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The trace theorem
1-1/p,1/2—-1/2
Wyl Qr) > f — Vuf €W, /PA2=12 (900
revisited

PETER WEIDEMAIER

Abstract. Filling a possible gap in the literature, we give a complete and readable proof
of this trace theorem, which also shows that the imbedding constant is uniformly bounded
for T' | 0. The proof is based on a version of Hardy’s inequality (cp. Appendix).

Keywords: trace theory, anisotropic Sobolev spaces

Classification: 46E35

Introduction.

The imbedding theorem described in the title can be found in LADYSHENS-
KAYA et al. [L/S/U, Chapter II, Lemma 3.4]. However, none of the references
cited there seems to contain a complete proof. The theorem is also stated in IL’IN
[I, Theorem 8.4]; but there too, no proof is given. Things look even worse, if we ask
for the dependence of the imbedding constant ¢(T") on the height T' of the space-
time cylinder (for small 7). In some applications of this trace theorem to nonlinear
problems, one needs ¢(T) < ¢g for all T small (cf. WEIDEMAIER [W], particularly
the Appendix). However, the formulation in IL’IN [I, Theorem 8.4], exhibits an
explosion of ¢(T) for T | 0. To settle things, we shall give in this note a detailed
proof for the imbedding, which also shows the uniformity of ¢(7") for T' | 0.

The paper is organized as follows: in Chapter 1 we deduce an integral representa-
tion for Vi f in terms of d; f, 6:% f, which is the basis for the estimates in Chapter 2.

Let us fix the notation: Q7 := Q x (0,T") with the typical point (z,t) € Qp; here
Q C R"™. The prime characterizes (n— 1)-dimensional quantities : thus we write z €
R" asz = (¢/,2,), 2" € R"™1,Q"1(d/, V) is the open parallelepiped H;‘:_ll (aj, b;),
when @’ = (a1,...,ap_1),0 = (b1,... ,bp_1); Q" 1(N\) := Q" 1(=\1, AL') for
A € R; here
1 :=(@1,---,1) € ]N"_l;Qj_L(/\) = Q" Y(\) x (0,)\) ; the superscript ~ always
indicates the deletion of a coordinate (the n-th. one, if not further specified) , e.g.
7 -

g = (y17 Y1, Y1, 7yn) (1 < { < n) and Qn—i_l(Q? [—)) = Hc::z%(a’lvbl ) .
1FN

Wg’l(QT) = {u|0%u,Opu (distr. sense) € Ly(Qr) V |of < 2} with the obvious

norm.

I thank Prof. V.A. Solonnikov, Leningrad, for valuable hints
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308 P. Weidemaier

For a bounded domain Q c R",9Q € C? means that 0Q is a C%-hypersurface.

The spaces Wﬁ"ﬁ(GQT) (o, 8 € (0,1)) are defined as usual, via a partition of
unity on 02, and using local charts. We use the notation c¢* to emphasize the
non-dependence of the constant ¢ on the quantity 7' (for 7" small).

1. Integral representation.

Our starting point is an integral representation for 9% f in terms of f: if f is
smooth and defined on Q7~1(=X1',2)A1") x [0,2)\] x [0,3T], then we have (cf.
IL’IN/ SOLONNIKOV [I/S, p. 70, (6)] with m; = 0,k; = 1;)

A
0% f(r,t) = // F((@. ) + y)TI(y, T) dy+
Qr1(0,T%)
n+1 i
+y [ [+ oG o v
Qnt1(0,vE)

for (z,t) € QT(A\)x[0,T],T < To(A) and vj < I;—1, where (cp. [I/S, pp. 69-70])

n+1

l,
=11 97xi(;, 1)
j=1

T"i
W T) =3y [ sy
Yj
n+1

H 3 X (s, 0
J#Z
() li+Ai—v; Ki V%)
wz(yw v): =y, '(U — i)

with certain parameters p;, A\; € IN and certain A, B; € IR; here T" :=
(Tﬁlv" ! ’T"‘fnJrl), ri=~k- (l+A+H)7 l:: (17 ' a]-) € Nn+1 .
In the sequel we ﬁXi = (27 e 727 1) € ]I\ITL—FI,E = (ﬁ/v Kn, K:TL-FI) = % = (%7 R %7 1)
and choose the parameters yj, A; so large that 8]k1/)j (yj,v) vanishes for y; = 0, y; =

