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Sigma order continuity and best approximation in L̺-spaces

Shelby J. Kilmer, Wojciech M. Kozlowski, Grzegorz Lewicki

Abstract. In this paper we give a characterization of σ-order continuity of modular function
spaces L̺ in terms of the existence of best approximants by elements of order closed
sublattices of L̺ . We consider separately the case of Musielak–Orlicz spaces generated by
non-σ-finite measures. Such spaces are not modular function spaces and the proofs require
somewhat different methods.
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Introduction.

The notion of the σ-order continuity plays a central role in the theory of spaces
of measurable functions. Many of the properties of these spaces depend on the size
of the subspace consisting of those functions having σ-order continuous norms or
F -norms. These properties include the existence and the form of linear functionals,
reflexivity, uniform convexity, the relationships among different types of conver-
gence, the density of the simple functions, separability and so on. An enormous
amount of literature relating to these topics is available; see e.g. [4]–[16].

In modular function spaces, the σ-order continuity of ‖·‖̺ can be characterized by
the ∆2-condition. See [4]. In special cases of Orlicz spaces and their generalizations,
various formulations of the ∆2-condition have been studied since the 1930’s. See
e.g. [2,], [7], [12], [13].

Many of the properties of Lp-spaces derive from the fact that Lp-spaces have
a σ-order continuous norm. In general, σ-order continuous spaces of measurable
functions have a structure similar to that of Lp-spaces and enjoy many of these
properties, for example, analogues of Lebesgue’s and Vitali’s convergence theorems
hold. See e.g. [4]. In [1], [14], several results showing the existence of best approx-
imants by elements of closed sublattices of Lp-spaces were presented. In standard
Orlicz spaces Lϕ, with Lϕ convex, [8] showed that the existence of best approxi-
mants is closely related to the ∆2-condition. It is therefore natural to expect that in
more general situations, σ-order continuity should be characterized by the existence
of best approximants by elements of closed sublattices.

In modular function spaces, [3] showed the existence of best aproximants in
order closed sublattices of L̺-spaces and most of our present results will be proved
in the same context. However, the interesting special case of Orlicz spaces, the so
called Musielak–Orlicz spaces, is covered by general results only in the σ-finite case.
Therefore in Section 2, we sketch some of the results necessary to adapt our general
methods to the non-σ-finite case.
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Preliminaries.

We start with some definitions and basic facts. For proofs and details see [3]–[6].
Let X be a nonempty set, Let Σ be a σ-algebra of subsets of X and let P ⊂ Σ be

a δ-ring such that E∩A ∈ P whenever E ∈ P and A ∈ Σ, and such that there exists
a nondecreasing sequence of sets {Xk}

∞
1 ⊂ P with X =

⋃∞
k=1Xk. By E we mean

the set of all simple functions of the form s = Σn
k=1αk1Ak

, where each Ak ∈ P and
each αk ∈ R. A mapping ̺ : E × Σ → [0,∞] is called a function semimodular, if it
satisfies the following properties:

(1) ̺(0, A) = 0 for each A ∈ Σ.
(2) ̺(f, A) ≤ ̺(g, A), if |f | ≤ |g| on A ∈ Σ.
(3) A 7→ ̺(f, A) : Σ → [0,∞] is a σ-subadditive measure for each f ∈ E .
(4) ̺(α, A) → 0 whenever α → 0 for every A ∈ P . (Here α denotes the constant

function with value α.)
(5) ̺(α, An) → 0 for every α ∈ R whenever An ↓ Φ and {An}

∞
1 ⊂ P .

(6) There exists α0 ≥ 0 such that ̺(β, A) = 0 for every β ∈ R whenever A ∈ P
and ̺(α, A) = 0 for some α > α0.

A function semimodular ̺ satisfying (6) above with α0 = 0 is called a function
modular. The definition of ̺ is then extended to M , the set of all real-valued
measurable functions f , and to all E ∈ Σ by defining that

̺(f, E) = sup {̺(g, E) : g ∈ E and |g| ≤ |f | on E}.

