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Existence and bifurcation results for a class
of nonlinear boundary value problems in (0, c0)

WOLFGANG ROTHER

Abstract. We consider the nonlinear Dirichlet problem

—u" —r(z)|ulu=Au in (0,00), u(0) =0 and lim u(z) =0,

T — 00

and develop conditions for the function r such that the considered problem has a positive
classical solution. Moreover, we present some results showing that A = 0 is a bifurcation
point in W12(0, 00) and in LP(0,0) (2 < p < 00).
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The aim of this paper is to prove some existence and bifurcation results for the
nonlinear Dirichlet problem

(1) —u” —r(x)|u|u = M in (0,00)

with the boundary conditions «(0) = 0 and limg—.oo u(z) = 0, where o > 0 and
A < 0 are given constants. In particular, we will generalize and complement some
results of M.S. Berger (see [2, Theorem 4]) and C.A. Stuart (see [6, Theorem 7.4]).

In the following, the function r is always assumed to satisfy

(A) The function r : (0,00) — R is measurable and satisfies » > 0 a.e. on
a subinterval (d1,d2) (0 < 61 < d2) of (0,00). The negative part r— = min (r,0)
of r satisfies fff |r—(x)| dr < oo for all constants 0 < z1 < x9 < oco0; and from the
positive part r4 = max (r,0) we require that it can be written as

ry =11 +ro+13+1ry, where

(i) 0 < ri(x) < f(z) - 2=279/2 holds for almost all z > 0 and a function
f € L*(0,00) satistying f(z) — 0 as z — 0,
(ii) the function ro fulfils 0 < ry € L°°(0,00) and r2(z) — 0 as © — oo,
(iii) 0 <rg € LPo(0, 00) holds for some pg € (1,00),
(iv) and r4 satisfies 0 < r4 € L1(0, 00).
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Then we will prove the following existence results:

Theorem 1. Suppose that the function r satisfies (A). Then, for each \ < 0, there
exists a nonnegative, bounded function uy € Wol’2 (0,00) N C%1/2([0, 00)) such that
uy Z 0, ux(0) = 0, limgy—o ur(x) = 0 and the equation (1) holds in the sense of
distributions.

Corollary 1. Assume in addition to (A) that r3 = r4 = 0. Then, for each o €

(0,|\|}/2), there exists a constant Co such that uy(z) < Cu - €~ holds for all
z > 0.

Corollary 2. Suppose in addition to (A) that the function r is continuous in
(0,00). Then uy is positive in (0, 00), satisfies uy € C2(0,00) and solves the equation
(1) in the classical sense.

In order to formulate our bifurcation results, we have to introduce some further
notations and assumptions.

The constants d; and d2 may be defined as in (A), and I may denote the interval
I = (61,02). Moreover, (t,)n may be a sequence of real numbers satisfying 1 = ¢; <
g < - <tp <tpy1<...andt, — ocoasn— oo.

By I,,, we denote the interval I, = t,, - I. Then, for £ > 0, we introduce the
following condition:

(Ag) There exists a nonnegative, measurable function h on (0,00) such that
r(x) > h(z) - || ~* holds a.e. in |J>2; I, and (3, = ess Iinf h(y) — oo as n — oo.
yE n

Theorem 2. Suppose that the assumption (A) is fulfilled and that Ay, is defined
by An = —t,, 2 for all n. Then we have the following results:

(a) If in addition (Ay) is satisfied for k = 2+ G, then ||u\ [l2 — 0 and uy, — 0
in Ly ([0,00)) as n — oc.

(b) If in addition (Ay,) is satisfied for k = 2, then |uy, [|co — 0 as n — oc.

(c) Let p € (2,0),0 < 0 < 2-p and assume additionally that (Ay) holds for
k=2—2. Then |luy,|p — 0 asn — .

(d) Suppose additionally that 0 < o < 4 and (Ay,) holds for k = 2 — §. Then
we have |[uy, |ly1.2 — 0 as n — oo.

Remark 1. Part (d) of Theorem 2 shows that A = 0 is a bifurcation point for the
equation (1) in W12, A similar result was obtained by C.A. Stuart [6, Theorem 7.4].
But in the contrast to the part (d) of Theorem 2, in [6], it is assumed that r is
nonnegative in (0, 00).

For the special case that 0 < 0 < 4 and r(z) = cg-z77 (¢ is a positive constant),
the existence of a nontrivial, nonnegative solution of the equation (1) already has
been proved in [2] (see Lemma 1 and Theorem 4).

