Einstein metrics on a class of five-dimensional homogeneous spaces

E.D. RODIONOV

Abstract. We prove that there is exactly one homothety class of invariant Einstein metrics in each space $SU(2) \times SU(2)/SO(2)_r$ $(r \in Q, |r| \neq 1)$ defined below.

Keywords:homogeneous Riemannian manifolds, Einstein manifolds, Ricci tensor, sectional curvature

Classification: 53C25, 53C30

It is well-known [J] that any homogeneous Einstein manifold M^n for $n \leq 4$ is a Riemannian symmetric space. On the other hand, little is known about five-dimensional homogeneous Einstein manifolds which are not locally symmetric (cf. [B, p. 186]).

In this paper, we study a special family of homogeneous spaces $M_r^5 = SU(2) \times SU(2)/SO(2)_r$, where $SO(2)_r, r \in Q$, denotes the subgroup of all product matrices of the form:

$$\begin{pmatrix} e^{2\pi it} & 0\\ 0 & e^{-2\pi it} \end{pmatrix} \quad \times \quad \begin{pmatrix} e^{2\pi irt} & 0\\ 0 & e^{-2\pi irt} \end{pmatrix} \qquad (t \in R).$$

We prove the existence, up to a homothety, of a unique invariant Einstein metric on each $M_r^5(|r| \neq 1)$. These metrics are never naturally reductive.

1. Preliminaries.

Let su(2) denote the Lie algebra of SU(2) provided by the scalar product $B(x, y) = -\frac{1}{2}$ Retr xy. We consider an orthonormal basis $\{x_1, x_2, x_3\}$ of su(2) such that $[x_1, x_2] = x_3, [x_1, x_3] = -x_2, [x_2, x_3] = x_1$ and, moreover, the Lie algebra h of $H = SO(2)_r (r \in Q)$ is of the form $h = R \cdot (x_1, rx_1)$. Put $G = SU(2) \times SU(2)$, then $g = su(2) \oplus su(2)$ is the corresponding Lie algebra. Consider the scalar product on g given by $B \mid_{g \times g} = B_{su(2)} + B_{su(2)}$. Then we have a B-orthogonal decomposition $g = h \oplus p_1 \oplus p_2 \oplus p_3$, where $p_1 = R \cdot (rx_1, -x_1), p_2 = R \cdot (x_2, 0) + R \cdot (x_3, o), p_3 = R \cdot (0, x_2) + R \cdot (0, x_3)$. Moreover, p_1, p_2, p_3 are irreducible invariant subspaces w.r. to the adjoint representation ad h on $p = p_1 \oplus p_2 \oplus p_3$ and $p_1 \not\simeq p_2, p_1 \not\simeq p_3$ w.r. to this representation.

The author would like to thank Th. Friedrich, O. Kowalski and N. Netsvetaev for useful discussions related to this work

Lemma 1.1. We have $p_2 \not\simeq p_3$ for $|r| \neq 0, 1$ with respect to the adjoint representation of h on p.

PROOF: Suppose that there exists an isomorphism $\varrho: p_2 \to p_3$ such that ad $W \circ \varrho = \varrho \circ$ ad W for every $W \in h$. Put $A = (x_2, 0), B = (x_3, 0) \in p_2$. Then we can write $\varrho(A) = (0, x), \varrho(B) = (0, y)$, where $x, y \in \operatorname{span}(x_2, x_3)$. For $W = (x_1, rx_1)$, we have $[W, \varrho(A)] = \varrho([W, A]) = \varrho(B)$, and also $[W, \varrho(B)] = -\varrho(A)$. Hence we get $r[x_1, x] = y, r[x_1, y] = -x$. Further, since the Lie bracket [x, y] on su(2) coincides with the usual vector cross-product, we obtain immediately $r||[x_1, x]|| = r||x|| = ||y||$ and $r||[x_1, y]|| = r||y|| = ||x||$. Hence the equality $r^2 = 1$ holds, which is a contradiction.

