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A two weight weak inequality for potential type operators

Vachtang Kokilashvili, Jiř́ı Rákosńık

Abstract. We give conditions on pairs of weights which are necessary and sufficient for the
operator T (f) = K∗f to be a weak type mapping of one weighted Lorentz space in another
one. The kernel K is an anisotropic radial decreasing function.
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1. Introduction.

In [5], [2], a complete description is given for such pairs of weights (w,v) that
the anisotropic potential is a bounded mapping of a weighted Lebesgue space Lp

v

into a weak space Lq
w, 1 < p < q < ∞. These results were extended in [4], [6], [3]

to the case of weighted Lorentz spaces. At the same time, a sufficient condition
was established in [6], for a two weight weak type inequality for integral operators
with arbitrary positive kernels. This condition appears also necessary in some cases
which are important for applications (see [3]).
In [7], under additional assumptions on the positive kernel, a condition for pairs

of weights (w, v) was proved which is necessary and sufficient for the corresponding
integral operator to be a bounded mapping of Lp

v in the weak L
q
w, where 1 < p ≤

q <∞.
The aim of the present paper is to generalize the latter result to the case of

weighted Lorentz spaces and of kernels which are anisotropic radial decreasing
functions from the class A1. In the last section, we extend the results for more
general kernels and compare the condition for (w, v) with the other one obtained
by Gabidzashvili and Kokilashvili [2], [6].
Fix α = (α1, . . . , αn) such that αi > 0 for i = 1, . . . , n and

∑

i αi = n. For
x ∈ R

n, we put

|x|α = max
i

|xi|
αi .

This is a quasi-norm which satisfies the inequalities

(1.1) a−1|x|α − |y|α ≤ |x+ y|α ≤ a(|x|α + |y|α),

where a = 2α0−1, α0 = maxαi.
We shall assume that K is an α-anisotropic radial decreasing (a.r.d) function,

i.e. K(x) = k(|x|α), x ∈ R
n, where k is a positive non-increasing function on [0,∞).
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Throughout the paper, the symbol Q denotes the anisotropic ball

Q = Q(x, r) = {y ∈ R
n : |y − x|α ≤ r}, x ∈ R

n, r > 0.

The Lebesgue measure of a measurable set E in R
n will be denoted by |E|. Note

that |Q(x, r)| = (2r)n.
We shall say that a functionK belongs to the (anisotropic) Muckenhoupt classA1,

if there exists a constant c > 0 such that the inequality

(1.2)
1

|Q|

∫

Q
K(y) dy ≤ cK(x)

holds for every Q = Q(z, r) and for a.e. x ∈ Q.
Let 1 ≤ s ≤ p < ∞ and let µ be a Borel measure on R

n. The Lorentz space
Lps(µ) is the set of all measurable functions f with the finite norm

‖f‖Lps(µ) =
(

s

∫ ∞

0
µ({x : |f(x)| > λ})s/pλs−1 dλ

)1/s
.

Note that Lpp(µ) is the usual Lebesgue space Lp(µ).
For a measurable function f and a Borel measure µ, we define

T (fµ)(x) =

∫

Rn

K(x− y)f(y) dµ(y),(1.3)

particularly

T (f)(x) =

∫

Rn

K(x− y)f(y) dy.

Theorem 1. Let 1 < p ≤ q < ∞ and 1 ≤ s ≤ p. Let ω, µ be Borel measures
on R

n, µ non-trivial, and let ψ be a positive measurable function. Consider the
operator T defined by (1.3), where K is a positive α-anisotropic radial decreasing
function from the Muckenhoupt class A1. Then the inequality

(1.4) ω({x : T (fψµ)(x) > λ})1/q ≤
A

λ
‖f‖Lps(µ)

holds for every f and λ > 0 if and only if the inequality

(1.5) ‖χQT (χQω)ψ‖Lp′s′ (µ) ≤ Bω(Q)1/q′ <∞

holds for every Q = Q(x, r), x ∈ R
n, r > 0.

Moreover, the ratio A/B of the optimal constants is bounded from below and
above by positive numbers which do not depend on f, µ, ω and ψ.
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2. Proof of Theorem 1.

