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Sets invariant under projections onto
two dimensional subspaces

SIMON FITZPATRICK, BRUCE CALVERT

Abstract. The Blaschke-Kakutani result characterizes inner product spaces E, among
normed spaces of dimension at least 3, by the property that for every 2 dimensional sub-
space F' there is a norm 1 linear projection onto F'. In this paper, we determine which
closed neighborhoods B of zero in a real locally convex space E of dimension at least 3
have the property that for every 2 dimensional subspace F' there is a continuous linear
projection P onto F' with P(B) C B.
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1. Introduction.

As mentioned in the summary, if B is the closed unit ball in a normed space FE
and for every 2 dimensional subspace F' there is a linear projection P of E onto F
with P(B) C B, then the norm is given by inner product, as explained in Chapter 12
of Amir’s book [1]. A natural question is to see, if there are other sets B such that
for every 2 dimensional F' there is a linear projection onto F' under which B is
invariant, or whether we characterize the ball in an inner product space by this
property, among a wider class of sets B.

Restricting ourselves to closed neighborhoods of zero, we find B is the inverse
image under a continuous linear map of: a closed neighborhood of 0 in R, a unit
ball in R2, or a unit ball in an inner product space.

The reader will note that a similar problem motivates the paper [3].

2. Two dimensional results.

The following result appears as Theorem 8 of [3].

Lemma 2.1. Let B be a closed nonempty subset of R? and suppose there is w €
R2,w # 0 and A\, — oo, such that \;'w € B or \yw ¢ B. For every one
dimensional subspace m, there exists a linear projection P : R2 — m with P(B) C
B iff B is one of:

(a) a subset, containing 0, of a line through 0,
(b) a union of parallel lines, containing 0,
(¢) a bounded convex symmetric neighborhood of 0.

233



234

S. Fitzpatrick, B. Calvert

Lemma 2.2. Let B be a closed subset of R? such that for any vertical line x = ¢
there is a v € R? such that projecting affinitely onto x = ¢ along Ruv takes B to B.
Then B is either

(a) a union of lines, all parallel, or
(b) the epigraph of a convex function h : R — R, or the negative of such a set.

PROOF: One possibility is that B is empty. Otherwise, we consider two cases,
depending on whether cocl(B) is equal to R? or not.

(a) K = cocl(B) # R2. Suppose u is an extreme point of K. We claim u € B.
For if not, take B(u,r) C B’, r > 0, with B(u,r) intersecting K in two points
u and w, noting K # {u} since B intersects every vertical line. Now u ¢ aff v, w,
since it is extreme, so u is in the open half space given by aff{v, w}which does not
intersects B. This contradicts u € cocl(B).

Suppose (a,b) € R? is a point in JK. To fix ideas, suppose ¢ < b implies
(a,c) ¢ K, by relabelling the y axis. Suppose there is a nonempty open interval
(e, f) C (b,00) with (a,g) ¢ B, if g € (e, f). Then projecting onto {(z,y) : ¢ = a}
along a line of slope a(a) gives the open strip {(z,y) € R% : y € (e, f) + a(a)(a —
a)} C B'.

Suppose for the purpose of obtaining a contradiction that this intersects K.
Points in the intersection must be nonextreme points, giving a nonempty open
line interval in K N B’, having slope 3 say. Taking (p,q) € R? in this interval,
a projection onto x = p taking B to B must be along the line with slope 5. But
there is an end of the closed line segment in 0K with slope 8 which must be an
extreme point, hence in B, and which projects onto (p, q), a contradiction.

Hence either 0K has slope «(a), or (a,c¢) € B for all ¢ > b. In the first case,
projecting onto any line z = ¢, taking B to B, must take K to K and be along
the line slope «(a), giving B as the union of lines with slope a(a). In the second
case, B being closed is equal to K, which is the epigraph of a convex function from
R to R. Without our assumption that the lower half of x = a was in B’ we could
reverse the direction of the y axis to give B as the negative of such an epigraph.