1. Some preliminaries.

By W12(0, ), we denote the Hilbert space of functions u defined on the interval
(0, 00) such that u and its derivative u/ are in L?(0,00). The inner product of two
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functions u, v € W12(0,00) is given by (u,v) = [;°(u- v+ u’-v') dz. Moreover, by
W01’2(0, 00) we denote the closure of C§°(0,00) in W12(0, 00).

The following lemma plays a crucial role in our proofs. The essential parts of it
can be found in [6, p. 188].

Lemma 1. Each function u € VVO1 ’2(0,00) can be identified with a continuous
function on [0, 00), still denoted by w, such that

(a) u(0) =0, limg—oo u(z) =0,

(®) |u(z)] <V2- Hu||§/2 . ||u'||;/2 holds for = > 0,

(c) |u(z1) — u(as)| < |||z - |1 — z2|*/? holds for all z1, x5 > 0 and
(d) fooae 272 Ju(@) P de < 4- |57

PROOF: Let ¢ € C5°(0,00). Then we see that

z1

Pr) =2 /Oxso<s>-so'<s>ds, o(21) — plaz) = / o/ (s) ds

2

and, by Hardy’s inequality, that [;° 272 p%(x)dr < 4-|¢'||3. Hence, by Holder’s
inequality, it follows that (b) and (c) hold for all ¢ € C§5°(0,00). Moreover, the
part (c) implies

(@) < ll¢'lla o/ for x>0

and
o0
/0 27272 ()P dw < 4- Q5T
Now let u € W01’2(0,oo) and (¢n)n be a sequence of functions ¢, € C§°(0,00)

such that ¢, — u in W01’2(0, 00) as n — oo. Then, according to part (b), (¢n)n is
a Cauchy sequence in L°°(]0,00)). Hence, there exists a function ®, continuous on
[0,00), such that

on — @ in L°°([0,00)) as n — co.
Clearly, we have ®(0) = 0, limg—00c ®(z) = 0 and ®(z) = u(x) a.e. in (0, 00).

Furthermore, it is not difficult to show that (b)—(d) even hold for the function ®.
O

2. Proof of the existence results.

For A < 0, we define

o
Dy = {u e Wy?(0,) ]/ Ir_| - [u?™ dz < 0o
0
and [uly == (/13 + |\ [ull3)"/? < 1}.

Then, from (A) and Lemma 1, one easily concludes
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Lemma 2. There exist constants cg,cq, ..., c5, independent of u € Dy, R > 0 and
S > 0, such that

a) Jo7ry - [u*t7 de < e,

b) [r -l de < ¢ - R7279/2,

c f}%o ry - |u|2+0 dx < ¢z - supy,>p ra(y),
f}%o7°3 . |U|2+Jd$ <ecg- (f}%orgo dx)l/po 7

(e f;or4-|u|2+0dx§04-f§°r4dx

S
(f) Jo r1-|ul*t9dz < c5-supgy<g f(y)-
The nonlinear functional ¢ will be defined by

LI Ooracuac2+0:v
| @@ e .

_2+0

((u) =
Then, the part (a) of Lemma 2 shows that ¢ is well defined on D) and that

My = inf
A= b C(u)

is a well defined real number.
The interval (61, 02) may be defined as in (A) and the function g € C§°(0, 00)
may be chosen such that supp ¢g C (d1,2) and |pg|y = 1. Then

(2) C(pp) <0 implies My <0.

Lemma 3. There exists a function uee € D) such that |uso|y = 1, uso > 0 and
C(uco) = M.

PROOF: Let (un)n C Dy be a sequence such that ((un) — M) as n — co. Then,
according to (2), we can assume without restrictions that ((uy) < 0 holds for
all n. Furthermore, since |||u| [|2 = ||u/||2 (see [4, Lemma 7.6]), we may assume that
un > 0.

The sequence (uy)n is bounded in W01’2(0,OO). Hence, using Lemma 1, the
Arzela—Ascoli theorem, the reflexivity of VVO1 ’2(0, 00), and a standard diagonal pro-
cess, we see that there exists a subsequence of (up)n, still denoted by (up)n, such
that

Up = Uog in W01’2(0,oo) as n — oo,

and

3 sup  |ueo(x) — up(x — 0
(3) o uoe(w) @l =

holds for all constants 0 < d < co.
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As an immediate consequence of these results, we obtain
[uso|y <1 and wuco > 0.