For the sake of simplicity, ̺(f) is written in place of ̺(f, X).
Let ̺ be a function semimodular on (X, Σ,P). We define m̺ = sup {̺(g) : g ∈

M} ∈ [0,∞], and for each f ∈ M , βf = sup {β ≥ 0 : ̺(βf) < m̺} ∈ [0,∞]. The
function rf : [0, βf ] → [0,∞] is defined by rf (t) = ̺(tf) and Rs, respectively Rm,
is the set of all nonzero function semimodulars, respectively function modulars, ̺
such that for every f ∈ M , rf is continuous. If we assume that ̺ ∈ Rs or Rm, it
follows immediately that ̺ is a left continuous semimodular and therefore has the

Fatou property; that is when each fn ≥ 0, ̺(liminf
n

fn) ≤ liminf
n

̺(fn).

The set of functions,

L̺ = {f ∈ M : ̺(λf) → 0 as λ → 0},

forms a vector subspace of M and is denoted as a modular function space.
A set E ∈ Σ is called ̺-null, if ̺(α, E) = 0 for each α > 0. We say that ̺ has

property (K), if ̺ satisfies

sup
f∈L̺

̺(f, X) = sup
f∈L̺

̺(f, E),

whenever E is not ̺-null. See [3, Definition 1.19].
Let ̺ be given by

̺(f, A) =

∫

A
ϕ(x, f(x)) dµ(x),
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where µ, a measure on X , and ϕ : X × R → [0,∞) satisfy the following:
(1) u 7→ ϕ(x, u) is a nondecreasing continuous even function such that ϕ(x, 0)

= 0, ϕ(x, u) > 0 for u 6= 0, and ϕ(x, u) → ∞, as u → ∞.
(2) x 7→ ϕ(x, u) is a locally integrable function for each u ∈ R; that is a measur-

able function such that
∫

A ϕ(x, u) dµ(x) < ∞ when u ∈ R and µ(A) < ∞.
In this case ̺ is called a Musielak–Orlicz modular. If we define P to be σ-

ring of all sets of finite measure then the corresponding Musielak–Orlicz modular is
a function modular if and only if µ is σ-finite. If µ is not σ-finite, then Lϕ(X, Σ,P , µ)
is not a modular function space, since X cannot be represented as a countable union
of sets from P .

If ̺ is a function semimodular or a Musielak–Orlicz modular, then the formula

‖f‖̺ = inf {α > 0 : ̺(f/α) ≤ α}

defines an F -norm under which the metric space L̺ , with d(f, g) = ‖f − g‖̺ is
complete. Moreover, if ̺ is a semimodular, ‖ · ‖̺ is a function modular; that is ξ
defined by

ξ(f, A) = ‖f1A‖̺

is a function modular, and Lξ = L̺.
We understand the ̺-distance, respectively the ‖ · ‖̺-distance, from an f ∈ L̺

to a set D ⊂ L̺ to be

dist̺(f, D) = inf {̺(f − h) : h ∈ D},

respectively
dist‖·‖̺

(f, D) = inf {‖f − g‖̺ : g ∈ D}.

The set of all best ̺-approximants, respectively best ‖ · ‖̺-approximants of f , with
respect to D will be denoted by

P̺(f, D) = {g ∈ D : ̺(f − g) = dist̺(f, D)},

respectively
P‖·‖̺

(f, D) = {g ∈ D : ‖f − g‖̺ = dist‖·‖̺
(f, D)}.

If D satisfies P̺(f, D) 6= 0, respectively P‖·‖̺
(f, D) 6= Φ, for every f ∈ L̺, we say

D is ̺-proximinal, respectively ‖ · ‖̺-proximinal.

Definition 0.1.

(a) A set function η : Σ → [0,∞] is called order continuous if whenever
Ak ↓ Φ, η(Ak) → 0.

(b) E̺ = {f ∈ M : E 7→ ̺(αf, E) is order continuous on Σ ∀α > 0} =
= {f ∈ M : ‖f1Ak

‖̺ → 0 as Ak ↓ Φ}.
(c) ‖ · ‖̺ it is σ-order continuous if ‖fn‖̺ → 0 whenever fn ↓ 0.

E̺ is a closed subspace of L̺ having some properties similar to those of Lp.
For instance, analogues of Lebesgue’s dominated convergence theorem and Vitali’s
theorem hold. See [4]. The following simple result is well known for function
semimodulars. We will include a proof that applies Musielak–Orlicz modulars as
well.
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Theorem 0.2. If ̺ ∈ Rs or if ̺ is a Musielak–Orlicz modular, then E̺ = L̺, if
and only if ‖ · ‖̺ is σ-order continuous.