(b) cocl(B) = R2. If a whole vertical line is in B, then B = R2. Suppose now
that for all ¢ € R, if S(¢) = {y : (¢,y) € B} then S(c) # R. Note for all ¢, S(c) is
not bounded above or below. We have for all ¢, a(c) such that for all d,

) S(d) + a(c)(c — d)  S(c).

We take two cases, depending on whether « is either nondecreasing or nonincreasing,
or not. If « is nonincreasing, by renaming we may assume it is nondecreasing.
(b1) « is nondecreasing. We define p(z) = [; a(z)dz, which gives the epi-
graph H of p of a closed convex set such that for all ¢ and d, S(d)+a(c)(c—d) C S(c).
Since S(c) # R and S(c) is not bounded above or below for all ¢, S(c¢) has more
than one component, so that there is a bounded open interval (d,e) in S(c)’, with
the points (¢, d) and (¢, e) in B. Let Hy, be a vertical translate of H with (c,d) € Hp,.
Now Hjp N B is invariant under projections onto lines © = ¢ along lines with slope
a(c), and by (a), since (¢, (d +€)/2) ¢ B, H, N B is a union of lines, with slope «
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say. Thus the line through (c,d) with slope « is in 0K, and so «(d) = « for all d.
Hence, by (1), since S(d) + a(c — d) C S(c) and S(c) + a(d — ¢) C S(d), we have
S(d) + a(c—d) = S(c) and B is a union of lines with slope «.

(b2) There are z.y,w € R. z < y < w, such that a(z) > a(y) < a(w). (If we had
a(z) < a(y) > a(w), we could relabel the y axis to obtain this assumption.)
By (1), S(w) + a(y)(y — w) C S(y), and S(y) + a(w)(w — y) € S(w), 5o S(y) +
a(w) - ay)(w — y) € S(y). Tet 1 = (a(w) — aly)(w — y) > 0. Let x5 =
a(z) — a(y))(z —y) > 0. We have two cases; x1/x2 is rational or irrational.

b2a) x1/x0 € Q. Let x1 = kd,zo = hd, k,h € N, d > 0. Then s(y) — khd C
) and S(y) + khd C S(y). Hence the map x — x + khd is onto S(y), since
z € S(y) gives © = (x — khd) + (khd). Now let g : S(y) — S(w) be given by
z = g(z)+a(y)(w—y),and let f: S(w) — S(y) be given by x = f(z)+a(w)(y—w).
The map & — z + khd is the composite (f o g)¥, so g and f are bijections,

(2) S(w) = S(y) + ay)(w —y).

(b2b) z1/29 = o ¢ Q. There are sequences n;, m; in N with [n;a —m;| < 5-. So
y — y+axg and y — y— xo take S(y) to S(y). Hence for y € S(y),y; = y— m,xg—l—
(nj—1)x1 € S(y) and y; — y—x1, giving y — 1 € S(y) since S(y) is closed. Hence,
as in (b2a), the map g : S(y) — S(w) is a bijection, or S(w) = S(y) + a(y)(w — y),
o (2) holds for all z; and xg. We either have: (c) for all z < y,a(z) > a(y), or
(d) there is zp < y,a(z9) < a(y). In case (d) we have for all w > y, (2) holds,
by using z above, if a(w) > a(y) and zg, if a(w) < a(y), and noting (2) holds, if
a(w) = a(y). And in case (c), we replace (2) by S(z) = S(y) + a(y)(w — y) for
all z < y. In case (d), we have a(w) = a(y) for w > y and in case (c) we have
a(z) = a(y) for all z < y, a contradiction to (b2). O

3. Three dimensional results.

Lemma 3.1. Let B be a closed subset of R3, N a two dimensional subspace,
d € N,d # 0. Suppose any plane M containing 0 but not Rd is the range of
a projection P with P(B) C B and P(N) C N. Then B is a union of translates
of Rd, or BC N.

