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On the covering dimension of the fixed

point set of certain multifunctions

Ornella Naselli Ricceri

Abstract. We study the covering dimension of the fixed point set of lower semicontinuous
multifunctions of which many values can be non-closed or non-convex. An application to
variational inequalities is presented.
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Introduction.

In [4] (see Theorem 2), B. Ricceri has established a fixed point theorem for
lower semicontinuous multifunctions that are allowed to have many non-closed or
non-convex values. We recall here its statement.

Theorem A. Let (U, ‖�‖U ) be a Banach space and X ⊆ U a non-empty set. Let
τ be a topology on X , weaker than the norm topology, such that (X, τ) is compact
and Hausdorff. Let C be a countable subset of X and Z another subset of X with
dim(X,τ)(Z) ≤ 0. Let F be a non-empty valued (τ, ‖ �‖U)-lower semicontinuous

multifunction from X into U such that F (x) is ‖ �‖U -closed for every x ∈ X \

C, (F (x))‖�‖U
is convex for every x ∈ X \ Z and (conv(F (x)))‖�‖U

⊆ X . Then

(α) Fix(F ) 6= φ.
(β) If for every x ∈ Fix(F ), x is a ‖�‖U -accumulation point of F (x), then Fix(F )
is uncountable.

In the present note, first, we want to establish a result (see Theorem 2.1 below)
which improves (β) of Theorem A, showing that, under some mild additional as-
sumptions, the covering dimension of Fix(F ) is greater or equal to 1. Afterwards,
we will apply this result to the solution set of some variational inequalities (see
Theorem 2.2 below).
For another result concerning the covering dimension of the set of fixed points of

a multifunction, see [5].

1. Notation.

Let X, Y be two non-empty sets. A multifunction F from X into Y (briefly,

F : X → 2Y ) is a function from X into the family of all subsets of Y . If X, Y are
two topological spaces, F is said to be lower semicontinuous (respectively, upper
semicontinuous) in X , if the set F−(Ω) = {x ∈ X : F (x) ∩ Ω 6= φ} is open (closed)
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for every open (closed) subset Ω of Y . If X = Y , a point x ∈ X is said to be a fixed
point of F , if x ∈ F (x). We denote by Fix(F ) the set of all fixed points of F .
Now, let (M, d) be a metric space, x0 ∈ M, r > 0, X, Y two non-empty subsets

of M . We put

Bd(x0, r)0 = {x ∈ M : d(x0, x) < r};

Bd(x0, r)0 = {x ∈ M : d(x0, x) ≤ r};

d(x0, X) = inf
x∈X

d(x0, x);

d∗(X, Y ) = sup
x∈X

d(x, Y );

dH (X < Y ) = max(d∗(X, Y ), d∗(Y, X)) (Hausdorff metric);

diamd(X) = sup
x,y∈x

d(x, y).

Moreover, given a normal topological space (X, τ), we denote by dimτ (X) the
covering dimension of X (see [2, Definition 1.6.7]).
While, if S is a subset of X , dim(X,τ)(S) ≤ 0 means that dimτ (T ) ≤ 0 for every

set T ⊆ S which is closed in X .

2. Results.

Our main result is the following

Theorem 2.1. Let U, X, τ, C, Z, F be as in Theorem A with, moreover, (X, τ)
metrizable and dimτ (Z) ≤ 0. Suppose also that Fix(F ) is τ -closed and that, for
every x ∈ Fix(F ), one has F (x) 6= {x}.
Then, dimτ (Fix(F )) ≥ 1.

Before proving this theorem, we need some preliminary results.

Lemma 2.1. Let X be a topological space, (Y, d) a metric space, F : X → 2Y

a bounded-valued lower semicontinuous multifunction. For every x ∈ X , put α(x) =
diamd(Fix(F )).
Then, the real function x → α(x) is lower semicontinuous in X .