Corollary 1.1. For $|r| \neq 0, 1$, every Ad(*H*)-invariant scalar product $\langle \cdot, \cdot \rangle$ on *p* has, up to a constant factor, the following form:

(1.1)
$$\langle \cdot, \cdot \rangle = \langle \cdot, \cdot \rangle_{\circ} \mid_{p_{2} \times p_{1}} + t \langle \cdot, \cdot \rangle_{\circ} \mid_{p_{2} \times p_{2}} + s \langle \cdot, \cdot \rangle_{\circ} \mid_{p_{2} \times p_{2}},$$

where $t, s \in \mathbb{R}^+$ and $\langle \cdot, \cdot \rangle_{\circ} = B \mid_{g \times g}$.

The proof follows from Lemma 1.1 and the Schur's lemma.

We construct a scalar product (\cdot, \cdot) on $g = su(2) \oplus su(2)$ by setting $(\cdot, \cdot) = \langle \cdot, \cdot \rangle |_{p \times p} + \langle \cdot, \cdot \rangle_{\circ} |_{h \times h}$. Then we consider the following (\cdot, \cdot) -orthonormal basis of g:

$$E_1 = (r\alpha x_1, -\alpha x_1), \ E_2 = 1/\sqrt{t}(x_2, 0), \ E_3 = 1/\sqrt{t}(x_3, 0),$$

$$E_4 = 1/\sqrt{s}(0, x_2), \ E_5 = 1/\sqrt{s}(0, x_3), \ E_6 = (\alpha x_1, r\alpha x_1),$$

where $\alpha = (r^2 + 1)^{-1/2}$.

It is obvious that $h = R \cdot E_6$, $p_1 = R \cdot E_1$, $p_2 = R \cdot E_2 + R \cdot E_3$ and $p_3 = R \cdot E_4 + R \cdot E_5$.

Lemma 1.2. We have the following multiplication table:

$$\begin{split} & [E_1, E_2] = r\alpha E_3, \ [E_1, E_3] = -r\alpha E_2, \ [E_1, E_4] = -\alpha E_5, \ [E_1, E_5] = \alpha E_4, \\ & [E_2, E_3] = r\alpha t^{-1} \cdot E_1 + \alpha t^{-1} \cdot E_6, \ [E_2, E_4] = [E_2, E_5] = [E_3, E_4] = [E_3, E_5] = 0, \\ & [E_4, E_5] = \alpha s^{-1} \cdot E_1 + r\alpha s^{-1} \cdot E_6, \ [E_3, E_6] = \alpha E_2, \ [E_5, E_6] = r\alpha E_4, \end{split}$$

where $\alpha = (r^2 + 1)^{-1/2}$.

The proof is straightforward and can be omitted.

Corollary 1.2. The multiplication table of Lemma 1.2 implies that:

$$[p_1, p_1] = 0, \ [p_1, p_2] = p_2, \ [p_1, p_3] = p_3, \ [p_2, p_3] = 0, \ [p_2, p_2] \subset p_1 \oplus h, \ [p_3, p_3] \subset p_1 \oplus h.$$

2. The computation of the sectional curvatures.

In this part, we shall use the notation of the previous part. First, we see that every G-invariant Riemannian metric on $M_r^5(|r| \neq 0, 1)$ is determined, up to a homothety, by an Ad(H)-invariant scalar product of the form (1.1). Further, the sectional curvatures of such metric can be calculated by means of the standard formula (see [B]):

$$\langle R(X,Y)Y,X\rangle = (-3/4)\langle [X,Y]_p, [X,Y]_p\rangle - \langle [[X,Y]_h,Y],X\rangle - (1/2)\langle Y, [X,[X,Y]_p]_p\rangle - (1/2)\langle X, [Y,[Y,X]_p]_p\rangle + \langle u(X,Y), u(X,Y)\rangle - \langle u(X,X), u(Y,Y)\rangle,$$

where $X, Y \in p, \langle \cdot, \cdot \rangle$ is the corresponding scalar product on p and the mapping $u: p \times p \to p$ is defined by the formula:

(2.2)
$$2\langle u(X,Y),Z\rangle = \langle [Z,X]_p,Y\rangle + \langle [Z,Y]_p,X\rangle$$

for all $Z \in p$.