Proof: ⇒ Suppose that L̺ = E̺. Let {fn}
∞
1 ⊂ L̺be such that fn ↓ 0-a.e. By

the Lebesgue dominated convergence theorem, using f1 as the dominating function
from E̺, we obtain that ‖fn‖̺ → 0.

⇐ Let f ∈ L̺ and let Ak ↓ Φ. Then |f1Ak
| ↓ 0̺-a.e. and by (b), ‖f1Ak

‖̺ → 0,
showing f ∈ E̺ . �

The proof of the following theorem is identical to the proof of Theorem 4.6
in [3]. This proof makes no use of σ-finiteness and hence applies to Musielak–Orlicz
modulars as well as to ̺ ∈ Rs. Recall that C ⊂ L̺ is order closed in L̺, if from
fn ∈ C and fn ↑ f ∈ L̺ , (or fn ↓ f ∈ f ∈ L̺), it follows that f ∈ C.

Theorem 0.3. Let ̺ ∈ Rs be orthogonally additive and have the property (K) or
let ̺ be a Musielak–Orlicz modular. If C ⊂ L̺ is a nonempty order closed lattice,
then C is ‖ · ‖̺-proximinal.

Theorem 0.4. Let ̺ ∈ Rs or let ̺ be a Musielak–Orlicz modular. If C ⊂ L̺ is
‖ · ‖̺-proximinal, then C is ‖ · ‖̺–closed.

Proof: Let {gn}
∞
1 ⊂ C, and let g ∈ L̺ be such that ‖gn − g‖̺ → 0. Then

dist‖·‖̺
(g,C)=0. Since C is ‖ · ‖̺-proximinal, there exists h ∈ P‖·‖̺

(g, C), which

implies that ‖g − h‖̺ = 0. Therefore g = h ∈ C, completing the proof. �

Section 1.

In this section, we give several characterizations of those modular function spaces
L̺ in which E̺ is all of L̺ ; that is, in which ‖ · ‖̺ is σ-order continuous. These
characterizations include properties of the sublattices of L̺ and the existence of
best approximants by elements of those sublattices. In order to keep our notation
to a minimum, we make the following definitions:

Definition 1.1. (a) L denotes the family of all sublattices of L̺.
(b) L0 denotes the family of all order closed lattices in L.
(c) Ln denotes the family of all F -norm closed lattices in L.
(d) Ls denotes {C ∈ L :

∨∞
k=1 gk ∈ C, whenever {gk}

∞
1 ⊂ C}.

(e) Li denotes {C ∈ L :
∧∞

k=1 gk ∈ C, whenever {gk}
∞
1 ⊂ C}.

(f) L↑ denotes {{gk}
∞
1 ⊂ L̺ : g1 ≤ g2 ≤ · · · ≤ gk ≤ . . . }.

(g) L↓ denotes {{gk}
∞
1 ⊂ L̺ : g1 ≥ g2 ≥ · · · ≥ gk ≥ . . . }.

Observe that L↑ ⊂ Li and L↓ ⊂ Ls.

Definition 1.2. Let C ⊂ L. We say that C has the existence property, if every
order closed C ∈ C is ‖ · ‖̺-proximinal.

Remark 1.3. If ̺ is orthogonally additive and has the property (K), then L has
the existence property. See [3, Theorem 4.6].

Remark 1.4. If X is countable and ̺ has the property (K), then Ls ∪Li has the
existence property. See [3, Theorem 3.6].

We now present the main theorem of this section.
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Theorem 1.5. Let ̺ ∈ Rs, let C ⊂ L have the existence property and suppose
that either L↑ ⊂ C or L↓ ⊂ C. Then the following statements are equivalent:

(a) L̺ = E̺.
(b) ‖ · ‖̺ is σ-order continuous.
(c) C ∩L0 = C ∩Ln.
(d) C is ‖ · ‖̺-proximinal for every C ∈ C ∩Ln.
(e) P‖·‖̺

(f, C) 6= Φ for every f ∈ E̺ and for every C ∈ C ∩Ln.