Proof: Let us show the lower semicontinuity at a point x̄ ∈ X . Having chosen
ε > 0, let us take ȳ, z̄ ∈ F (x) such that d(ȳ, z̄) > α(x̄)− ε.
Since the function (ξ, ζ) → d(ξ, ζ) is continuous in Y × X , there exists ̺ > 0

such that if y ∈ Bd(ȳ, ̺), then d(y, z) > α(x̄) − ε. Since F is lower semicontinuous
at x̄, there exist two neighbourhoods of x̄, say U1 and U2, such that, if x ∈ U1
then F (x) ∩ Bd(ȳ, ̺) 6= φ and, if x ∈ U2 then F (x) ∩ Bd(z̄, ̺) 6= φ. Of course, if
x ∈ U1 ∩ U2, then α(x) > α(x̄)− ε, which proves our thesis. �

Lemma 2.2. Let (X, d1) be a compact metric space and let d2 be another metric
on X such that the d2-topology is stronger than the d1-topology. Moreover, let
F : X → 2X be a (d1, d2)-lower semicontinuous multifunction and ε > 0. For every
x ∈ X , put Φ(x) = F (x) \ Bd1(x, ε).
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Then, the multifunction Φ is (d1, d2)-lower semicontinuous.

Proof: Let Ω be a d2-open subset of X , x0 ∈ Φ−(Ω), y0 ∈ Φ(x0) ∩ Ω. Choose
̺ ∈ ]ε, d1(y0, x0)[ . We claim that

(1) there exists δ > 0 such that Bd1(x0, ̺) ∩ Bd2(y0, δ) = φ.

In fact, if (1) is not true, there exists a sequence {zn}n∈N in X , with
limn→∞ d2(zn, y0) = 0, such that for every n ∈ N, we have d1(zn, x0) ≤ ̺. Since
(X, d1) is compact and the d2-topology is stronger than the d1-topology, we can
find a subsequence of {zn}n∈N d1-converging to y0. So, d1(x0, y0) ≤ ̺, that is
absurd. Thus, let δ > 0 be such that (1) holds. Of course, we can assume that
Bd2(y0, δ) ⊆ Ω. Now, let V be a d1-neighbourhood of x0 such that for every
x ∈ V , we have F (x) ∩ Bd2(y0, δ) 6= φ. Let x ∈ V ∩ Bd1(x0, ̺ − ε), and choose

y∗ ∈ F (x) ∩ Bd2(y0, δ). Observe that y∗ /∈ Bd1(x, ε). Indeed, otherwise, we would

have d1(y
∗, x0) ≤ d1(y

∗, x) + d1(x, x0) < ̺, and so y∗ ∈ Bd1(x0, ̺), against (1).
Hence, y∗ ∈ Φ(x) ∩ Ω, that proves our thesis. �

We also recall the two following simple facts.

Lemma 2.3. Let X, Y be two topological spaces and K a closed subset of X . Let
F : X → 2Y ,Φ : K → 2Y be two lower semicontinuous multifunctions such that,
for every x ∈ K, one has Φ(x) ⊆ F (x). Let G be the multifunction from X into Y
defined by putting

G(x) =

{

F (x) if x ∈ X \ K,

Φ(x) if x ∈ K.

Then, the multifunction G is lower semicontinuous in X .

Lemma 2.4. Let X, Y be two topological spaces. Given a multifunction F : X →

2Y , define a multifunction F in X by putting, for every x ∈ X , F (x) = F (x). Then,
the multifunction F is lower semicontinuous in X if and only if the multifunction F
is lower semicontinuous in X .

Proof of Theorem 2.1: First, observe that by Theorem A, Fix(F ) is non-empty.
Let d be a metric on X inducing the topology τ . Arguing by contradiction, suppose
that dimτ (Fix(F )) = 0. Let α = infx∈Fix(F ) diam(F (x)). By our assumptions and

by Lemma 2.1, we have α > 0. Let F̃ be the multifunction from X into X defined
by putting

F̃ (x) =







F (x) if x ∈ X \ Fix(F ),
(

F (x) \ Bd

(

x, α
3

))

‖�‖U

if x ∈ Fix(F ).