In the proof, we follow the ideas of Sawyer [7]. To generalize his result for
anisotropic potentials in Lorentz spaces, we make use of the Hölder type inequalities

(2.1) c−10 ‖f‖Lps(µ) ≤ sup
{

|

∫

Rn

fg dµ| : ‖g‖Lp′s′ (µ) ≤ 1
}

≤ c0‖f‖Lps(µ)

with 1/p+1/p′ = 1/s+1/s′ = 1 (see [1]) and of two assertions concerning coverings.
The first assertion is a Whitney type covering lemma.

Lemma 1. Let Ω be a non-empty open proper subset in R
n. Let τ > 1 and η > aτ ,

where a is the constant from (1.1). Then there exist sets Qk = Q(xk, rk), k =
1, 2, . . . , and a number ϑ = ϑ(n, a, τ, η) such that

Ω =
⋃

k

Qk ,(2.2)

Q(xk, ηrk) \ Ω 6= ∅, k = 1, 2, . . . ,(2.3)

and

(2.4)
∑

k

χQ(xk,τrk) ≤ ϑχΩ .

Proof: For x ∈ Ω, we put d(x) = infy∈∂Ω |x − y|α and r(x) = d(x)/η. Since Ω is
a proper subset in R

n, there exists x0 ∈ R
n \Ω. Without loss of generality, we can

suppose that x0 is the origin. We put d0 = 0, dj = [a
2(η + τ)/(η − aτ)]j−1, j =

1, 2, . . . , and
Ωj = {x ∈ Ω : dj−1 < |x|α < dj}.

Fix 0 < δ < 1 and j = 1, 2, . . . . Since Rj,1 := supx∈Ωj
r(x) ≤ dj/η < ∞, there

exists xj,1 ∈ Ωj such that rj,1 := r(xj,1) > δRj,1 . We proceed by induction. If
xj,1, . . . , xj,m are already chosen and

(2.5) Ωj ⊂
m
⋃

k=1

Qj,k ,

where Qj,k = (xj,k, rj,k), we stop. If (2.5) does not hold, we put Rj,m+1 =

sup{r(x) : x ∈ Ωj \
⋃m

k=1Qj,k} and find xj,m+1 ∈ Ωj \
⋃m

k=1Qj,k such that
rj,m+1 := r(xj,m+1) > δRj,m+1. If the sequence {xj,k}k obtained in this way
is finite, then

(2.6) Ωj ⊂
⋃

k

Qj,k .

Suppose that {xj,k}k is infinite. Fix k,m ∈ N such that k > m. Then

xj,k /∈ Qj,m, rj,m > δRj,m ≥ δRj,k > δrj,k ,
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and every y ∈ Q(xj,m, γrj,m) with γ =
δ

a(1+δ)
satisfies

|y − xj,k|α ≥ a−1|xj,k − xj,m|α − |y − xj,m|α > (a
−1 − γ)δrj,k = γrj,k .

Thus y /∈ Q(xj,k, γrj,k) and so the sets Q(xj,k, γrj,k) are pairwise disjoint. On the
other hand,

|y|α ≤ a(|xj,m|α + γrj,m) ≤ a(1 + γη−1)dj ,

i.e.
Q(xj,m, rj,m) ⊂ Q(0, a(1 + γη−1)dj).

Now, suppose that (2.6) does not hold. Then there exists x ∈ Ωj \
⋃

k Qj,k, and
the inequalities rj,m > δRj,m ≥ δr(x) > 0 hold for every m. Hence, the bounded

set Q(0, a(1 + γη−1)dj) contains infinite number of pairwise disjoint sets of volume
|Q(xj,m, γrj,m)| > (2γδr(x))

n. This is a contradiction, and so (2.6) holds again.
To estimate

∑

k χQ(xj,k,τrj,k), fix y ∈ Ω and consider k such that

(2.7) y ∈ Q(xj,k, τrj,k) \Q(xj,k, γrj,k).

Denote by m the minimal index k for which (2.7) is satisfied. We have

a(τ + η)rj,k ≥ a(|y − xj,k|α + d(xj,k)) ≥ d(y) ≥

≥ a−1|y − xj,k|α − d(xj,k) ≥ (a
−1η − τ)rj,m

and

|z − y|α ≤ a(|z − xj,k|α + |y − xj,k|α) ≤ δ−1a(τ + γ)rj,m, z ∈ Q(xj,k, γrj,k).