PROOF: Let b € B\ N. Any line m in b+ N not parallel to Rd is the range of an
affine projection in b+ N. By Lemma 1.2, BN (b+ N) is a union of parallel lines or
a convex set Kp # b+ B intersecting every translate of m in b+ N. Supposing the
latter and not the former, we have a contradiction by taking m to be a supporting
line to K} not parallel to Rd. Hence BN (b+ N) is a union of translates of a line k
in b+ N. If k is not parallel to Rd and BN (b+ N) # b+ N, we may take a translate
of k contained in the complement of B in b+ N, to obtain a contradiction. O

The following result of Blaschke is proved simply in [2, Lemma 1] except that p
is assumed to be a norm.
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Lemma 3.2. Let X be a real three dimensional normed space with the basis
{e1, ea,e3}, where e; is a unit vector. Suppose every two dimensional subspace which
contains ej is the range of a nonexpansive projection along a vector in span {ea, es}.
Then there is a function F : R? — R such that for all z; € R, ||z1e1 4+ zoea+x3€3]| =
F(z1, |z2e2 + x3e3]).

Theorem 3.3. Let B be a closed neighborhood of 0 in R3. For all planes M
through 0, there exists a linear projection P of R3 onto M with P(B) C B iff B is
one of:

(a) the closed unit ball given by an inner product,

(b) a union of parallel planes,

(¢) K + Ru, where K is a bounded convex symmetric neighborhood of 0 in
a plane M through 0 and Rv is a line not in M.

PRrROOF: We let C' = cocl(B) and consider four distinct cases:

(i) C contains no lines,

(ii) C contains a line but no planes,

(iii) C contains a plane by not R3,

(iv) C =R3.

(i) Let D = CN—C. Then D is a closed convex bounded symmetric neighborhood
of 0, invariant under projections onto all 2 dimensional subspaces, and hence the
unit ball given by an inner product, by the Blaschke-Kakutani theorem.

Take any 2 dimensional subspace M, and consider 0D N M and dC N M. Let Re
be perpendicular to M under the inner product. Any plane through Re is the range
of a projection taking C' to C, hence D to D, hence is along a direction in M. We
can parametrize 0D N M and 0C' N M to give radius d(f) and ¢(0) say as functions
of angle #; these functions are absolutely continuous and their derivative is equal for
angles, where d(6) and ¢(f) have a unique tangent, i.e. almost everywhere. Hence,
if d(#) and c(0) are equal to 6y, they are equal near 6y, and M NOC' NID is open in
MNoD. Since M NOC NAD is also closed in M NJD, and nonempty, and M N9JD
is connected, M NOC = M NID. Hence C' = D.

We claim B = D. If ¢ € 0D, but « ¢ B, then = ¢ cocl(B), a contradiction,
giving 0D C B. If x € int(D), take P a projection onto M, a 2 dimensional
subspace containing z, with P(B) C B. Then x € P(dD) C B. Hence D C B,
giving B =D.

(ii) C may be represented as K + Rov, where K is a closed convex set, not
containing a line, in a plane M, and v ¢ M. All projections onto planes not
containing Rv are along Rv, so B \ Rv is a union of lines parallel to Rv. Let
B1 = BURv. Now in R3/Rv, we have all lines through 0 being the range of
a projection taking the quotient B /Ruv to itself.

By Lemma 1.1 and our hypotheses, it must be a closed bounded convex symmet-
ric neighborhood of 0. Hence By = K + Rw, with K a closed bounded symmetric
convex neighborhood of 0 in M, v ¢ M. Hence, Rv C B, and B = K + Ru.

(iii) Let N be a plane through O with a translate of N contained in ¢. Now any
plane M through O, M # N, is the range of projection along a direction in N.
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Hence for b € B\ N, any line b + N is the range of an affine projection in b+ N
taking B to B.

By Lemma 1.2, BN (b+ N) is a convex set not equal to b4+ N but meeting all
lines, which is impossible, or is a union of parallel lines. Hence b+ N C B.

(iv) We assume B is not a union of parallel lines.

(a) We claim that for any line Rw, w # 0, and any M € R, B intersects [M, co)w.
For, take a plane Rw + Rwv, and project onto it along u. Suppose we project onto
Rw + Ru along y. B intersects [M, co)w + Ry 4+ Ru. Projecting onto Rw + Ru gives
[M, 00)w intersecting B.