Proof: (a) ⇔ (b). This is Theorem 0.2.
(b) ⇒ (c). Let C ∈ C ∩ Ln, and suppose that {fn}

∞
1 ⊂ C with fn ↑ f ∈ L̺ ,

(respectively fn ↓ f ∈ L̺). Then (f − fn) ↓ 0, (respectively (fn− f) ↓ 0). Hence by
σ-order continuity, ‖f − fn‖̺ → 0. Since C is F -norm closed, f ∈ C. This shows
that C ∈ L0 and hence that C ∩Ln ⊂ C ∩L0.

On the other hand, since C has the existence property, we have by Theorem 0.4
that C ∩L0 ⊂ C ∩Ln. Thus (c) holds.
(c) ⇒ (d). Every C in C∩Ln is order closed by (c), hence by the existence property
of C, C is ‖ · ‖̺-proximinal.
(d) ⇒ (e). This is obvious, since E̺ ⊂ L̺.
(e) ⇒ (a). We consider only the case L↑ ⊂ C, since the other case is similar. We

assume for contradiction that E̺ * L̺.

Step 1: Suppose that X is a ̺-atom; that is, if A * X , then A is ̺-null. Since
elements of P must cover X , we see that X ∈ P . Let f ∈ M . Then f is finite
̺-a.e., for otherwise we could decompose X by inverse images. In particular, f is
bounded, which implies that f ∈ E̺. Therefore L̺ ⊂ M ⊂ E̺ ⊂ L̺ , showing that
L̺ = E̺ . We can therefore assume that X can be decomposed into two measurable
sets A and B, neither of which are ̺-null.

Step 2: There exists a nonnegative function w ∈ L̺ \ E̺ . Since at least one of
the functions w1A and w1B is not in E̺ , we may assume that h = w1A ∈ L̺ \E̺ .

Choose a sequence of nonnegative simple functions {hk}
∞
1 ⊂ E , with supports

in A, such that hk ↑ h ̺-a.e. Let u ≥ 0 be any simple function with support in B
such that ̺(u) > 0. Choose c > 0 so that 3c < supt≥0 ‖tu‖̺ . Since 0 6= h ∈ L̺ ,
there exists λ > 0 such that 0 < ‖λh‖̺ < c. For each k ∈ N define

ϕk(t) = ‖tu + λhk‖̺ .

Note that
sup
t≥0

ϕk(t) ≥ sup
t≥0

‖tu‖̺ − ‖λhk‖̺ ≥ 3c − c = 2c

and that ϕk(0) = ‖λhk‖̺ < c. Let {ck}
∞
1 ⊂ (c, 2c] satisfy ck ↓ c. Since for each k,

ϕk is continuous, we can choose tk so that ϕk(tk) = ck.
Define wk = −tku + λhk for each k and let C = {wk}

∞
1 . We claim that C ∈ L↑.

For all k,

‖tk+1u + λhk+1‖̺ = ck+1 ≤ ck = ‖tku + λhk‖̺ ≤ ‖tku + λhk+1‖̺ ,
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by the monotonicity of the F -norm. Since each term is nonnegative, again by the
monotonicity of the F -norm, tk+1 ≤ tk for every k. From this and the fact that the
hk’s are increasing, we infer that wk ≤ wk+1 for each k, proving our claim.

Furthermore, since A and B are disjoint, for each k,

‖wk − 0‖̺ = ‖ | − tku + λhk| ‖̺ = ‖ |tku| + λhk‖̺ = ‖tku + λhk‖̺ = ck .

Step 3: We claim that C ∈ Ln . If not, there exists g ∈ closure‖·‖̺
(C) \ C.

Since C ⊂ E ⊂ E̺ , which is F -norm closed, g ∈ E̺ . There exists a subsequence
converging to g in the F -norm and hence a subsequence {wnk

}∞1 such that wnk
→ g

̺-a.e. See Proposition 2.3.5 in [4]. In particular, since wnk
↑ λh on A, it follows

that g1A = λh ∈ L̺ \ E̺ . This shows that g /∈ E̺ , a contradiction that proves C
is F -norm closed.