Thus

(2.8) Q(xj,k,
γ(η − aτ)

a2(τ + η)
rj,m) ⊂ Q(xj,k, γrj,k) ⊂ Q(y, δ−1a(τ + γ)rj,m)

and so the number of those indices k which satisfy (2.7) is not greater than

(

a3(τ + η)(τ + γ)

γδ(η − aτ)

)n

,

since the sets on the left hand side of (2.8) are pairwise disjoint. Choosing δ suffi-
ciently close to 1 and taking into account that at most one of the sets Q(xj,k, γrj,k)
may contain the point y, we come to the estimate

(2.9)
∑

k

χQ(xj,k,γrj,k) ≤ 2 +

(

a3(τ + η)(2aτ + 1)

η − aτ

)n

.
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Let {Qk} be a renumeration of {Qj,k : j, k = 1, 2, . . .}. The inclusion (2.2)
follows from (2.6). To prove (2.4), we observe that any y ∈ Q(xj−1,k, τrj−1,k) and
z ∈ Q(xj+1,ℓ, τrj+1,ℓ), j ≥ 2, satisfy

|y|α ≤a(|xj−1,k|α + τη
−1d(xj−1,k)) ≤ a(1 + τη−1)dj−1 =

=(a−1 − τη−1)dj < a−1|xj+1,ℓ|α − τη−1d(xj+1,ℓ) ≤ |z|α ,

i.e. Q(xj−1,k, τrj−1,k) ∩Q(xj+1,ℓ, τrj+1,ℓ) = ∅ for every k and ℓ. Using (2.9), we
conclude

ϑ ≤ 4 + 2

(

a3(τ + η)(2aτ + 1)

η − aτ

)n

.

The relation (2.3) is obvious. �

Lemma 2 (see [1]). If 1 ≤ s ≤ p <∞ and if {Ej} is a sequence of measurable sets
in R

n such that
∑

j

χEj
≤ ϑ,

then the inequality
∑

j

‖χEj
f‖p

Lps(µ)
≤ ϑ‖f‖p

Lps(µ)

holds for every f ∈ Lps(µ).

We are ready to prove Theorem 1.

Necessity. Suppose that (1.4) holds. Let E ⊂ R
n and Q be such that 0 < µ(E ∩

Q) ≤ µ(E) <∞. Then the properties of K yield

T (χE∩Qψµ)(x) ≥ inf
z,y∈Q

K(z − y)

∫

E∩Q
ψ dµ := 2λ > 0, x ∈ Q

and so

ω(Q) ≤ ω({x : T (χE∩Qψµ)(x) > λ}) ≤ (A/λ)q‖χE∩Q‖q
Lps(µ)

=

= (A/λ)qµ(E ∩Q)q/p <∞ .

Further, using (2.1) and (1.4), we obtain

‖χQT (χQω)ψ‖Lp′s′ (µ) ≤c
−1
0 sup{|

∫

Rn

T (χQω)ψf dµ| : ‖f‖Lps(µ) ≤ 1} ≤

≤c−10 sup{

∫

Q
|T (fψ)| dω : ‖f‖Lps(µ) ≤ 1} =

=c−10 sup{

∫ ∞

0
ω({y ∈ Q : |T (fψµ)(y)| > λ}) dλ :

: ‖f‖Lps(µ) ≤ 1} ≤

≤c−10

∫ ∞

0
min{ω(Q), (A/λ)q} dλ = c−10 q′Aω(Q)1/q′ .

Hence, the inequality (1.5) holds with B ≤ c−10 q′A.
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Sufficiency. Assume that (1.5) holds. Let λ > 0 and f be given. Without loss of
generality, we can suppose that f ≥ 0,

∫

|f |p dµ < ∞ and that the support of f is
compact, say

(2.10) supp f ⊂ Q(0, r).

