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Generating real maps on a biordered set

Antonio Martinon

Abstract. Several authors have defined operational quantities derived from the norm of an
operator between Banach spaces. This situation is generalized in this paper and we present
a general framework in which we derivate several maps X → R from an initial one X → R,
where X is a set endowed with two orders, ≤ and ≤∗, related by certain conditions. We
obtain only three different derivated maps, if the initial map is bounded and monotone.
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1. Introduction.

We consider an infinite dimensional Banach space (over the real or the complex
numbers), sayX . The set of all the closed infinite dimensional subspaces ofX, S(X),
is ordered by

M ≤ N if and only if M ⊂ N.

Also, we can define another order in S(X):

M ≤∗ N if and only if M ⊂ N and dim (N/M) < ∞ .

Both orders are related by the two following properties:

(1) If M ≤∗ N , then M ≤ N .

(2) If M ≤ N and P ≤∗ N , then M ∩ P ≤∗ M .

If T is a linear and continuous operator from an infinite dimensional Banach
space X into a Banach space Y , we consider the map

n : S(X)→ R; n(M) := n(TJM ) := ‖TJM‖,

where JM is the injection of M into X and ‖ · ‖ denotes the norm. B. Gramsch
(1969) (see [SC]) defined the operational quantity

in(T ) := inf
M≤X

n(TJM ),

which can be used to characterize when an operator T is an upper semi-Fredholm
operator (closed range and finite dimensional kernel): in(T ) > 0. Independently,
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A.A. Sedaev (1970) [SE] and A. Lebow and M. Schechter (1971) [LS] consider the
operational quantity

i∗n(T ) := inf
M≤∗X

n(TJM ).

This quantity verifies that i∗n(T ) = 0, if and only if T is a compact operator (the
image of the closed unit ball of X is relatively compact). With a different defini-
tion, i∗n has been considered by H.-O. Tylli [TY]. The equality of both definitions
has been showed in [GM2], [MA2]. Finally, M. Schechter (1972) [SC] defined the
following operational quantity:

sin(T ) := sup
M≤X

in(TJM ) = sup
M≤X

inf
N≤M

n(TJN ).

This quantity verifies: sin(T ) = 0, if and only if T is a strictly singular operator (if
TJM is an injection, then M is finite dimensional).
If we consider the set of all the closed infinite codimensional subspaces of Y, S′(Y ),

where Y is an infinite dimensional Banach space, then we define two orders in S′(Y ):

U ≤ V if and only if U ⊃ V ;

U ≤∗ V if and only if U ⊃ V and dim (U/V ) < ∞ .

Now we obtain the following properties which relate ≤ with ≤∗,

(1) If U ≤∗ V , then U ≤ V .

(2) If U ≤ V and W ≤∗ V , then U +W ≤∗ U .

Let T be a linear and continuous operator from a Banach space X into an infinite
dimensional Banach space Y . From the map

n′ : S′(Y )→ R; n′(U) := n(QUT ) := ‖QUT ‖,

where QU denotes the quotient map of Y onto Y/U , L. Weis (1976) [WE] derived
the operational quantity

in′(T ) := inf
U≤0

n′(QUT )

which can be used to characterize a class of operators: in′(T ) > 0 if and only
if T is a lower semi-Fredholm operator (closed and finite codimensional range).
Independently, A.S. Fajnshtejn and V.S. Shulman (1982) (see [FA]) and J. Zemanek
(1983) [ZE] consider the operational quantity

i∗n′(T ) := inf
U≤∗0

n′(QUT ).

This quantity verifies that i∗n′(T ) = 0, if and only if T is a compact operator.
A.S. Fajnshtejn [FA] has showed that the quantity i∗n′ agrees with the Hausdorff
measure of noncompactness, which was introduced by Goldenstein, Gohberg and
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Markus (1957) (see [BG]). Finally, L. Weis (1976) [WE] defined the following oper-
ational quantity:

sin′(T ) := sup
U≤0

in′(QUT ) = sup
U≤0

inf
V ≤U

n′(QV T ).