(b) Since B # R3, take a € B’,a # 0. Take a plane N through Ra, and project
along b, so B(a,§) + Rb C B’. Take the plane Ra + brb and project along c onto it.
For § > 0 small, B(a,d) + Rb+ Rc C B’. Let us call the set between two parallel
planes a “slice”.

(c) We claim there is a basis (f1, f2, f3) and a nonempty open ball B(c,d) with
the three slices B(c,d) + Rf1 + Rfa, B(c,d) + Rfs + Rfs, B(c,d) + Rf; + Rf3 all
contained in B’. Since we are assuming B not a union of parallel lines, take the slice
B(a,8) + M C B’,§ > 0,M on a plane through 0 and by Lemma 3.1 take N # M
a plane through 0 with projection along r ¢ M. By Lemma 3.1, take () another
plane through 0, not containing N N M, with projection along s ¢ M. Let ¢ be
the point of intersection of a + M, N and ). We take the three planes through c:
c+M,c+Rr+ (MNN),c+Rs+ (MNQ). These are all contained in B’, together
with slices containing them, and the intersection is {c}. Together they give f; as
required.

(d) We claim there is a sequence of projections P, onto planes through 0 with
|Pn|l — oo. Assume by renaming that c is the positive octant. For § > 0, let
f5 = £ — 0(f; + £3), where (f{. f5. f5) is the dual basis o (f1, f2, f5).

Suppose there is 6 > 0 with {z = (fs5,2) > 0}NBN{z: 1 > ¢1,22 > 2,23 < 3}
nonempty. Then by compactness there is a maximal such ¢, d(max), and an e € B
with (f(;(max),e) =0,e1 > c1,e2 > co,e3 < c3. For § > §(max) there is no such e.
If there is no & > 0, take d(max) = 0 and in this case by (a) there is e € B with
el > c1,eg > ¢ and ez = 0.

Let d(n) — d(max)™ and let P, be a projection on N(fsmy)- U Py is
a bounded subsequence, then P, e — e, giving P,(,)e in B, with (P, €)1 >
1, (Ppm)€)2 = 2, (Pym)e)3 < c3, contradicting the maximality of §(max). Hence
[Pl — oc.

(e) We derive a contradiction, showing B is a union of parallel lines. Since
|Pn|l — oo, and P, (B) contains the symmetric convex set P, B(0,¢) for some
e > 0, we have P, (B) intersecting c + Rf; + Rf; for n large, for some i and j.

(f) We claim B is a union of parallel planes. Since B is a union of parallel lines,
there is ¢ # 0, so B is a union of translates of Rq. By 2.1 applied to R?’/Rq, we
have B/Rq a union of parallel lines, since its convex closure is R3 /Rgq, and it is
a neighborhood of 0. This gives B a union of parallel planes. O
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4. Higher dimensions.

Theorem 4.1. Suppose B is a closed neighborhood of 0 in a real locally convex
topological vector space X of dimension > 3. For all two dimensional subspaces M
there is a continuous linear projection P of X onto M with P(B) C B, iff B is the
inverse image under a continuous linear map T of:

(a) the closed unit ball in an inner product H,
(b) the closed unit ball given by a norm on R?, or
(¢c) a closed neighborhood of 0 in R.

PROOF: = (1) We suppose that for al 3 dimensional subspaces F' of X FN B is
a union of parallel planes. We claim B is a union of parallel closed hyperplanes, so
(c) holds.

For H a closed subspace of codimension > 2 with H C B, we claim there is
a closed subspace Hi1 with Hy1 C B and H of codimension 1 in H4;. Let H_; be
a closed subspace of H of codimension 1 and let E be a three dimensional subspace
of X with ENH_; = {0}. Let M be a two dimensional subspace of F contained
in B. Given h € H_1,h # 0,(Rh+ M) N B is a union of translates of M, so
h+ M C B, giving H_ 1+ M C B. Take H{1 = H_1 + M. By Zorn’s lemma,
a closed subspace H of codimension < 1 in X is contained in B. If z € B\ H, and
h € H, let E be a three dimensional space containing x, h and a two dimensional
subspace M of H. Then x4+ M C B, giving v +h € B. Thus for x € B,z + H C B,
and the claim is proved, B =U{z + H : z € B}.

