Comment.Math.Univ.Carolin. 32,2 (1991)395-403 395

New properties of the concentric circle space
and its applications to cardinal inequalities

SHU-HAO SuN, K0oo-GUAN CHOO

Abstract. It is well-known that the concentric circle space has no Gs-diagonal nor any
countable point-separating open cover. In this paper, we reveal two new properties of the
concentric circle space, which are the weak versions of Gs-diagonal and countable point-
separating open cover. Then we introduce two new cardinal functions and sharpen some
known cardinal inequalities.

Keywords: concentric circle space, weak Gs-diagonal, point-separating *-open cover, car-
dinal function

Classification: 54G05, 54A25

1. Concentric circle space and its new properties.

Let us first recall the definition of the concentric circle space or the Alexandroff
double circle space. Let

CZ:{(‘Tvy) |x2+y2:i}, (i:1,2),

and let P : C1 — Cy be the projection of C1 onto Cy from the origin (0,0). Let
X = C1 UCy and we define the neighbourhood system {B(z)} of X as follows: let

{{z}}, for z € Oy,
{B(2)} = { {Uj(z)}?il for z € (1,

where
Uj(z) = Vj(z) U P(Vj(z) — {z}),

and Vj(z) is the arc of C with center at z and length 1/j. Then such X (with the
defined neighbourhood system) is called the concentric circle space or Alexandroff
double circle space. It is well-known that the concentric circle space X is a compact
Ty space (in fact, T5 space) (cf. [2]).

Next, we recall that a topological space Y has a Gg-diagonal, iff there exists
a sequence of open covers {Up} of Y with

NSt (. Un) = v}

*The first author gratefully acknowledges the financial support of the Australian Research
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for each y € Y, where
St (y,U) = {B €U |ye B}
A cover U of Y is called point-separating, if for each y € Y,

(WU eu|yeU}={y}

It is also well-known that the concentric circle space X is not metrizable, and so
it has no Gs-diagonal nor any countable point-separating open cover. Although X
has no Gs-diagonal, we will show that it has a weak Gs-diagonal as defined below.
We will also show that X has a countable point-separating *-open cover as defined
below.

Definition. Let Y be any topological space. Then a collection ¢ of subsets of Y
is called a *-open collection, if for each y € Y, St (y,U) is an open set. Moreover, if
for each y € Y, St (y,U) is a non-empty open set, then U is called a *-open cover.

A space Y is said to have a weak Gg-diagonal, if there is a sequence {Up} of
*_open covers such that

ﬂ St (y,Un) = {y},

for each y € Y.

Remark. A collection of open sets is clearly a *-open collection. But the converse
is not true. For example
U={{y}ru{y}

is a *-open cover of Y, but it is not an open cover, if Y is not discrete. On the other
hand, if for each ¥V C U, V is a *-open collection, then it is easy to check that U has
to be an open collection.

Lemma 1. A topological space Y has a weak Gg-diagonal, if there is a mapping
g:Y x N — 7, where 7 is the topology of Y, such that for eachy € Y,

) 9(v.n) = {y},
neN
and for eachn € N;z,y,€ Y,y € g(x,n) implies x € g(y,n).

PROOF: Suppose that Y has a weak G g-diagonal; i.e., suppose that Y has a sequence
{Un}22 | of *-open covers such that (1), St (y,Un) = {y} for each y € Y. Define
g:Y xN— 71 by

9(y,n) = St (y,Un).

Then clearly g has the required properties.
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Conversely, suppose that the mapping g with the required property is given. For
eachy € Y and n € N, let

Rn(y) = {{y,z} |z € g(y,n)}

and

Un = | Ruly).

yey

Then {Uy,}72; is the required sequence of *-open covers such that

NSt (v, Un) = v}

for each y € Y. Firstly, for each n € n, U, is a cover of Y. Next, for each y € Y
and n € N, St (y,Un) = g(y,n). Clearly g(y,n) C St (y,Up). Now, if x € St (y,Un),
then

ye |J Ru(@),

zeY

ie., y € g(x,n) so that z € g(y,n). Thus St (y,Un) C ¢g(y,n). This completes the
proof. O

Proposition 1. The concentric circle space X has a weak Gg-diagonal.
PRrROOF: Define g: X x N — 7 by

Un(z), if ©=2e€0C,

“%”:{ama—vWAﬂ, if o= P(z) € Cyz € O

Then clearly for each n € N,

U g(a:,n) =X,

zeX

for each x € X,

ﬂ g(‘rvn) = {CC},

neN

and for each x € X, n € N, g(x,n) is open.
By Lemma 1, it remains to show that for each n € N, and for any z,y € X,
x € g(y,n) implies y € g(xz,n). We divide this into four cases.

(i) Both z,y € Cy. If
y € g(z,n) = Un(z) = Vo () U P(Vn(2) — {z}),

then y € Vi, (z) so that = € Vi, (y) C Un(y) = g(y,n).
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(ii) = € Cy and y € Cy. Let y = P(z), where z € Cy. If
y € g(z,n) = Va(z) U P(Va(2) = {z}),
then y € P(V,(x) — {z}) so that z € V,,(z) — {x} and thus

z € Va(2) = {z} € (Un(2) — {z}) U{y} = g(y,n).