The function T (fψµ) satisfies the condition (1.2) with the same constant c as for K
and so

(2.11) M(T (fψµ)) ≤ cT (fψµ),

where M is the anisotropic maximal operator

Mg(x) = sup
x∈Q

1

|Q|

∫

Q
|g(y)| dy.

Since M(T (fψµ)) is lower semicontinuous, the set

Ωλ = {x :M(T (fψµ))(x) > cλ}

is open.
At first, assume the case when Ωλ 6= R

n. We can use Lemma 1 to write

Ωλ =
⋃

k

Qk ,

where Qk = Q(xk, rk) and xk, rk satisfy (2.3), (2.4) with τ = 2a and η > 2a
2. For

the sake of brevity, we shall denote Q(xk, τrk) by Q
∗
k. We observe that

K(x) ≤ ctnK(y) for every t ≥ 1 and x, y with |y|α ≤ t|x|α .

Indeed, the condition (1.2) implies that

1

|Q|

∫

Q
K(z) dz ≤ cK(y′) for every Q and for a.e. y′ ∈ Q.

Since K is a.r.d., we have

K(x) ≤
1

|Q(0, |x|α)|

∫

Q(0,|x|α)
K(z) dz ≤

≤
tn1

|Q(0, t1|x|α)|

∫

Q(0,t1|x|α)
K(z) dz ≤ ctn1K(y

′)

for every t1 > t and for a.e. y′ ∈ Q(0, t1|x|α), and (2.12) follows.
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For x, z ∈ Qk and y ∈ R
n \Q∗

k, the estimate

|z − y|α ≤ a(1 + 2a)|x− y|α

holds and using (2.12), we get

T (χRn\Q∗

k
fψµ)(x) =

∫

y/∈Q∗

k

K(x− y)f(y)ψ(y) dµ(y) ≤

≤c1

∫

y/∈Q∗

k

(

1

|Qk|

∫

Qk

K(z − y) dz

)

f(y)ψ(y) dµ(y) ≤

≤
c1
|Qk|

∫

Qk

T (fψµ)(z) dz ≤

≤c1η
n 1

|Q(xk, ηrk)|

∫

Q(xk,ηrk)
T (fψµ)(z) dz,

where c1 = ca
n(1 + 2a)n. Since Q(xk, ηrk) \ Ωλ 6= ∅ by (2.3), the estimate

T (χRn\Q∗

k
fψµ)(x) ≤ c1η

ncλ

follows and we conclude

{x : T (fψµ)(x) > γλ} ∩Qk ⊂ {x : T (χQ∗

k
fψµ)(x) >

γ

2
λ} ∩Qk

for γ > 2c1η
nc. Hence, if k is such that ω(Q∗

k) > 0 and

(2.13)
1

ω(Q∗
k)

∫

Q∗

k

T (χQ∗

k
fψµ) dω ≤ βλ,

where β ∈ (0, 1) is a fixed number, then

(2.14) ω({x : T (fψµ)(x) > γλ} ∩Qk) ≤
2

γλ

∫

Qk

T (χQ∗

k
fψµ) dω ≤

2β

γ
ω(Q∗

k).

If k is such that ω(Q∗
k) > 0 and (2.13) fails, then using the Hölder inequality (2.11)

and the condition (1.5), we obtain

λqω(Q∗
k) <β

−qω(Q∗
k)
1−q

(
∫

Q∗

k

T (χQ∗

k
fψµ) dω

)q

=

=β−qω(Q∗
k)
1−q

(
∫

Q∗

k

T (χQ∗

k
ω)ψf dµ

)q

≤

≤c0β
−qω(Q∗

k)
1−q‖χQ∗

k
T (χQ∗

k
ω)ψ‖q

Lp′s′ (µ)
‖χQ∗

k
f‖q

Lps(µ)
≤

≤c0β
−qBq‖χQ∗

k
f‖q

Lps(µ)
,
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i.e.

(2.15) ω({x : T (fψµ)(x) > γλ} ∩Qk) ≤ ω(Q∗
k) ≤ (βλ)

−qBq‖χQ∗

k
f‖q

Lps(µ)
.