This quantity verifies: sin′(T ) = 0, if and only if T is a strictly cosingular operator
(if QUT is a surjection, then U is finite codimensional).
If we consider the injection modulus and the surjection modulus, instead of the

norm, there can be obtained new operational quantities. If T is a linear and con-
tinuous operator, then the injection modulus of T is defined by

j(T ) := inf{‖Tx‖ : x ∈ BX},

and the surjection modulus of T by

q(T ) := sup{ε > 0 : εBY ⊂ TBX},

where BX is the closed unit ball of X . M. Schechter (1972) [SC] considers the
following operational quantities:

sj(T ) := sup
M≤X

j(TJM ),

s∗j(T ) := sup
M≤∗X

j(TJM ).

He verifies that sj(T ) = 0, if and only if T is a strictly singular operator and
s∗j(T ) > 0, if and only if T is an upper semi-Fredholm operator. The author
(1989) [MA1], [MA2] has defined the operational quantity

isj(T ) := inf
M≤X

sj(TJM ) = inf
M≤X

sup
N≤M

j(TJN )

and showed that isj(T ) > 0, if and only if T is an upper semi-Fredholm opera-
tor. The quantities iq, siq and i∗q, similarly defined, verify iq = siq = i∗q = 0.
J. Zemanek (1983) [ZE] defines the following operational quantities:

sq′(T ) := sup
U≤0

q(QUT ),

s∗q′(T ) := sup
U≤∗0

q(QUT ),

where 0 is the null subspace of Y . They verify that sq′(T ) = 0, if and only if T
is a strictly cosingular operator and s∗q′(T ) > 0, if and only if T is a lower semi-
Fredholm operator. The author (1989) [MA1], [MA2] has defined the operational
quantity

isq′(T ) := inf
U≤0

sq′(QUT ) = inf
U≤0

sup
V ≤U

q(QV T )
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and showed that isq′(T ) > 0, if and only if T is a lower semi-Fredholm operator.
The quantities ij′, sij′ and i∗j′, similarly defined, verify ij = sij = i∗j′ = 0.
It is possible to consider other operational quantities by using inf and sup:

isin, i∗s∗si∗n, . . . , but there are only three different quantities: in, i∗n, sin. Anal-
ogously it occurs with n′, j and q′ [MA2].
If we consider a space ideal A (in the sense of A. Pietsch [PI]) and the set SA(X)

(respectively S′
A
(Y )), defined as the set of all the subspaces M of X (U of Y ) such

that M(Y/U) does not belong to A, then we can define operational quantities of
a similar way as above. This procedure is used in [GM1], [GM3], [MA2] to define
classes of operators which generalize the classes of the semi-Fredholm operators,
strictly singular operators and strictly cosingular operators.
In this paper, we consider a general situation. Let X be a set endowed with

two orders, ≤ and ≤∗, related by similar conditions of (1) and (2). We show that
if a : X → R is bounded and monotone, then we obtain only three new maps:
ia, sia, i∗a (if a is increasing) or sa, isa, s∗a (if a is decreasing).

2. Generating real maps on an ordered set.

In this paper, (X,≤) is a (partially) ordered set. We denote B(X, R) the set of
bounded maps of X in R. We define the maps i and s on B(X, R) in the following
way: for a ∈ B(X, R) and x ∈ X ,

ia(x) := inf
z≤x

a(z),

sa(x) := sup
z≤x

a(z).

Note that sa is the infimum of all increasing maps b ∈ B(X, R) such that a ≤ b and
ia is the supremum of all decreasing maps c ∈ B(X, R) such that c ≤ a. That is,
sa is the lower hull of the family {b ∈ B(X, R) : a ≤ b, b increasing } and ia is the
upper hull of the family {c ∈ B(X, R) : c ≤ a, c decreasing } [BO, IV, S5, No. 5].
We can iterate the procedure obtaining many derivated maps from a : isa, ssa,

sissia, . . . . If a is monotone, we only obtain two different new maps.
We will denote a increasing by a↑ and a decreasing by a↓.