7
T%i, 1 <k <. Hence, integrating by parts and introducing K;(y,v) := IL;(¢,v)
¥ (y;,v) (0 <y; <o*) | we have shown that

1) 020 =2 [ [ S0+ o0 Ty
QmT1(0,T*)
n+1

+Z / o) // az‘lif((wat)+y)Ki(y,v)dydv.

Q10 vE)



The trace theorem Wg’l(QT) > f—=Vafe ngl/p'l/Zil/Zp (0Qp) revisited
The kernels II, K; in this representation satisfy (uniformly w.r.t. y € Q™T1(0, v£))

(1.2) 07 TI(y, v)| < ¢ 0" EATETD) g g <2
(1.3) 10511 Ki(y,v)| < c-yf, - o7 T L) mern s
(Ont1 =0y,11,0<s<1,1<i<n+1, e€[0,1)).

For the proof of these two inequalities, we first note that 6? tey xj(yj,v) is a linear

yj)Pry? with p1+pe = pi+Aj—vi—aj, p2 >

combination of terms of the form (v"5 —

0 (for A; large) and consequently
07 i 0)| < 0oy -0 IR (0 <y <o)
for arbitrary e € [0, 1[; this implies (for 1 <k <n —1)

0)| < c-yf - v e TR LS A=) =Ky

|04 1T (
|01 1In(

nt
|HTL+1( , U

3 e

)| < ¢ oS, ot (BHA—p)—Fn by

—_

W <e-ys v e vﬁ'(g-iré—z)—f-in+15n+17

where d; := pj + Aj — v;. The definition of v; easily implies

[k (g, 0)| < ¢ - vfr (etor)
|1/}n(yn, v)| S ¢ ny : ,U_Hn'{-: . ’U’%n(ln"r(gn)

|3:+11/}n+1(yn+1, V)| < ¢ v pfin+1(nt1+0n41) :

since K;(y,v) = Hi(glj,v)@/}i(yi,v), kil =1 (1 <i<n+1), kpy1 =1, r =
£ (L+A+ p), these formulas yield (1.3). For (1.2) compare IL'IN/ SOLONNIKOV
[I/S, p. 72].

2. Estimates.
Our aim in this chapter is to prove the imbedding Wg’l(QT) 35 f— Vuf €

1-11a-1
W, * 2075 )(6QT) with the imbedding constant ¢* independent of T' (for T small);

here we let Q be a bounded domain in R™ with boundary of the class C2. Flattening
the boundary locally, it is no restriction to assume that €2 is a cube i.e. Q = Q" (A).
Since C2(QT(A) x [0, T)) is dense in W' (Q™(\) x (0, 7)) (cf. RAKOSNIK [R, The-
orem 3]) and since the Hestenes-Whitney extension method (cf. ADAMS [A, p. 83])
yields a linear continuous extension operator

Er : W QL (M) x (0,T)) — W (Q(2)) x (0,2T)) with

Ep(C2HQT(N) x [0,T))) € C2(QF(2)) x [0,2T7]) and
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310 P. Weidemaier

”ET”W,?J(Qﬁ(A)X(0,T))—>W§'1(Q1(2>\)x(0,2T)) < B* uniformly for all small T, it is

sufficient to prove

[V f] "y 1(Q (22)%(0,2T))

F0-1)

'U\’—‘

(@1 (A)x(0, T))

1—
p
for all f € C? (Q™(2X) x [0,2T']). The most difficult part in this inequality is the
estimate for the time-regularity of the trace, i.e.