(i) x € Cg and y € C}. Let = P(w), where w € Cy. If

y € g(x,n) = (Un(w) = {w}) U{z},

then y € Vy(w) — {w} so that w € Vi, (y) — {y} and hence

z = P(w) € P(Va(y) —{y}) C Un(y) = g(y,n).

(iv) Both z,y € Cy. Let x = P(w) and y = P(z), where w,z € C1. If
y € g(w,n) = (Un(a) — {ah) U {a},
then y € P(V,(w)) so that z € Vi (w). Thus w € V,(2) and therefore
& = P(w) € P(Va(2)) C gy 1),

This completes the proof. O

For convenience, we now modify slightly the basic sets in the Alexandroff double
circle space as follows: let

replace C; for i = 1,2, and transform the projection P onto a mapping which maps
(a,1) into (a,2) for each a € [0,1]. Since a circle is obtained by identifying the end
points of [0, 1], this is consistent with the previous definition.

The following proposition shows that although the Alexandroff double circle
space X does not have any countable point-separating open cover, it does have
a pointwise countable point-separating *-open cover.

Proposition 2. For the Alexandroff double circle space X, there is a cover U such
that

(e =({BeU|xze B} ={z},

Uz | < wo and Vy = U\Uy is a *-open collection, for each x € X, where |Uy| denotes
the cardinality of U, and wq is the least infinite cardinality.

PRrROOF: Let Q; be the family of all non-empty open intervals with rational end
points in X;, for ¢ = 1,2. Then let U/ be the collection

U={{z}}rex U{Q1UQ2| Q1 € Q1,Q2 € Qa}.
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Then U is the cover having the desired properties.
Clearly, U is a point-separating cover of X and we have

(e =({BeU|xze B} ={z},

and |Uz| < wg, for each z € X (i.e., U is a pointwise countable cover).

We now show that for each © € X, V, = U \ Uy is a *-open collection. It suffices
to show that for each B € V., if w € B, then there exists a sequence {B;} C V;
such that w € By, for each j, and Uj Bj is open. Clearly, we can take

B:Q1UQ27 (Qlegza 22172)

Let w € B=Q1UQ2 € V;. Then there are two cases:

(i) w € Q1 and z € P(Q1). Let z = (a,2), where a € [0,1]. Let ¢1 (resp. r1)
denote the left (resp. right) end point of @1. Then there is an increasing sequence
{ln} of rational numbers and a decreasing sequence {r,} such that sup{¢,} = a
and inf{r,} = a. Now let

Dj = (01,45) x {2}, Ej=(rj,r1) x{2}, (G =12,...).
Then D; UQ and E; UQq are in Vg, for j =2,3,..., and

UDUE UQ

is an open set. Hence St (w, Vx) is open.
Similarly, if w € Q2 and x € P~1(Q5), then St (w, V,) is again open.

(ii) w € Q1 and = ¢ P(Q1). Since B = Q1 UQ2 € V; (ie., B € U,z ¢ B),
we see that z ¢ Q1 and so x ¢ Q1 U P(Q1) and Q1 U P(Q1) € V,. The facts
that @1 U P(Q1) is open and w € Q1 U P(Q1) C St (w,Vy) are clear. The same

conclusion remains valid, if w € Q2 and = ¢ P~1(Q2). This completes the proof.
O

2. Two new cardinal inequalities.
Let X be a T} space. Then we have the following known cardinal inequalities:
|X| < 2¢(X)psw(X) (D K. Burke and R. Hodel [1]),
|X| < 2¢(XAX) (], Ginsburg and G. Wood [3]),
where
psw(X) = min{x | there is an open cover U of X such that

ﬂz,{m ={z}, [U| <k, foreach z€ X},

A(X) = min{x | there is a collection of open covers {Un o<k

of X such that mSt (x,Uy) = {z} for each = € X},

e(X) =sup{k | A is a closed discrete subspace of X with |A| < k}.

399



400 Shu-Hao Sun, Koo-Guan Choo

Here x denotes cardinality and |.A| denotes the cardinality of A.
We will sharpen these inequalities. For this purpose, we define the following
cardinal functions:

wpsw(X) = min{x | there is a cover U of X such that (U, = {z},
Uz| < K and Vp, =U\ Uy is "-open, for each x € X},

A(X) = min{k | there is a collection of *-open covers {Uy }a<x

of X such that m St (x,Uy) = {x}, for each z € X}.

a<k

Then we have:

Theorem 1. For any T} space, |X| < 2¢(X) wpsw(X)(X)

Theorem 2. For any T space, | X| <e(X)A(X),

To prove our theorems, we need the following results, the first one is easy to
prove and the second is due to D.K. Burke.