Lemma 2.1. For an Ad(*H*)-invariant scalar product $\langle \cdot, \cdot \rangle$ of the form (1.1), the following formulas are true:

(2.3)
$$u(X,Y) = (t-1)/2t[X,Y], \quad \text{where } X \in p_1, Y \in p_2, \\ u(X,Z) = (s-1)/2s[X,Z], \quad \text{where } X \in p_1, Z \in p_3, \\ u(p_1,p_1) = u(p_2,p_2) = u(p_3,p_3) = u(p_2,p_3) = 0.$$

PROOF: We shall use Corollary 1.2, the formula (2.2) and the notations of Corollary 1.1. Let $X \in p_1, Y \in p_2$. If $Z \in p_1$, then $[Z, X]_p = 0, [Z, Y]_p \in p_2$ and hence $\langle u(X,Y), Z \rangle = 0$. Further, if $Z \in p_3$, then $[Z,X]_p \in p_3, [Z,Y]_p = 0$ and also $\langle u(X,Y), Z \rangle = 0$. Therefore $u(X,Y) \in p_2$. Let $Z \in p_2$, then $[Z,X]_p \in p_2, [Z,Y]_p \in p_1$ and we have:

$$2t\langle u(X,Y),Z\rangle_{\circ} = t\langle [Z,X]_{p},Y\rangle_{\circ} + \langle [Z,Y]_{p},X\rangle_{\circ}.$$

But

$$\begin{split} t \langle [Z, X]_p, Y \rangle_{\diamond} + \langle [Z, Y]_p, X \rangle_{\diamond} &= \\ &= t \langle [Z, X], Y \rangle_{\diamond} + \langle [Z, Y], X \rangle_{\diamond} &= \\ &= t \langle [X, Y], Z \rangle_{\diamond} - \langle [X, Y], Z \rangle_{\diamond} \,, \end{split}$$

since $\langle \cdot, \cdot \rangle_{\circ}$ is $\operatorname{Ad}(G)$ -invariant. Hence u(X, Y) = (t-1)/2t[X, Y] for $X \in p_1, Y \in p_2$. The other cases are treated analogously. **Lemma 2.2.** For the sectional curvatures of $M_r^5 (r \neq 0)$ we have:

$$\begin{split} K_{\sigma}(E_1, E_2) &= K_{\sigma}(E_1, E_3) = (r\alpha/2t)^2, \\ K_{\sigma}(E_1, E_4) &= K_{\sigma}(E_1, E_5) = (\alpha/2s)^2, \\ K_{\sigma}(E_2, E_3) &= 1/t - 3\alpha^2/4t^2, \ K_{\sigma}(E_2, E_4) = K_{\sigma}(E_2, E_5) = 0, \\ K_{\sigma}(E_4, E_5) &= 1/s - 3\alpha^2/4t^2, \ K_{\sigma}(E_4, E_3) = 0, \end{split}$$

where $\alpha = (r^2 + 1)^{-1/2}$.

PROOF: Let us calculate $K_{\sigma}(E_1, E_2)$. From the formula (2.1) and Lemmas 1.2, 2.1 we have:

$$\begin{split} K_{\sigma}(E_1, E_2) &= (-3/4) \langle r \alpha E_3, r \alpha E_3 \rangle - (1/2) \langle E_2, [E_1, r \alpha E_3]_p \rangle - \\ &- (1/2) \langle E_1, [E_2, (-r \alpha) E_3]_p \rangle + ((t-1)/2t)^2 \langle [E_1, E_2], [E_1, E_2] \rangle = \\ &= (-3/4) r^2 \alpha^2 + r^2 \alpha^2 / 2 + r^2 \alpha^2 / 2t + ((t-1)/2t)^2 r^2 \alpha^2 = (r \alpha / 2t)^2 \,. \end{split}$$

 \Box

The other sectional curvatures are calculated analogously.

Corollary 2.1. For the Ricci curvatures of $M_r^5(r \neq 0)$ we have:

rice
$$(E_1) = (r^2 s^2 + t^2) \alpha^2 / 2t^2 s^2$$
, rice $(E_2) = (2t(r^2 + 1) - r^2) \alpha^2 / 2t^2$,
rice $(E_4) = (2s(r^2 + 1) - 1) \alpha^2 / 2s^2$, where $\alpha = (r^2 + 1)^{-1/2}$.

