$. Then $[w_2^n, w_2^{n+1}] = [w_2^n, w_3^n]$ so for each $x \in [w_2^n, w_2^{n+1}]$, we have $xS(\theta) \subseteq S(\theta)$. Since $w_2S(\theta) \subseteq S(\theta)$, we have $x \in [w_2^{n+1}, w_2^{n+2}]$ implying $xS(\theta) \subseteq S(\theta)$, and so on, giving $xS(\theta) \subseteq S(\theta)$ for all $x \geq w_2^n$. Note $S(\theta) \neq \emptyset$, so taking $y \in S(\theta), [w_2^n y, \infty) \subseteq S(\theta)$.

If $(w_0, w_1) \cap (-\infty, -1) \neq \emptyset$, then $(w_0^2, w_1^2) \cap (1, \infty) \neq \emptyset$ and we apply the argument above with w_0^2 and w_1^2 instead of w_0 and w_1 .

If $(w_0, w_1) \cap (-1, 1) \neq \emptyset$, then a similar argument gives $(0, w^n y] \subseteq S(\theta)$ for $y \in S(\theta)$. Now the complement $S(\theta)'$ is nonempty and invariant under $\{w^{-1}, ; w \in (w_0, w_1)\}$. Hence when $S(\theta) \supseteq (0, M], S(\theta)' \supseteq [N, \infty)$ for some $N \in \mathbb{R}$, and when $S(\theta) \supseteq [N, \infty), S(\theta)' \supseteq (0, M]$.

Lemma 6. Let B be a nonempty closed subset of \mathbb{R}^2 which is invariant under projections onto lines. Let B contain $(0, \varepsilon)x$ for some $x \neq 0, \varepsilon > 0$. Then B is one of (a), (b) or (c) of Theorem 1.

PROOF: We may suppose none of these hold. Hence there is a projection P onto $\mathbb{R}y$ for some $\mathbb{R}y \neq \mathbb{R}x$, not along x, giving $\varepsilon_y > 0$ with $(0, \varepsilon_y]y \subseteq B$, replacing y by -y if required.

Let $K = \{y : [0,1]y \subseteq B\}$. Suppose $y, z \in K$, linearly independent. Let P be a projection on $\mathbb{R}(y+z), P(B) \subset B$. $P^{-1}((y+z)/2)$ intersects (0,1]y or (0,1]z, giving $(y+z)/2 \in K$. If $y, z \in K$ and are linearly dependent, then $(y+z)/2 \in K$, so K is a closed convex set invariant under projections onto lines.

Suppose there is $w \neq 0, \lambda_n \downarrow 0, \lambda_n w \notin K$. Then let us project onto $\mathbb{R}w$ along s. We find $K \subseteq (-\infty, 0]w + \mathbb{R}s$. But since for all y, y or -y is in the cone generated by K, we have $(-\infty, 0) + \mathbb{R}s$ contained in this cone. It follows that $(-\varepsilon, \varepsilon)s \subseteq K$ for some $\varepsilon > 0$, and all projections onto $\mathbb{R}t \neq \mathbb{R}s$ are along s, a contradiction. Hence, for all $w \neq 0$, there exists $\varepsilon > 0, [0, \varepsilon]w \subseteq K$, and $0 \in \operatorname{int} K$.

Now K contains no lines since B doesn't. Hence $K \cap -K$ is a bounded convex neighborhood of 0, with boundary D say. Now $D \cap \partial K \neq \emptyset$, ∂K is connected, and $D \cap \partial K$ is closed in ∂K , so to show $D = \partial K$, we want $D \cap \partial K$ open in ∂K . If we parametrize D and ∂K by polar coordinates, giving radius r as a function of angle θ , they are absolutely continuous, and a.e. (θ) we have the derivative of r with respect to θ unique and equal for both curves since for all θ there exist supporting lines to K and $K \cap -K$ which are parallel.

We claim K = B. Since K is a convex bounded neighborhood of 0, $\alpha(\theta)$ is nondecreasing, apart from a jump from $\frac{\pi}{2}$ to $\frac{-\pi}{2}$, and has period π . We may take θ so that $\alpha(\theta)$ is not constant on a neighborhood of θ . And if $\varphi_n \to \theta, \lambda_n \in$ $\alpha(\varphi_n), \lambda_n \neq \mu \in \alpha(\theta)$, then λ_n stays away from $\theta \pmod{\pi}$ since $\operatorname{int}(K) \neq \emptyset$. By Lemma 1, $S(\theta)$ is an interval $(\theta, \varepsilon]$. Here, the line $\mathbb{R}x(\theta)$ intersects ∂K at a point not in the relative interior of a line segment of ∂K , we have $\alpha(\theta) = \gamma$ for $\theta_1 \leq \theta \leq \theta_2$ with $S(\theta_1) = (0, \varepsilon_1]$ and $S(\theta_2) = (0, \varepsilon_2]$. Hence $S(\theta)$ is an interval for each $\theta \in [\theta_1, \theta_2]$.