(2) We now suppose there exists a 3 dimensional subspace Fy such that Fy N B
contains no plane, and we suppose that for all three dimensional subspaces F, F N B
contains a line. We claim B is convex, contains a 2 codimensional closed sub-
space E, and with F9 a complementary subspace, B N Fs is a bounded symmetric
neighborhood of 0 in F>. We take Fo C Fy with Eo N B a bounded symmetric
neighborhood K of 0. Let e € Eg,e # 0, BNRe = {Xe: |A] < 1}.

B is convex since if a,b € B, we take a 3 dimensional space GG, containing a, b
and e, and note that if BN G is a union of planes, it is of the form M + Xe, |A| < 1,
and hence BN G is convex.

Let H be a closed subspace of X, of codimension > 2, with H C B. Take
f ¢ Ea+ H. Now (E2 + Rf) N B contains a line Re say, giving B O H + Re since
it is closed and convex. Hence, by Zorn’s lemma there is a closed subspace E of
codimension 2 with £ C B.

Since B is closed and convex, K + E C B. Let b € B, with b = bg + be, by €
Es,be € E. We claim by € K. If by # 0,BN (E2 + Rbg) is projected onto Fy
taking B to B, hence along bg, and bg € K = BNEy. Thus B = K+ E, giving (b).

(3) We suppose there exists a three dimensional subspace Fgy such that Fg N B
contains no line. Now as in (2) we find B is convex, and the same idea gives B
symmetric. By Zorn’s lemma, there is a maximal closed subspace E C B. Let
Q@ : X — X/FE be the projection. We see Q(B) is convex, symmetric, and radial. If
p is its Minkowski functional, by maximality of F, if p(Qz) = 0, then Rx € B and
x € E, so p is a norm.
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We claim p is given by an inner product, by the Blaschke-Kakutani theorem. Let
M be a 2 dimensional subspace of z/F and take N a two dimensional subspace of
X with QN = M. Let R be a continuous projection of X onto N with R(B) C B.
We define P : X/E — M by P(Qx) = QR(x); this is well defined for if Qz = 0,
then z € F giving Rz € E and QRx = 0. We see P maps X/E — M and is the
identity on M and maps Q(B) to Q(B). Hence Q(B) is the closed unit ball in an
inner product space, Q : X — X/E is continuous and linear, and B = Q~1(Q(B))
giving (a).

<= (a) Suppose (a) holds. Let M be a 2 dimensional subspace of X.

(i) Let TM be a 2 dimensional subspace of H. Let R be the projection on
TM under which the unit ball B[0,1] in H is invariant. Let T |5; be the
restriction, and define P = (T |37) ' RT. One checks P takes X to M, is
the identity on M, is a continuous linear map and maps B = T~ (B0, 1])
to itself.

(ii) Let TM be a 1 dimensional subspace of H. Take (e1,e2) a basis of M, Te;
= 0. Let S: X — M be a continuous projection, Sz = x1(z)e1 + x2(x)es.
Define Pz = (T |ge,) ' RT> + x1(2)e1, where R is the projection on 7'M
leaving B[0, 1] invariant.

(iii) Let TM be 0 dimensional. Let S : X — M be as in (ii) and take P = S.

(b) Suppose (b) holds. Let M be a 2 dimensional subspace of X. Let T : X — R?
be given, B[0,1] the unit ball in R, and B = T~1B|0,1].
(i) Let TM = R2. Define P = (T |5;) " 'T.
(ii) Let TM be 1 dimensional. Let R be the projection on R? of TM leaving
B[0,1] invariant, and define P as in (a)(ii).
(iii) Let TM be 0 dimensional. Define P as in (a)(iii).

(c) Suppose (c) holds. Let M be a two dimensional subspace of !X. Let T': X —
R? be given, A a closed neighborhood of 0 in R and B = T~1(A).

(i) Let T(Rm) = R,m € M. Define P = (T |gy,) 7.
(ii) Let T(M) = 0. Define P as in (a)(ii).
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