The proof follows from the Lemma 2.2 by a straightforward computation.

3. Invariant Einstein metrics on M_r^5 .

We start with

Lemma 3.1. Let $\langle \cdot, \cdot \rangle$ be an Ad(*H*)-invariant scalar product on *p* of the form (1.1). Then the invariant Einstein metrics on $M_r^5(|r| \neq 0, 1)$ are defined by the formulas

(3.1)
$$t = \frac{|r|(2y^2 + 1)}{2|y|(r^2 + 1)}, \quad s = \frac{2y^2 + 1}{r^2 + 1},$$

where y is any real root of the equation $8|y|^3 - 8|r|y^2 + 4|y| - |r| = 0$.

PROOF: Since $SO(2)_r$ acts transitively on p_1, p_2, p_3 and preserves the Ricci curvature, then $\langle \cdot, \cdot \rangle$ is Einsteinian iff $\operatorname{ricc}(E_1) = \operatorname{ricc}(E_2) = \operatorname{ricc}(E_4)$. But from Corollary 2.1 we see that this is equivalent to the formulas:

$$\begin{cases} \frac{r^2 s^2 + t^2}{s^2} = 2t(r^2 + 1) - r^2\\ \frac{r^2 s^2 + t^2}{t^2} = 2s(r^2 + 1) - 1 \end{cases} \quad (t, s \in \mathbb{R}^+)$$

or

$$\begin{cases} 2\{t(r^2+1)-r^2\} = t^2/s^2\\ 2\{s(r^2+1)-1\}/r^2 = s^2/t^2 \end{cases} \quad (t,s \in \mathbb{R}^+).$$

From here we can express the parameter t in two different ways:

$$\begin{cases} t = \frac{r^2}{4(r^2+1)\{s(r^2+1)-1\}} + \frac{r^2}{r^2+1} \\ t = \frac{s|r|}{\sqrt{2\{s(r^2+1)-1\}}} & (t, s \in R^+, s > \frac{1}{r^2+1}) \end{cases}$$

Hence we get the equation

$$\frac{r^2}{4(r^2+1)\{s(r^2+1)-1\}} + \frac{r^2}{r^2+1} = \frac{s|r|}{\sqrt{2\{s(r^2+1)-1\}}}$$

After the substitution $s(r^2 + 1) - 1 = 2y^2$, we obtain $8|y|^3 - 8|r|y^2 + 4|y| - |r| = 0$. Further, for the discriminant \mathcal{D} , we get $\mathcal{D} = \frac{1}{6^3}(r^4 - \frac{61}{2^5} \cdot r^2 + 1) > 0$, and hence we have only one real root. The formulas (3.1) now follow easily, and this completes the proof.

Hence we obtain the first part of the following

Theorem 3.1. For each $r \in Q(|r| \neq 0, 1)$, there exists, up to a homothety, a unique invariant Einstein metric on M_r^5 . This metric is never naturally reductive.

PROOF OF THE SECOND PART: In fact, we only have to compare our metrics with the family of naturally reductive metrics of the type I from [K-V]. This can be done by a direct computation.

Remark 1. Let us note that the property "never naturally reductive" means "not naturally reductive whatever is the group representation $M_r^5 = G/H(G \subset I(M_r^5))$ and whatever is the Ad(H)-invariant decomposition $g = h \oplus p$ ", cf. [K–V].

Remark 2. For r = 0, we obtain the decomposable homogeneous space $S^2 \times S^3$, where the invariant Einstein metrics are well-known. All of them are naturally reductive (cf. [B]).

The cases M_{-1}^5, M_1^5 are to be studied separately.

References

- [B] Besse A., *Einstein manifolds*, Springer Verlag, Berlin, 1987.
- [J] Jensen G.R., Homogeneous Einstein spaces of dimension 4, J. of Diff. Geom. 3 (1969), 309–349.
- [K–V] Kowalski O., Vanhecke L., Classification of five-dimensional naturally reductive spaces, Math. Proc. Camb. Phil. Soc. 97 (1985), 445–463.

ALTAI STATE UNIVERSITY, DIMITROV STREET 66, 656099 BARNAUL, USSR

(Received January 31, 1991)