Since ((uy) < 0 holds for all n, we conclude from the part (a) of Lemma 2:
o0
(4) / |7 | |un|2+o dr <cg for all n.
0

But (4) and Fatou’s lemma imply [ |r_| oo |21 da < .
Furthermore, it follows by Lemma 2 that for each ¢ > 0 there exist constants
Re > 0 and Sz > 0 such that

o
(5) / ry - |un?to0de < e
R
and
Se
(6) / K |un|2+a dx <e hold for all n € NU{oo}.
0

From (3)—(6), we conclude that

0 00
(7) lim T+(x) . |un(x)|2+a dr = / T‘+($) . |Uoo(55')|2+0 dz .
Moreover, Fatou’s lemma and (7) imply

My < {(uso) < lim inf ((un) = M), .

Since ((uoo) = My, the inequality (2) shows that |uce|y > 0.
Finally, My < 0 and M, < §(|uoo|;1 ClUso) = |uoo|)_\2_0 - M) prove that
|uoo|)\ =1. O

PrOOF OF THEOREM 1: The function u~ may be chosen as in Lemma 3. Then, for
each ¢ € C3°(0, 00), there exists an g = eg(p) € (0,1] such that |uce +€- [y >0
holds for all |e] < gg(ip).

For |e| < eo(y), we define

1(e) = (((uoo + - ¢) - Juoo + € - @l = Cluco + - ¢) - Juoo + -9l 3277,
and () = ((uco + € - ). Then, using the inequality
161257 = a7 < 2+ 0) - 2177 - b —al - (Jal'"*7 + []'*7)  (a,b € R),
it is not difficult to show that there exists a constant C' = C(0) such that
[r(@)] - | Juoo () + & - (@) — Juco (@) 7F7] - |e| !
< C-Jr(@)] - le(@)] - (Juse (@)™ + () 1+7)
< O (lucoll s + 12ll5E7) - r(2) - p(a)
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holds for almost all z > 0.
Hence, we can apply Lebesgue’s convergence theorem and obtain

&

o
0) = — Nttoo|” - oo - p da.
0 == [ il g o

Furthermore, Z—Z(O) = 0 implies
[ee) oo [e.e]
B ([ oo N [ o) = [ Jusel” e
0 0 0

where p(\) = [7° (@) - [uso(x)*T7 dz = —(2+ o) - M), > 0.

Now we define uy = 1(A)~1/7 - uso and conclude that

[e.9] [e.9] [e.9]
(8) / u&-(p/d:r—/ r(x)|u>\|0u)\~<pda::/\~/ uy - pdr
0 0 0
holds for all ¢ € C§°(0,00). The remaining assertions follow from Lemma 1. O

PROOF OF COROLLARY 1: From (8), we conclude for all nonnegative functions

[e.e]

oo [e.e]
gongo(O,oo):/O u&-gp’d:vg)\-/o u)\-cpd:v—i-/o r(2)us - pda

For functions v € WO1 )2 (0, 00) satisfying v > 0 there exist sequences (¢n)n of non-

negative functions ¢, € C§°(0,00) such that ¢, — v in W01’2(0,oo) as n — oo
(see [3, p.147]). Hence, we obtain

[ee] o0 [e.e]
9) /Ou')\-v/d:vg)\-/o u)\-vdx—i—/o r.,.(ac)-ui‘"o-vdx

for all functions v € VVol’2 (0, 00) satistying v > 0.
The constant €1 > 0 may be chosen such that 7 < |A| — a?. Then it follows
from the assumptions and Lemma 1 that there exists a constant Ry > 0 such that

(10) ry(z)-uf(z) <er holds for all z > Ry.
Since wu) is bounded, we can find a constant C, > 0 such that
ur(z) < Cq-e”*%  holds for all z € [0, Ry + 1].

The function 1, may be defined by 14 (z) = Cq - e~*% for 2 > 0. Then one easily
verifies that 1, € W12(0, 00) and

o o
(11) /0 ¥, dr = —a? /0 o -vdr  holds for all v e Wy>(0,00).
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The function (uy — %)+ satisfies (uy — o)+ € W01’2(0, 00), (uy — Ya)+(x) =0
for z € [0, Ry + 1], (uy —¥a), = (ux — ) on {uy > Yo} and (uy — ). = 0 on
{u)\ < %}-

Hence, we obtain from (9)—(11):

o0 9 o0 [e.e]
/0 ((ux —va)})? do < /\~/0 uy - (ux —a)+ dI+€1'/0 uy - (un — Ya)+ dz+
o0 [e.e]
+a2-/0 o+ (x — )4 da < _az./o (0 — )2 d < 0.
Thus, Lemma 1 implies (u) — ¢q)+ = 0 and uy(z) < ¢ (z) for all z > 0. O
PROOF OF COROLLARY 2: For z € (0,00), we define
l(x) = —r(x) - ui“'o(:v) — X uy ().