Lemma 1. If U is a *-open cover of a T1 space, then there exists a maximal
subset D such that x,y € D and x # y imply x ¢ St (y,U); and that D is a discrete
closed subspace of X with

U st(d.u) = x.
deD

Lemma 2 (D.K. Burke). If {A, | @ € A} is an indexed collection of sets in which
every member has cardinality less than or equal to A, where |A| > 22, and each
Aq is a disjoint union of two subsets A, A" then there is a set A’ C A such that
|A’| > 2* and AL, N A% = 0 whenever o, 3 € A,

PROOF OF THEOREM 1: Let e(X)wpsw(X)¥(X) = k. Then there is a *-open
cover U of X such that Uz = {z} and |Uz| < & for each z € X, and a collection
of open sets {Un(2)}a<x such that {z} =, Ua(z).

For each xg € X, we will construct a set

Agy = Al U A
satisfying the assumption of Lemma 2. Firstly, since |[Uy,| = {B € U | z9 € B}|
< K, we let
Al = Uz,
Then Vzy = U \ Uz, and |J Vg = X \ {x0}. For each a < &, let

Us = Vay U {Ua(z0)}-
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Then U, is a cover of X such that St (x,U,) is an open set for each x € X. By
Lemma 1, there exists a closed subset Dy () such that

(St (d,Ua) | d € Da(w0)} = X;

ie.,

({8t (d, Vo) | d € Da(z0)} U Ualo) = X.

Since e(X) < &, it follows that |Dg(z0)| < e(X) < k. Therefore

U U StdVe) > [J X\ Ualzo)) = X\ {wo}.

a<k dEDa(ZEo) a<k

On the other hand,
vo¢ | U St(d Ve

a<k deD, ({E())

Let Dzy = Uq<r Dal®o). Then we see that
U St(d Vi) = X\ {z0} and |[Dyo| <k =k
dEDa(.’Eo)
Now let

Ay = |J {BeVyldeB)
dEDa(SC())
Then |A} | < k- k= k. Clearly Al N A7 =0.
If | X| > 2%, then by Lemma 2, there is a set X’ C X such that |X’| > 2" and
A, N Aj = 0 for each pair x,y € X'. But this is impossible. Since

yeX\{z}= |J St(d W),
d€Dy

there is a B € V; and d’ € Dy such that y,d’ € B and so B € A} N A; ie,
Ay N A} # 0, for each distinct pair z,y € X'
Hence | X| < 2% and the proof is complete. O

Remark. We use the technique of Burke in the proof of Theorem 1.

PROOF OF THEOREM 2: Let e(X)A(X) = k. Let {Wa}a<x be a collection of *-
open covers of X such that (. St (z, Ws) = {z}. We will construct an increasing
sequence {Bq | 0 < a < T} of subsets in X and a sequence {Uy | 0 < a < KT} of
open collections in X such that

(i) |Bal <2F,0<a < kT
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(i) Ua — U {{St (z,Wu) | o/ < k}}, where 2 runs over the set (Jz, Bg, for

0<a<kt
(iit) if X \ (JU) # 0, then By \ (JU) # 0, for each U € [Uy]=*, where

[ua]gn = {V C U, | |V| < “}-

The construction goes by transfinite induction. Let 0 < o < k™ and assume that
{Bg | B < a} have already been constructed. Note that U, is defined by (ii) and

[Uo| < 2%. For each U € [Uy]=F with X \ (JU) # 0, choose one point in X \ (JU).
Let Ay be the set of all the points chosen in this way. Since |Uq| < 2%, it follows
that |Aq| < (2%)F = 2%, Now let

Bo=A4a U | J Bg.
B<a

Clearly, Bg C By, for all § < a, and |B,| < 2. This completes the construction of
the increasing sequence {B, | 0 < a < k}.

Next, let
B = U B .

a<wt

Then |B| < 2%. The proof is complete, if X = B. Suppose X # B and choose
p € X\ B. For each a < k, let Fy = X \ St (p, Wa). Then F, is closed and

U Fa =X\ [ St(p,Wa) = X\ {p} 2 B.

a<rk a<k

Let Vo = {W € Wy | WN (Fy N B) # (}. Then we claim that |J Vo 2 Fo N B.
In fact, if y € F, N B, then there exists b € St (y, Wa) N (Fo N B), and so y €
St (b, Wa) C U Va.

Since e(X) < k, we have e(F,, N B) < &, so that there is a set Cy, C F, N B such
that C is closed discrete with |Cy| < k and

U St (0. Wa) = |J St(b,Va) € Fan B.
beCa beCq

It is sufficient to take the maximal C,, C F, N B such that dy ¢ St (d2, V) for each
distinct pair dj,da € X. Let C = Co C B. Then |C] < k and

a<k

U U st@dwa) < |J(F.nB)=B.

a<k deCy a<k

Therefore there exists ag < £ such that C' C By,. Finally, let

U= |J{St(d,Wa) | de Cal.

a<k
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Then U € [Up,|=" and hence
Bags1 \ () # 90,

by (iii), which is a contradiction. This completes the proof. O

Remark. The results in Section 1 on the concentric circle space show that the
above extensions are not trivial.
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