Proposition 1. Suppose (X,≤) is an ordered set and a ∈ B(X, R) is monotone.

(1) If a↑, then ia↓, sia↑, and they are the only different derivated maps which
are obtained from a using i and s. Moreover,

ia↓ ≤ sia↑ ≤ a↑ .

(2) If a↓, then sa↑, isa
↓, and they are the only different derivated maps which

are obtained from a using i and s. Moreover,

a↓ ≤ isa↓ ≤ sa↑ .



Generating real maps on a biordered set 269

Proof: We give a proof in several steps. For every a (monotone or not), we obtain
that

(1) ia↓ ≤ a ≤ sa↑ .

Moreover,

(2) (−a)↑ ⇔ a↓; i(−a) = −sa.

In the “first generation”, we obtain ia and sa. If a↑, then a = sa, hence

(3) a↑ ⇒ ia↓ ≤ a = sa↑ .

Analogously

(4) a↓ ⇒ ia = a↓ ≤ sa↑ .

In the “second generation”: If a↑, then we obtain iia and sia. Because ia↓,
by (4), it is iia = ia. On the other hand, by (1), it is ia ≤ sia and sia ≤ sa = a.
Hence

(5) a↑ ⇒ ia↓ ≤ sia↑ ≤ a↑ .

Analogously, by (2),

(6) a↓ ⇒ a↓ ≤ isa↓ ≤ sa↑ .

In the “third generation”: If a↑, then we obtain isia and ssia. Because sia↑,
using (3), it is ssia = sia. On the other hand, using (5), it is

iis = ia ≤ isia ≤ ia,

hence ia = isia. Analogously, by (2), if a↓, then iisa = sa and sisa = sa. �

3. Generating real maps on a biordered set.

Let ≤∗ be another order on X (that is, (X,≤∗) is an ordered set). If a ∈ B(X, R)

is ∗-monotone (a↑∗ or a↓∗), then using i∗ and s∗ (defined using ≤∗ instead of ≤),
by Proposition 1, we can write

a↑∗ ⇒i∗a↓∗ ≤ s∗i∗a↑∗ ≤ a↑∗ ,

a↓∗ ⇒a↓∗ ≤ i∗s∗a↓∗ ≤ s∗a↑∗ .

In the following results, we consider the case a monotone (for ≤), when ≤∗ verifies
a certain condition related to ≤.
If (X,≤) and (X,≤∗) are ordered sets, we say that ≤∗ is admissible with regard

to ≤, if

(1) x ≤∗ y ⇒ x ≤ y, and moreover,

(2) y ≤ x and z ≤∗ x ⇒ ∃ y ∩ z and y ∩ z ≤∗ y,
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y ∩ z being the infimum of {y, z} for ≤. If ≤∗ is admissible with regard to ≤, then
(X,≤,≤∗) will be called a biordered set.
Let E be an infinite set. The set

P∞(E) := {A ⊂ E : A infinite }

is a simple example of a biordered set, taking A ≤ B ⇔ A ⊂ B, A ≤∗ B ⇔ A ⊂ B
and B \ A finite. Note that A ≤∗ B, if and only if A belongs to the Fréchet filter
on B.

Proposition 2. Suppose (X,≤,≤∗) is a biordered set and a ∈ B(X, R) is mono-
tone.

(1) If a↑, then i∗a↑ is the only derivated map which is obtained using i∗ and
s∗. Moreover,

ia↓ ≤ sia↑ ≤ i∗a↑ ≤ a↑ .

(2) If a↓, then s∗a↓ is the only derivated map which is obtained using i∗ and
s∗. Moreover,

a↓ ≤ s∗a↓ ≤ isa↓ ≤ sa↑ .