Summing the inequalities (2.14) and (2.15) over the appropriate indices k and using
the overlapping condition (2.4) together with Lemma 2, we get the estimate

ω{x : T (fψµ)(x) > γλ} ≤
2

γ
ϑβω(Ωλ) + (βλ)

−qBqϑq/p‖f‖q
Lps(µ)

which, according to (2.9), yields

(2.16) (γλ)qω({x : T (fψµ)(x) > γλ}) ≤

≤ 2ϑγq−1βω({x : T (fψµ)(x) > λ}) + γqBqϑq/pβ−q‖f‖q
Lps(µ)

.

In the case when Ωλ = R
n, we use (2.11), (2.1) and (1.5) and for every Q which

contains the support of f , we obtain

ω(Q) <
1

λ

∫

Q
T (fψµ) dω =

1

λ

∫

Q
T (χQω)ψf dµ ≤

≤
c0
λ
‖χQT (χQω)ψ‖Lp′s′ (µ)‖f‖Lps(µ) ≤

≤
c0
λ
Bω(Q)1/q′‖f‖Lps(µ) .

Hence,

(2.17) ω(Q)1/q ≤
c0B

λ
‖f‖Lps(µ)

and we can replace Q by R
n because Q may be arbitrarily large and the right hand

side does not depend on Q.
This and (2.16) yield the “good λ inequality”

(cγλ)qω({x : T (fψµ)(x) > cγλ}) ≤ c2βω({x : T (fψµ)(x) > λ}) + cq3B
q‖f‖q

Lps(µ)

for every λ > 0, where c2 = 2ϑγ
q−1cq and c3 = max

{

γϑ1/pβ−1, cc0γ
}

. Taking the

supremum over 0 < λ ≤ t
cγ , we obtain

(2.18) sup
0<λ≤t

λqω({x : T (fψµ)(x) > λ}) ≤

≤ c2β sup
0<λ≤t

λqω({x : T (fψµ)(x) > λ}) + cq3B
q‖f‖q

Lps(µ)
,

because t/(cγ) < t.
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All that we have to do is to prove that the left hand side of (2.18) is finite for

every t > 0 and to choose B ∈ (0, c−12 ). The inequality (1.5) then follows with

A ≤ Bc3(1− c2β)
−1/q .

Since ω({x : (fψµ)(x) > λ}) is a decreasing function of λ, it is sufficient to
consider only small λ. If inf T (fψµ) = λ0 > 0, then according to the estimate (2.17)
with R

n in place of Q, we have

λqω({x : T (fψµ)(x) > λ}) ≤ cq0B
q‖f‖q

Lps(µ)

for every λ ∈ (0, λ0). If λ0 = 0, then—taking into account that by (2.10) and (2.12)
we have T (fψµ)(x) ≤ T (fψµ)(z) for |x|α ≥ a2(|z|α + 2r)—we can assume that
λ = cT (fψµ)(z) for some |z|α large enough, say |z|α ≥ 2ar. Then

{x : T (fψµ)(x) > λ} ⊂ Q∗ := Q(0, a2(|z|α + 2r)),

and since for x ∈ Q := Q(0, r), y ∈ Q∗ the inequalities

|x− y|α ≤
a(r + a2(|z|α + 2r))

a−1|z|α − r
|z − x|α ≤ 5a4|z − x|α

hold, from (2.12) we get

K(z − x) ≤ c5na4nK(x− y) ≤c5na4nω(Q∗)−1
∫

O∗

K(x− y) dω(y) =

=c5na4nω(Q∗)−1T (χQ∗ω)(x).

This yields

‖χQK(z − .)ψ‖Lp′s′ (µ) ≤c5
na4nω(Q∗)−1‖χQT (χQ∗ω)ψ‖Lp′s′(µ) ≤

≤c5na4nBω(Q∗)−1/q ,

and so,

λqω({x : T (fψµ)(x) > λ}) ≤

(
∫

Q
K(z − y)f(y)ψ(y) dµ(y)

)q

ω(Q∗) ≤

≤cq0‖χQK(z − .)ψ‖q

Lp′s′ (µ)
‖f‖q

Lps(µ)
ω(Q∗) ≤

≤(c0c5
na4nB)q‖f‖q

Lps(µ)
<∞ .

�
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3. A generalization and another equivalent condition.