It is easy to see that F̃ (x) 6= φ for every x ∈ X . Observe also that if x ∈ X \ C,

F̃ (x) is ‖�‖U -closed. Now, let us check that F̃ is (τ, ‖�‖U)-lower semicontinuous in X .

That is, by Lemma 2.4, we have to prove that (F̃ )‖�‖U
is so. To this end, observe
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that, by Lemma 2.2, the multifunction x → F (x) \ Bd

(

x, α
3

)

is (τ, ‖ �‖U )-lower

semicontinuous in X and hence, so is x →
(

F (x) \ Bd

(

x, α
3

))

‖�‖U

. Then, since

the multifunction (F )‖�‖U
is (τ, ‖�‖U )-lower semicontinuous in X and (F̃ (x))‖�‖U

⊆

(F (x))‖�‖U
, the lower semicontinuity of (F̃ )‖�‖U

follows directly by Lemma 2.3.

Now observe that, by our assumptions and Corollary 1.3.4 of [2] we have dimτ (Z∪

Fix(F )) = 0. Of course, for every x ∈ X \ (Z ∪ Fix(F )), (F̃ (x))‖�‖U
is convex.

Moreover, it is clear that (conv(F̃ (x)))‖�‖U
⊆ (conv(F (x)))‖�‖U

⊆ X . Then, it

is possible to apply Theorem A to F̃ . By this result, we have Fix(F̃ ) 6= φ. Let

x∗ ∈ Fix(F̃ ). Of course, from the definition of F̃ , it follows that x∗ ∈ Fix(F ). Then,
there exists a sequence {yn}n∈N in X such that limn→∞ ‖yn − x∗‖U = 0 and, for

every n ∈ N, yn ∈ F (x∗) \ Bd

(

x∗, α
3

)

. By this latter relation, it follows that the

sequence {yn}n∈N does not converge to x∗ with respect to the topology τ , against
the fact that τ is weaker than the ‖�‖U -topology. This contradiction concludes the
proof. �

If Fix(F ) is not closed, in general, Theorem 2.1 does not hold. We show this fact
by means of the following simple

Example 2.1. Take R with the usual topology. Define in [0, 1] the following mul-
tifunction

F (x) =

{

[0, 1] if x ∈ [0, 1] \ Q,

[0, 1] \ {x} if x ∈ [0, 1] ∩ Q.

Of course, F satisfies the hypotheses of Theorem 2.1, except that requiring Fix(F )
be closed. In fact, Fix(F ) (which is [0, 1] \ Q) has the covering dimension zero.

As an application of Theorem 2.1, we will establish a theorem on the covering
dimension of the solution set of a variational inequality. In what follows, we adopt,
as usual, the convention inf(φ) = +∞.
Let (U, ‖ � ‖U ) be a Banach space and X a non-empty, weakly compact and

convex subset of U . In the sequel, we denote by τ the relativization to X of the
weak topology on U . We also assume that (X, τ) is metrizable. Given an operator
A : X → U∗ (U∗ being the dual space of U), consider the problem:

(V.I.) find x ∈ X such that 〈A(x), x − y〉 ≤ 0 for every y ∈ X.

For every x, y ∈ X, ε > 0, put

F (x) ={z ∈ X〈A(x), z〉 = min〈A(x), y〉} and

Ω(ε, x) ={y ∈ X : d(y, F (x)) < ε},

where d is the metric induced by the ‖�‖U -norm.
Finally, put

S = {x ∈ X : x is a solution of (V.I.)}.