Lemma 7. Let B be a nonempty closed subset of \mathbb{R}^2 which is invariant under projections onto lines. Suppose there is $w_0 \in \mathbb{R}^2 \setminus \{0\}$ and $\lambda_n \to \infty$ such that either for all $n, \lambda_n^{-1}w_0 \in B$, or for all $n, \lambda_n w_0 \notin B$. Then B is either:

- (a) contained in a line $\mathbb{R}x$,
- (b) a union of parallel lines, or
- (c) for every nonzero w in \mathbb{R}^2 , there is $\lambda_n \to \infty$ with either $\lambda_n^{-1} w \in B$ for all n, or $\lambda_n w \notin B$ for all n.

PROOF: Assume neither (a) nor (b) hold.

- (i) Suppose λ_nw₀ ∉ B, λ_n → ∞. We claim this holds for all w ≠ 0. Suppose not. Let S = {v ≠ 0 : there exists M > 0, [M, ∞)v ⊆ B}, so S ≠ Ø, and let z₀ ∈ S. Take P a projection into ℝw₀ along s, P(B) ⊆ B. Then S ⊆ ℝs + (-∞, 0]w₀. Since (a) and (b) do not hold, there is y ∉ ℝz₀, y ∈ S. Hence for all v ≠ 0, v or -v is in S, and so the open half plane ℝs + (-∞, 0)w₀ ⊆ S. It follows that s and -s are in S. Hence the projection onto ℝx ≠ ℝs is along s, giving (b).
- (ii) Suppose $\lambda_n^{-1} w_0 \in B$ for all n. Let $S = \{s \in \mathbb{R}^2 \setminus \{0\}$: there exists $\varepsilon_n \downarrow 0$, $\varepsilon_n s \in B\}$. Suppose, to derive a contradiction, there is v_0 with $(0, \varepsilon)v_0 \notin B$, for some $\varepsilon > 0$, we argue as in (i) to find $S = \mathbb{R}t + (-\infty, 0]v_0$, if we project onto $\mathbb{R}v_0$ along t, giving (b).

Theorem 8. Let *B* be a closed nonempty subset of \mathbb{R}^2 and suppose there is $w \in \mathbb{R}^2$, $w \neq 0$, and $\lambda_n \to \infty$, such that $\lambda_n^{-1} w \in B$ or $\lambda_n w \notin B$.

For every one dimensional subspace m, there exists a linear projection $P : \mathbb{R}^2 \to m$ with $P(B) \subseteq B$ iff B is one of:

- (a) a subset, containing 0, of a line through 0,
- (b) a union of parallel lines, containing 0,
- (c) a bounded convex symmetric neighborhood of 0.

PROOF: This follows from Lemmas 1 to 7.

Proposition 9. Let B be a nonempty closed subset of \mathbb{R}^n , such that for all w in an n-1 dimensional subspace W, there is a sequence (w_k) in $(0,\infty)w \cap B$ tending to 0, or a sequence (w_k) in $(0,\infty)w \cap B'$, $||w_k|| \to \infty$.

B is invariant under projections onto lines iff B is one of:

- (a) S + E, E a subspace, $0 \in S \subseteq \ell, \ell$ a 1 dimensional subspace, $\ell \cap E = \{0\}, S$ not convex and symmetric,
- (b) B+E, B the unit ball in a subspace M, given by a norm, and E a subspace with M ∩ E = {0}.

PROOF: \Leftarrow Straightforward.

 \implies Suppose (b) does not hold. We claim there is $e_1 \neq 0$ with $B \cap \mathbb{R}e_1$ not convex or not symmetric about 0.

If B is not symmetric, this is immediate. Suppose B is not convex, so there are a, b in B with $(a + b)/2 \notin B$. We may assume $\{a, b\}$ linearly independent. There is $w \neq 0$ in $(\mathbb{R}a + \mathbb{R}b) \cap W$. Hence $B \cap (\mathbb{R}a + \mathbb{R}b)$ is a union of parallel lines on a subset of a line, and is not convex, giving e_1 .

Let F be the linear span of B, of dimension m. Suppose $b \in B \setminus \mathbb{R}e_1$. Then $B \cap (\mathbb{R}e_1 + \mathbb{R}b)$ is a union of parallel lines, $S + \mathbb{R}e_2$ say, since $B \cap \mathbb{R}e_1$ is not symmetric or not convex. If m > 2, take $b \notin \mathbb{R}e_1 + \mathbb{R}e_2, b \in B$, giving $e_3 \notin \mathbb{R}e_1 + \mathbb{R}e_2$ with $S + \mathbb{R}e_3 \subseteq B$.