*
(2.1) |vmf|£07%(1,%) c - HfHWg’l(Q1(2>\)><(O,2T)) )
P

@r1x(01)

T
_ (14+pB)
(@Qm=1(N)x(0,T)) _(j;h P 1A hgl - 1% (0r—h) I

for 3 € (0,1), when (At ng)(@' 1) == g(a', t+h)—g(z',t) and | - || X = Il- ||LP(X
The estimate for the spatlal regularity follows from the more elementary trace the-

orem WI} Q) — Wp ?(09) (cp. KUFNER et al. [K/J/F, 6.8.13 Theorem, p. 337])
by an easy scaling argument (in ¢). In the sequel, we shall prove (2.1). For this
purpose, we start from the representation (1.1) for 9; f (1 < j < n): splitting

where |g|?
9120,5

f(;f (-+)dv = f(fl )dv + fh -++)dv in the sum in the second line in (1.1) we
t
& n+1
9 f() = () + 3 B{HP () + H ()},
i=1
where
1':T7‘/ /f+y (y,T) dy,
Qn+1 0 Tn
(0) L— U
(2.2)) Hy7 () :_/0 v~ (1Fm) // 0, f(-+y) - K;(y,v)dydv,
Qn+1(07v5)
@) r 1 I
0= [0 [ [ ol Kty
Qn+1(07vi)

In the sequel, we set (yH1)(2/,t) := Hy(2',0,t); we find
(2.3) 1AL (YVHD)p.gr-10x(0.7—n) < - 10 (VHD)I 5,0 n—1(0)x (0,7)

(use [Agp f(1)] < fo |f/ (T + s)|ds and Minkowski’s integral inequality (cp. WHEE-
DEN/ ZYGMUND [W/Z, p. 143])); now

A /
|0 (YH1) (2, 1)] < 77 G Dlloo,@ b1 (0, 75 - QT (0, T5)|H/P
0 £((2",0,8) + )llp,@nt1(0, 78)
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by (2.2) and Holder’s inequality; hence

(2.4) LI AEYP=R 0, f((a,0,8) + ). gntago, 7

by the kernel-estimate (1.2). Now observe that
Hat f((xla 07 t) + )HZ7Q n+1(07T£) =
Trn
= /0 ||at f(l',—f— '7yn7t+ .)||§,Qn+1(0,Ti) dyna

which easily implies via Fubini’s theorem
1/p

(2.5) / / 0 F((2',0,t) + )||an+1(0 ) da’ dt <
QM (N)x(0,T)
<|Q™*(o, T”)Il/pl\atfllp Qn((=A1',0),(AL'+T« T5n))x(0,2T)"
Hence, by the last inequality, (2.4) and since |Q"1(0, T%)| = TI5=3 and Kj = %:
r.h. side in (2.3)
< -7 200 g, Flly o ((ea1 .0y, (\L4T= T2 (02T)
so that, abbreviating p = p(p) := %(1 —2),

|7H1|£g,p(Qn—1(,\)x(0,T)) =

1/p
<o 3D ([T o0 g B
se A 19 Fllp, @7 (a,0)x 0,27)

with @ := (~=A1/,0) and b := (A1’ + T, 7/2); now 1 — p = §(1+ 1) and the T
factors in the last inequality cancelled, as desired.

Let us turn our attention to Hél): trivially, for h < T,

(2.6) ||Ath(”YH )Hp Qn=1\)x(0,T—h) < 2- Iy HY ||an 1(\)%(0,T)}
furthermore, using the kernel estimate (1.3) (with s = 0), we get
(@7) H @) <

h
Sc*./o U_(1+\E|+€nn)+% // yz'|a£if(($/707f)+y)|dydv;

QmHH(0, vE)
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we now represent the integrand as
_ 1 +1lp—e. _1 _ Iy, 1o, )
(v7P o7 (s +3(p—e Hn)} {w 5 (A [El—3)+5(p—ekn) yE - |3illf((x/0,t) +y)|}