Proof: We give only the proof of (1). (2) can be obtained analogously.
We have i∗a↑: let x, y ∈ X with x ≤ y, and let ε > 0. Then there exists z ≤∗ y

such that a(z) < i∗a(y) + ε. As ≤∗ is admissible with regard to ≤, there exists
x ∩ z ≤∗ x and hence

i∗a(x) ≤ a(x ∩ z) ≤ a(z) < i∗a(y) + ε

for every ε > 0. Consequently, i∗a(x) ≤ i∗a(y).
It is obvious that ia ≤ i∗a ≤ s∗a = sa = a. Moreover, using i∗a↑, we obtain

sia ≤ si∗a = i∗a ≤ a.
In the “second generation”, using i∗ and s∗, we obtain i∗i∗a and s∗i∗a. Using

Proposition 1, we obtain i∗i∗a = i∗a, because i∗a↓∗. From i∗a↑ it results s∗i∗a =
i∗a. �

Proposition 3. Suppose (X,≤,≤∗) is a biordered set and a ∈ B(X, R) is mono-
tone.

(1) If a↑, then i∗a, sia, ia are constant on {z ∈ X : z ≤∗ x} for every x ∈ X .

(2) If a↓, then s∗a, isa, sa are constant on {z ∈ X : z ≤∗ x} for every x ∈ X .

Proof: We give only the proof of (2). (1) can be obtained analogously.
Let x ∈ X and z ≤∗ x, hence z ≤ x. From s∗a↑∗, we obtain s∗a(z) ≤ s∗a(x).

From s∗a↓, we obtain s∗a(z) ≥ s∗a(x). Hence s∗a is constant on {z ∈ X : z ≤∗ x}.
From sa↑, we obtain sa(z) ≤ sa(x). On the other hand, for every ε > 0 there

exists y ∈ X , with y ≤ x, such that a(y) > sa(x) − ε. As ≤∗ is admissible with
regard to ≤, there exists y ∩ z. Hence

sa(x)− ε < a(y) ≤ a(y ∩ z) ≤ sa(z).
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Consequently sa(x) ≤ sa(z) and sa is constant on {z ∈ X : z ≤∗ x}.
It follows from (1) and sa↑ that isa is constant. �

Propositions 1 and 2 assure us that there is only a finite number of different
derivated maps which are obtained using i and s, or i∗ and s∗. The following
theorem assures the same result when we use i, s, i∗ and s∗.

Theorem 4. Suppose (X,≤,≤∗) is a biordered set and a ∈ B(X, R) is monotone.

(1) If a↑, then ia↓, sia↑, i
∗a↑ are the only different derivated maps obtained from

a using i, s, i∗ and s∗. Moreover

ia↓ ≤ sia↑ ≤ i∗a↑ ≤ a↑ .

(2) If a↓, then sa↑, isa
↓, s∗a↓ are the only different derivated maps obtained

from a using i, s, i∗ and s∗. Moreover

a↓ ≤ s∗a↓ ≤ isa↓ ≤ sa↑ .

Proof: Using Propositions 1, 2 and 3, and the techniques of Propositions 1 and 2,
we can see that the generation process ends in a finite number of steps which are
represented in the following diagrams:

sa = a
s∗a = a

ii∗a = ia
i∗a↑

a↑ si∗a = i∗i∗a = s∗i∗a = i∗a

iia = i∗ia = s∗ia = ia

ia↓ isia = ia
sia↑

ssia = i∗sia = s∗sia = sia

ia = a
i∗a = a

ss∗a = a

s∗a↓

a↓ is∗a = s∗s∗a = i∗s∗a = s∗a

ssa = s∗sa = i∗sa = sa
sa↑ sisa = sa

isa↑
iisa = s∗isa = i∗isa = isa

For example, using Proposition 3 we obtain α∗βa = βa, with α, β ∈ {i, s}. �
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sertation), Univ. Bonn, 1974.

[ZE] Zemanek J., Geometric characteristics of semi-Fredholm operators and their asymptotic
behaviour, Studia Math. 80 (1984), 219–234.

Department of Mathematical Analysis, University of La Laguna, 38271 La Laguna,

Tenerife, Spain

(Received September 18, 1990)