In this section, we shall suppose that the topology on R
n is given by a quasi-

metric ̺ satisfying the inequalities

(3.1) a−1̺(x, y)− ̺(y, z) ≤ ̺(x, z) ≤ a(̺(x, y) + ̺(y, z))

with some constant a ≥ 1 independent of x, y, z ∈ R
n and we shall denote the

corresponding balls by

B = B(x, r) = {y ∈ R
n : ̺(x, y) ≤ r}.

We shall assume that ω is a Borel measure satisfying the doubling condition

(3.2) ωB(x, 2r) ≤ DωB(x, r)

with some constant D > 0 independent of x ∈ R
n and r > 0 and such that for every

x ∈ R
n

(3.3) r 7→ ω(B(x, r)) is a continuous function and ω({x}) = 0.

We shall assume that K is a positive measurable function on R
n × R

n and that
for every b > 0 there exists c > 0 such that

(3.4) ̺(z, y) ≤ b̺(x, y) =⇒ K(x, y) ≤ cK(z, y), x, y, z ∈ R
n .

Note that e.g. the function K(x, y) = ̺(x, y)−γ , γ > 0, satisfies the condition (3.4).
A positive function w ∈ L1loc(R

n) generates a measure for which we shall use the
same symbol, i.e.

w(E) =

∫

E
w(x) dx.

This measure satisfies the continuity condition (3.3).
We shall consider the operator T defined by

(3.5) T (fµ)(x) =

∫

Rn

K(x, y)f(y) dµ(y)

for measurable functions f and a Borel measure µ.
It is easy to see that Lemma 1 and Theorem 1 can be generalized in the following

way:

Lemma 3. Let Ω be an open non-empty proper subset in R
n. Let τ > 1 and

η > aτ . Then there exist balls Bk = B(xk , rk), k = 1, 2, . . . , and a number ϑ =
ϑ(n, a, τ, η) such that

Ω =
⋃

k

Bk ,

B(xk, ηrk) \ Ω 6= ∅, k = 1, 2, . . . ,

and

∑

k

χQ(xk,τrk)
≤ ϑχΩ .
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Theorem 2. Let 1 < p ≤ q < ∞ and 1 ≤ s ≤ p. Let µ, ω be Borel measures
on R

n, µ non-trivial and ω satisfying the conditions (3.2) and (3.3) and let ψ be
a positive measurable function. Assume the operator T defined by (3.5), where K
satisfies the condition (3.4). Then the inequality

ω({x : T (fψµ)(x) > λ})1/q ≤
A

λ
‖f‖Lps(µ)

holds for every f and λ > 0 if and only if the inequality

‖χBT (χBω)ψ‖Lp′s′(µ) ≤ Cω(B)1/q′ <∞

holds for every B = B(x, r), x ∈ R
n, r > 0.

Moreover, the ratio A/C of the optimal constants is bounded from below and
above by positive numbers which do not depend on f, µ, ω and ψ.

In [3] (cf. also [6]), the following characterization of the weak inequality is estab-
lished:

Theorem 3. Let 1 < p < q < ∞ and 1 ≤ s ≤ p. Let ω, ψ,K and T be as
in Theorem 2. Let v be a positive locally integrable function on R

n. Then the

following conditions are equivalent:

(i) There exists a constant c > 0 such that the inequality

ω({x : T (fψµ)(x) > λ}) ≤ cλ−q‖f‖q
Lps(v)

holds for every λ > 0 and for every f .
(ii) There exists a constant c > 0 such that the inequality

(3.6) ω(B)‖χRn\BK(x, .)ψv
−1‖q

Lp′s′(v)
≤ c

holds for every ball B = B(x, r), x ∈ R
n, r > 0.

A comparison of Theorems 2 and 3 yields

Theorem 4. Let the assumptions of Theorem 3 be fulfilled. Then the following
conditions are equivalent:

(i) There exists a constant c > 0 such that the inequality

‖χBT (χBω)ψ‖Lp′s′ (v) ≤ cω(B)1/q′ <∞

holds for every ball B = B(x, r), x ∈ R
n, r > 0.