Continuing, we have a basis (e_1, \ldots, e_m) of F with $S + \mathbb{R}e_1 \subseteq B$ for $i \geq 2$. We see that $S + E \subseteq B$, where $E = \mathbb{R}e_2 + \cdots + \mathbb{R}e_m$. But if $P(B) \subset B$ and P projects F on $\mathbb{R}e_1$, then $P(E) = \{0\}$, so $B \subseteq S + E$, giving B = S + E.

Example 10. We give the simplest example of a closed nonempty subset B of \mathbb{R}^n which is invariant under projections onto lines, but which has, for all $x \neq 0, (0, \varepsilon)x \subseteq B'$ for some $\varepsilon > 0$ and $[M, \infty)x \subseteq B$ for some M.

$$B = \bigcap_{i=1}^{n} \{ x : x_i \in (-\infty, -1] \cup \{0\} \cup [1, \infty) \}.$$

Problem 11. How can one describe all such sets as the above (by other than their defining property of being invariant under projections onto lines)?

Theorem 12. Let *B* be a nonempty closed subset of a real locally convex topological vector space *E*, whose closed subspaces are barrelled. Suppose for all *w* in a hyperplane *W*, there is a sequence $\lambda_k \to \infty$ with $\lambda_k w \notin B$ or $\lambda_k^{-1} w \in B$.

For all one dimensional subspaces m, there exists a continuous linear projection $P: E \to m$ such that $P(B) \subseteq B$ is one of:

- (a) a closed convex circled subset whose linear hull is closed,
- (b) S+F, where 0 ∈ S, S a closed subset of a one dimensional subspace l, S not both convex and symmetric, F a closed linear subspace not containing l.

PROOF: \implies Suppose for all finite dimensional subspaces X of $E, B \cap X$ is a closed convex circled set. Then B is a closed convex circled set. Let G denote its linear hull. If G is not closed, we can take a one dimensional subspace $m \subseteq \overline{G}$ with $m \cap G = \{0\}$. Let P be a projection on m with $P(B) \subseteq B$. Since $P(B) \subseteq m \cap B = \{0\}, P = 0$ on G by linearity and on \overline{G} by continuity, contradicting P being the identity on m. Hence G is closed.

Otherwise, by Theorem 1.9, there is a finite dimensional subspace X with $B \cap X = S + F_X$, where S is a subset of a 1 dimensional subspace ℓ , not both convex and symmetric, and F_X is a linear subspace, $S \subsetneq F_X$. For Y a finite dimensional subspace, $Y \supseteq X$, we have $B \cap Y = S + F_Y$, F_Y a linear subspace, $S \subsetneq F_Y$. Let $F = \operatorname{cl}(V)\{F_Y : Y \ge X\}$. Now claim B = S + F and $\ell \subsetneq F$. Projecting onto ℓ with $P, P(B) \subseteq B$, we have $F_Y \subseteq N(P)$ for all Y, and N(P) is closed, giving $F \subseteq N(P)$ and $\ell \subsetneq F$. If $b \in B$, take Y a finite dimensional subspace containing b and X, so $b \in S + F_Y \subseteq S + F$. Since for all Y, $S + F_Y \subseteq B$ and B is closed, $S + F \subseteq B$, proving the claim.

 \leftarrow Let H be the linear hull of B. Note H is closed. Suppose $m \subsetneq H, m = \mathbb{R}x_m$ say. Take a nonempty convex open neighborhood A of x_m not intersecting H. By Mazur's theorem, a geometrical version of Hahn–Banach, ([1, II, Theorem 3.1]), there is a closed hyperplane in E containing M and not intersecting A. This gives a continuous linear $f: E \to \mathbb{R}$ with $f(H) = 0, f(x_m) = 1$, and put $Py = f(y)x_m$.

Suppose $m \subseteq B, m = \mathbb{R}x_m$ say, take a continuous linear $f : E \to \mathbb{R}$ with $f(x_m) = 1$ and put $Py = f(y)x_m$. Now suppose $m \subseteq H, m \subsetneq B$. In case (a), since H is barrelled, B is a neighborhood of 0 in H, being a barrel in it. We let $m = \mathbb{R}x_m$ where x_m is in the boundary of B in H. By the First Separation Theorem ([1, II, Theorem 9.1, Corollary]), there is a closed real hyperplane in H supporting B at x_m , giving $f : H \to \mathbb{R}$ linear, continuous, with $f(x_m) = 1$. Extending f to E [1, II, Theorem 4.2]) gives $Py = f(y)x_m$ as required.

In case (b), take a closed hyperplane in H containing F, but not x_m , by Mazur's theorem as above, i.e. a continuous linear $f: H \to \mathbb{R}$ with $f(x_m) = 1$. Extending f to E gives $Py = f(y)x_m$ as required.

References

[1] Schaeffer H.H., Topological Vector Spaces, MacMillan, N.Y., 1966.

Department of Mathematics and Statistics, University of Auckland, Auckland, New Zealand

(Received January 14, 1991)