We establish the following
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Theorem 2.2. Suppose that:

(i) the real function (x, y)→ 〈A(x), y〉 is weakly continuous in X × X ;
(ii) for every ε > 0, one has infx∈X(infy∈X\Ω(ε,x)〈A(x), y〉 −miny∈X〈A(x), y〉)

> 0;
(iii) if x ∈ X is such that 〈A(x), x〉 = miny∈X〈A(x), y〉, then there exists z ∈

X \ {x} such that 〈A(x), z〉 = miny∈X 〈A(x), y〉.

Under such hypotheses, one has dimτ (S) ≥ 1.

Proof: Observe that S = Fix(F ). Plainly, the multifunction F is non-empty
closed convex-valued. Moreover, (i) assures that Fix(F ) is τ -closed. Let us check
now that F is (τ, ‖ �‖U )-lower semicontinuous. To this end, for every x ∈ X and
n ∈ N, put:

Fn(x) =

{

z ∈ X : 〈A(x), z〉 < min
y∈X

〈A(x), y〉 +
1

n

}

and prove that

(2) lim
n→∞

sup
x∈X

dH(Fn(x), F (x)) = 0;

(3) for every n ∈ N, the multifunction Fn is (τ, ‖�‖U)-lower semicontinuous.

Observe that (2) and (3) prove our claim, because the uniform limit, with re-
spect to the Hausdorff metric, of a sequence of lower semicontinuous multifunc-
tions, is lower semicontinuous (see Proposition 1.1 of [3]). First, observe that
F (x) =

⋂

n∈N
Fn(x). So, d

∗(F (x), Fn(x)) = 0 for every x ∈ X and n ∈ N. Now, fix
ε > 0. By (ii), there exists αε > 0 such that

inf
y∈X\Ω(ε,x)

〈A(x), y〉 > min
y∈X

〈A(x), y〉 + αε for every x ∈ X.

Then, having chosen ν ∈ N such that 1ν < αε, let n > ν, x ∈ X, y ∈ Fn(x) be fixed.
We have:

〈A(x), y〉 < min
z∈X

〈A(x), z〉+
1

n
< min

z∈X
〈A(x), z〉+ αε <

< inf
z∈X\(ε,x)

〈A(x), z〉 .

Consequently, d(y, F (x)) < ε, that proves (2). Now, let us fix n ∈ N and y ∈ X .
By (i) and Theorem 1, p. 67, of [1], it follows that the function x → 〈A(x), y〉 −
minz∈X〈A(x), z〉 is upper semicontinuous. Hence, F−

n (y) is open, that proves (3).
Then, our conclusion follows from Theorem 2.1. �
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Example 2.2. By means of the present example, we show that the conclusion of
Theorem 2.2 is not true, in general, if the condition (ii) is not satisfied. Take as
U the Euclidean space R, as X the compact interval [0, 1], as A the continuous
operator defined by A(x) = x for every x ∈ [0, 1]. So, the problem (V.I.) in this
case is:

(4) find x ∈ [0, 1] such that x(x − y) ≤ 0 for every y ∈ [0, 1].

Evidently, 0 ∈ S, moreover, observe that if x̄ ∈ [0, 1] is a solution, since x̄ ≥ 0, we
have by (4) x̄−y ≤ 0 for every y ∈ [0, 1], so, x̄ = 0. Then S = {0}, and dim(S) = 0.
Observe that F (0) = [0, 1] and F (x) = {0} for every x ∈]0, 1], so, (iii) is satisfied.
Finally, observe that, if ε > 0 is fixed, we have Ω(ε, 0) = [0, 1],Ω(ε, x) = [0, ε[ if
x ∈ [0, 1]. So, we have

inf
y∈X\Ω(ε,x)

〈A(x), y〉 − min
y∈X

〈A(x), y〉 =

{

+∞ if x = 0,

εx if x ∈]0, 1].

Hence
inf

x∈X
( inf
y∈X\Ω(ε,x)

〈A(x), y〉 − min
y∈X

〈A(x), y〉) = inf
x∈]0,1]

εx = 0;

so, the condition (i) is not satisfied.
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