(ii) There exists a constant c > 0 such that the inequality

ω(B)‖χRn\BK(x, .)ψ‖
q

Lp′s′ (v)
≤ c

holds for every B = B(x, r), x ∈ R
n, r > 0.

The (ii) ⇒ (i) part of the proof of Theorem 3 is essentially based on the assump-
tion that p is strictly less than q, the constant c in (3.6) is estimated by a quantity
which tends to infinity if q → p. Nevertheless, the condition (3.6) remains mean-
ingful even with q = p. A natural question arises: Does Theorem 3 remain valid for
p = q? We shall give a positive answer in this particular case:
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Theorem 5. Let 1 < p <∞, 1 ≤ s ≤ p and 0 < γ < σ. Let µ, ω be Borel measures
such that µ is non-trivial and there exist positive constants c1, c2 such that

(3.7) c1 ≤
ω(B(x, r))

rσ
≤ c2

for every x ∈ R
n and r > 0. Let T be given by (3.5) with K(x, y) = ̺(x, y)−γ .

Then for every positive measurable function ψ there exists a constant c > 0 such
that

(3.8) supω(B)−1/p′‖χBT (χBω)ψ‖Lp′s′ (µ) ≤

≤ c supω(B)1/p‖χRn\B̺(x, .)
−γψ‖Lp′s′ (µ) ,

where the supremum on both sides is taken over all B = B(x, r), x ∈ R
n, r > 0.

Proof: For y ∈ R
n and R > 0, we put B(y,R) =

⋃∞
k=0Bk, where Bk =

B(y, 2−kR) \B(y, 2−k−1R), and so, according to (3.7),
∫

B(y,R)
̺(y, z)−γ dω(z) =

∑

k

∫

Bk

̺(y, z)−γ dω(z) ≤
∑

k

(2−k−1R)−γω(Bk) ≤

≤ (2σc2 − c1)
∑

k

2−(k+1)(σ−γ)Rσ−γ = c3R
σ−γ

with c3 = (2
σc2 − c1)/(2

σ−γ − 1). Thus if x ∈ R
n, r > 0 and y ∈ B(x, r), we use

the inequalities (3.1) to obtain

T (χB(x,r)ω)(y) =

∫

B(x,r)
̺(z, y)−γ dω(z) ≤

∫

B(y,2ar)
̺(z, y)−γ dω(z) ≤

≤c3(2a)
σ−γrσ−γ ,

and so,

(3.9) ω(B(x, r))−1/p′‖χB(x,r)T (χB(x,r)ω)ψ‖Lp′s′ (µ) ≤

≤ c4r
σ−σ/p′−γ‖χB(x,r)ψ‖Lp′s′ (µ)

with c4 = c
−1/p′

1 c3(2a)
σ−γ . Now, we choose z such that ̺(x, z) = 2ar. Then

B(x, r) ⊂ R
n \B(z, r), ̺(z, y) ≤ a(2a+ 1)r for y ∈ B(x, r), and we have

rσ/p−γ‖χB(x,r)ψ‖Lp′s′ (µ) ≤

≤ aγ(2a+ 1)γc
1/p
1 ω(B(z, r))1/p‖χRn\B(z,r)̺(z, .)

−γψ‖Lp′s′ (µ) .

The last estimate and (3.9) yield (3.8) with c = aγ(2a+ 1)γc
1/p
1 c4. �

As a particular consequence of Theorems 1 and 4, we can state the following
pellucid characterization of the weight functions v for which the Riesz potential

Iγf(x) =

∫

Rn

f(y)

|x− y|n−γ dy, 0 < γ < n,

is a weak type mapping of Lp(v) in Lp.
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Theorem 6. Let 1 < p < ∞, 0 < γ < n and let v be a positive locally integrable
function on R

n. Then the following conditions are equivalent:

(i) There exists a constant c > 0 such that the inequality

|{x ∈ R
n : Iγf(x) > λ}| ≤ cλ−p

∫

Rn

|f(x)|pv(x) dx

holds for every λ > 0 and for every f .
(ii) There exists a constant c > 0 such that the inequality

(
∫

|x−y|>r
v(y)1−p′ |x− y|(γ−n)p′ dy

)1/p′

≤ cr−n/p

holds for every x ∈ R
n and r > 0.
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