Furthermore, since for each k, ‖wk − 0‖̺ = ck,

dist‖·‖̺
(0, C) = c,

while for every wk ∈ C, ‖wk −0‖̺ = ck > c. This shows that P‖·‖̺
(0, C) = Φ. SinceL↑ ⊂ C, this contradicts (e), proving that L̺ = E̺ and finishes the proof. �

Considering remarks 1.3 and 1.4, we immediately have the following corollaries:

Theorem 1.6. If ̺ ∈ Rs is orthogonally additive and has the property (K), then
the following statements are equivalent:

(a) L̺ = E̺ .
(b) ‖ · ‖̺ is σ-order continuous.
(c) L0 = Ln .
(d) C is ‖ · ‖̺-proximinal for every C ∈ Ln .
(e) P‖·‖̺

(f, C) 6= Φ for every f ∈ E̺ and for every C ∈ Ln .

Theorem 1.7. Let X be countable and let ̺ ∈ Rs have the property (K). If
C = Li ∪Ls , then the following statements are equivalent:

(a) L̺ = E̺ .
(b) ‖ · ‖̺ is σ-order continuous.
(c) C ∩L0 = C ∩Ln .
(d) C is ‖ · ‖̺-proximinal for every C ∈ C ∩Ln .
(e) P‖·‖̺

(f, C) 6= Φ for every f ∈ E̺ and for every C ∈ C ∩Ln .

These theorems cover many interesting situations. Some examples follow:

Example 1.8. Theorem 1.6 applies to Musielak–Orlicz spaces Lϕ(X, ΣP , µ) if µ
is σ-finite and P is a δ-ring of sets of finite measure.

Example 1.9. Theorem 1.7 applies to Lorentz-type Lp-spaces for X countable.
Here

̺(f, A) = sup
µ∈Γ

∫

A
|f(k)|p dµ(k),

where Γ is a family of positive σ-finite measures on X , such that supµ∈Γ µ(A) < ∞
for each finite subset A ⊂ X .
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Example 1.10. Theorem 1.7 applies in the following space: Let X = N, and let
Σ be the σ-algebra of all subsets of X . For each n define the probability measure
µn by

µn({k}) =

{ 1
n for k = 1, 2, . . . , n

0 for k = n + 1, n + 2, . . .

and then ̺ by

̺(h) = sup
n

∫

X
|h| dµn

= sup
n

∞
∑

k=1

µn({k})|h(k)|

= sup
n

1

n

n
∑

k=1

|h(k)|.

Section 2.

Theorem 1.6 applies to Musielak–Orlicz spaces Lϕ(X, Σ,P , µ) if µ is σ-finite and
P is the ∆-ring of all sets of finite measure. We proceed to show that an analogue
to Theorem 1.5 holds for Lϕ(X, Σ,P , µ) when µ is not necessarily σ-finite. We first
need the following lemma.

Lemma 2.1. Let (X, µ) be a measure space and let Lϕ be a Musielak–Orlicz space.
If {fn}

∞
1 ⊂ Lϕ and ‖fn‖̺ → 0 as n → ∞, then there exists a subsequence {fn}

∞
1

such that fnk
→ 0 µ-a.e. as k → ∞.

Proof: Since ̺(fn) → 0 as n → ∞,

∫

X
ϕ(x, fn(x)) dµ(x) = ̺(fn) < ∞

for sufficiently large n. Hence we may assume that Φn ∈  L1(µ) for each n, where
Φn(x) = ϕ(x, fn(x)). By hypothesis ϕ(x, u) > 0, unless u = 0. Thus for each n

supp fn = supp Φn

which must be σ-finite, since each Φn ∈ L1(µ).
Let Sn = supp fn and define S =

⋃∞
n=1 Sn. Then S is σ-finite as well and µ|S is

a σ-finite measure.
Let D ⊂ S be any measurable set such that µ(D) < ∞. We claim that on D

fn → 0 in measure. To that end let ε > 0. Since µ|S is absolutely continuous with

respect to the measure defined by

ν(A) =

∫

A∩D
ϕ(x, ε) dµ(x),
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there exists δ > 0 such that when ν(A) < δ, µ|S(A) < ε. There exists N such that

whenever n ≥ N , ̺(fn) < δ. Let

An = {t ∈ D : |fn(t)| ≥ ε} .