(note that 1/2 = p+1/2p); we choose ¢ € (0, p/ky,); Holder’s inequality (with p/, p)
in y-v space then yields

h N /v
(2.8) Lh.s. in (2.7) < ¢ - (/ vtz (p—ehn) dv) TV
0
with
h 1 1 p 1:
Ii= /0 | wm OFIEERRS e R e 9l (2,0, 8) + y) P dy dv,
QmF1(0,v%)

where in the first integral we took into account that |Q™T1(0,v%)| = vl&l; the first

1
integral is clearly proportional to h2(P~€%n)  Thus, after a computation as in (2.5),
we get

(29) HFYHQ Hp Qn I(A)X(O T) h2(P E’i") . il/p

with
~ h 1 j4 - .
1;:/ o~ (el =)+ 3 (p—enn)| G ntl g 8y // P10} f(2)P dz do,
0
Q1 (a,b(v))

where a := (=A1’,0,0), b(v) := (AL + v&,v"n T + v);since b(v) < b(h), we can

continue
~ h P 1
I S/o vt zlp=enn) gy / / 2y P10 f(2)|P dz
Qn"*1(a,b(h))

htn
0

; l; e
with o(2n) :== (|9, f (-, zn, - )P p.QL(-A L AL AT )x (0.27) by Fubini’s theorem and

since h < T'; consequently, by (2.6), (2.9) and the last line

(210) |7H2|[/0p (Qn— 1( )x(0,7)) =

T htn
<c*. / p—(1+pekn) / 25 - o(2y) dzp dh
0 0
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and by the version of Hardy’s inequality from Lemma, ( i) in the Appendix
Trn
< (poe-rn)t / o(2n) dzn
0

= (p-ern) 0] pr

which is the desired result for H2 ).
(@)

n((=A1,0), A /+T=  T1/2))x(0,2T) ’
Finally, let us turn to Hy’; we again use (2.3) and observe that the correct

expression for dy (vH. 3()2)) is obtained just by replacing K; (in the definition of H. 3i))
by On+1 K; (integrate by parts); after estimating |01 K;| according to (1.3), we
arrive at

2.11) (9 (HS) (@ 1) <

T
<o [ [ [0 (0.0 + )y

Q10 vk)
(cp. (2.7); here the v-exponent is smaller by one, since 9,41 K; entails (in (1.3))
the additional factor v™1); in the last integral we write the integrand in the form
La+ 1—p—6 —L(14k|- n+0)
{U |&))—(1—p )}.{U p( || ) (er |5 f( )|}
(note that —5 = 2p +p—1), where we introduced § € (0, 1-— p). Now apply Holder’s
inequality (w1th p',p) in y-v space and get

1/p
T /
r.hes. in (2.11) < ¢*- (/ p 1P (1=p=0) dv) gL
h

with -
Jim [ttt [ [y ol (il 0.0) + ) dy o

Q™ H1(0,v")
proceeding as in the argument leading from (2.8) to (2.9), the last estimate allows
us to conclude

10 (VS L) x(0,1) <

K 1/p
<t —(1—p—9) ( v 1m —p(e+Kin+9) /U Zfz'p < o(zn) dzn dv)
0

with ¢(+) as before (since v < T);

i) L3/ Q=1 (N)x(0,7))

T T vt
<o / = 1+p6 / o1 (e rnt) / P p(zn) dzn dv dh
0 h 0

T vhn
oyt [Tt [T ) dends
0 0

by Appendix, Lemma (ii); now we may continue as after (2.10) and the desired

result for H g(f) follows.

Thus (2.1) is proved for all T < Ty(A) = A2.
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Appendix.

We note a version of Hardy’s inequality.
Lemma. Suppose that f € L1(0,T7) is nonnegative, 0 < T < oo;e,7 > 0. Then

i) fo a1 f;: v fy)dyde < (v-e)7t [ Fw)dy,
(i) fi e tter [TT g fy)dyde < (v-o)7t [T fy) dy.

PROOF: These inequalities are proved in BESOV/ IL’IN/ NIKOL’SKII [B/I/N,
2.15, p. 28] (even in a more general form) for 7' = co. For T finite they follow easily
by applying the version for 7' = oo to the extension by zero of f to R*. |
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