Then, from the assumptions and Theorem 1, it follows that [ is continuous in (0, c0).
The function U may be defined by

Ty
U(z) = / / I(s) dsdy for x> 0.
1 1

Then we see that U € C2(0,00) and U”(z) = I(x) holds for 2 > 0. Moreover, for
all functions ¢ € C§°(0,00), we obtain

oo
(12) / (W = U") - o dz = 0.
0
Corollary 3.27 in [1] and (12) imply the existence of a constant K such that

(13) u\ =U"+ K holdsin D'(0,cc).

Then, according to Theorem 1.4.2 in [5], we see that (13) holds even in the classical
sense and that uy € C2(0,00).

To prove that the function u) is positive in (0, 00), we assume that there exists
an xg € (0,00) such that uy(rg) = 0. Since uy(z) > 0 holds for all z > 0, we see
that u)(z9) = 0. Hence the vectorvalued function (yi,y2) = (uy,u)) solves the
initial value problem

(1,y2) = F(2,y1,92) = (y2. = -y1 = r(@) - |7 - 1),
(y1(0), y2(x0)) = (0,0).
The function F is continuous in (0,00) x R? and the partial derivatives 9y, F' and

Oy, F' of F are also continuous in (0, 00) x R2. Then, it follows by a standard result
from the theory of ordinary differential equations that uy = 0 in (0, c0). O
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3. Proof of the bifurcation results.

The function us may be chosen as in Lemma 3. Then we have u) = u()\)_l/” .

Uoo, Where p(A) = —(24 o) - M. Since |uco|y = 1, it follows that
(14) Juhllz < pN)7V7 and  fuylla < p() YA TY2,

The function ¢1 € C§°(0,00) may be chosen such that supp ¢y C I = (d1,92) and

#1113+ [l¢1]13 = 1. The functions ¢, may be defined by ¢p(z) = /2. o1 (! - x).

Then, it follows that supp ¢, C I, and

2 —2 2 2 2
(15) lenllz + 6 - lenllz = lehllz + lleallz = 1.

Lemma 4. Let \, = —t,,2 for all n and suppose that (A) holds for some k > 0.
Then it follows that

240/2—k _
(a) [l Il2 < (Bn - ta 2 7F yg) =20
and
o/2—k _
() flu,ll2 < tn - (B - 1277278 )~ V/e

holds for all n, where vo = [; lz|7F - |1 (2) 217 dz > 0.

ProOF: The identity (15) shows that [¢n|y, = 1. Hence, we obtain

My, < Clon) = —2+0) L £iT/2. / r@) - o1 (5 )2 da
0
(16) = @to) i / r(tn - 7) - o1 (@) da
I
< @40yl g /I 2| * - o1 ()2 de.

Since p1(An) = —(2+4 o) - M), the assertions follow from (14), (15) and (16). O

PROOF OF THEOREM 2: Assume first that (Ay) is satisfied for k = 2 + o/2. Since
Bn — o0 as n — 0o, we obtain from the part (a) of Lemma 4 that ||u’)\n||2 — 0 as
n — oo. The part (¢) of Lemma 1 implies

uy, (2)] < [luh [l -2/?  forall x> 0.

Hence, we see that uy, — 0 in LS ([0,00)) as n — oo.

From the part (b) of Lemma 1 it follows that

(17) lun lloo < V- lu, 152 - s 52 holds for all 7.
Then, combining Lemma 4 and (17), we show that

lux,llooc = 0 (n — o00), if (Ag) holds for k = 2.



Existence and bifurcation results for a class of nonlinear boundary value problems in (0,00) 305

Now let p € [2,00) be a real number and suppose that 0 < o < 2 - p. Since

352/1) N 2/p < 9l/2=1/p

1/2—1 1/2—1
ol VAP, 132

l[ux, llp < llux, | Uyl

holds for all n, we obtain from Lemma 4 that
llux, llp — 0 (n — o00) if (Ag) holds for k=2—0/p.

If (Ag,) is satisfied for some k1 > 0, then (Aj) holds for all k € [k1,00). In
particular, we see that (A;_, /o) implies (Ay ;/5). Hence the part (d) of Theorem 2
follows from the above considerations. O
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