Then

ν(An) =

∫

An

ϕ(x, ε) dµ(x) ≤

∫

An

ϕ(x, fn(x)) dµ(x) < δ

when n ≥ N , and consequently µ(An) < ε for such n, proving our claim.
Since S is σ-finite, there exist mutually disjoint measurable sets Bk with S =

⋃∞
k=1Bk such that µ|S(Bk) < ∞ for each k. Since ̺(fn1B1) ≤ ̺(fn) → 0, by the

above claim fn1B1 → 0 in measure. By Riesz’s theorem, there exists a subsequence
converging to zero µ-a.e. on B1. By continuing inductively, a diagonal argument
produces a subsequence converging to zero µ-a.e. on S and hence on X . This
completes the proof of the lemma. �

Theorem 2.2. Let Lϕ(X, Σ,P , µ) be a Musielak–Orlicz space and let ̺ be the
Musielak–Orlicz function modular induced by ϕ. Then the following statements are
equivalent:

(a) L̺ = E̺.
(b) ‖ · ‖̺ is σ-order continuous.
(c) L0 = Ln.
(d) Every C ∈ Ln is ‖ · ‖̺-proximinal.
(e) P‖·‖̺

(f, C) 6= Φ for every f ∈ E̺ and for every C ∈ Ln .

Proof: (a) ⇔ (b). This is Theorem 0.2.
(b) ⇒ (c). Let C ∈ Ln , and suppose that {fn}

∞
1 ⊂ C with fn ↑ f ∈ L̺ ,

(respectively fn ↓ f ∈ L̺). Then (f − fn) ↓ 0, (respectively (fn − f) ↓ 0), hence
by σ-order continuity, ‖f − fn‖̺ → 0. Since C is F -norm closed, f ∈ C. This
shows that C ∈ L0 and hence that Ln ⊂ L0 . On the other hand, Theorem 0.3
implies that each C ∈ L0 is ‖ · ‖̺-proximinal and Theorem 0.4 determines that if
C is ‖ · ‖̺-proximinal, then C ∈ Ln , completing the proof.
(c) ⇒ (d). This follows immediately from Theorem 0.3.
(d) ⇒ (e). This is obvious, since E̺ ⊂ L̺ .
(e) ⇒ (a). Suppose for contradiction that E̺ 6= L̺ .

Step 1: We claim that X can be decomposed into two disjoint non-null subsets.
Fix g ∈ L̺ \ E̺ and let S = supp g. Note that µ(S) > 0. If µ(X \ S) > 0, then we
have the desired decomposition. Assuming µ(X \S) = 0, it suffices to decompose S.

Since ϕ is locally integrable and g /∈ E̺ , either g is not bounded on S or S is
not of finite measure. If g is not bounded on S, then in particular g is not constant
on S and we can decompose S as desired by inverse image.

Let us then assume that µ(S) = ∞. Since g 6= 0, ϕ(x, λg(x)) 6= 0 for each λ > 0,
and hence there exists ε > 0 and Z ⊂ S such that Z is of positive measure and
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ϕ(x, g(x)) ≥ ε for each x ∈ Z. Suppose that µ(Z) = ∞. Then for each λ > 0,

̺(λg) =

∫

S
ϕ(x, λg(x)) dµ(x) ≥

∫

Z
ϕ(x, λg(x)) dµ(x) ≥ εµ(Z) = ∞ .

But g ∈ L̺ , so ̺(λg) → 0 as λ ↓ 0. This contradiction proves that µ(Z) < ∞.
Therefore Z and S \ Z decompose S.

Step 2: By Step 1 there exist disjoint sets A and B, each of positive measure, such
that X = A∪B. Since E̺ 6= L̺ , There exists a nonnegative function w ∈ L̺ \E̺ .
Since at least on of the functions w1A and w1B is not in E̺ , we may assume that
h = w1A ∈ L̺ \ E̺ .

We claim that there exist c ≥ 0 and C = {wk}
∞
1 ∈ L↑ such that c < ‖wk‖̺ → c

and wk ↑ h on A. The proof of this claim is exactly the same as in Step 2 of the
proof of Theorem 1.5 and will be omitted.

Step 3: Proceeding as in Step 3 of the proof of Theorem 1.5, using Lemma 1.11 in
place of Proposition 2.3.5 in [4], we can show that C ∈ Ln and that P‖·‖̺

(0, C) = Φ,

contradicting (e) and proving that L̺ = E̺ . This completes the proof. �
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