
Comment.Math.Univ.Carolin. 32,3 (1991)431–434 431

On the variety Csub (D)

Václav Slav́ık

Abstract. The variety of lattices generated by lattices of all convex sublattices of distribu-
tive lattices is investigated.
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0. Introduction.

Let L be a lattice. Denote by Csub(L) the lattice of all convex sublattices of L
(including the empty set ∅). For a variety V of lattices, let Csub(V ) denote the
variety of lattices generated by {Csub(L);L ∈ V }. In [4], it is shown that for
any proper variety V of lattices, the variety Csub(V ) is proper and that there are
uncountably many varieties Csub(V ).
The aim of this paper is to obtain some information about the least nontrivial

such variety, i.e. about Csub(D), where D denotes the variety of all distributive
lattices. We shall show that this variety is locally finite. The meet Csub(D) with
the variety of all modular lattices will be described.

1. Preliminaries.

Any interval of a lattice L is a convex sublattice of L. Denote by Int(L) the lattice
of all intervals of L (including ∅). Clearly, Int(L) is a sublattice of Csub(L). The
one-element sublattices of a lattice L are just atoms of both Int(L) and Csub(L).
If I = [a, b] and J = [c, d] are intervals of a lattice L, then we have in the lattice
Csub(L)

I ∨ J = [a ∧ c, b ∨ d] and

I ∧ J = I ∩ J = [a ∨ c, b ∧ d] or ∅ if a ∨ c � b ∧ d.

One can show (by induction) that, for any lattice term p in k variables and any
A1, . . . , Ak ∈ Csub(L) the following holds:

p(A1, . . . , Ak) =
⋃

{p(I1, . . . , Ik); Ij ⊆ Aj , Ij ∈ Int(L)}.

Thus, for any variety V of lattices, Int(L) ∈ V iff Csub(L) ∈ V . Especially, the
variety Csub(V ) is generated by {Int(L);L ∈ V } (see [4]).
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Let L be a lattice and A be a sublattice of the lattice Int(L). If A has the least
element that is not ∅, then the meet of any pair of elements from A is a non-empty
interval of L and, clearly, the mapping h of A into L∗ × L, where L∗ denotes the
dual lattice of L, defined by

h([a, b]) = (a, b),

is an embedding of A into L∗ × L.

Lemma 1. Let V be a self-dual variety V of lattices and L ∈ V be a lattice. Then
any dual ideal of Int(L) generated by an atom of Int(L) belongs to V .

Proof: Any dual ideal of Int(L) generated by an atom of Int(L) is a sublattice of
L∗ × L ∈ V . �

2. Locally finite varieties.

In this section, let V denote a locally finite (any finitely generated lattice in V
is finite) self-dual variety of lattices.

Theorem 1. The variety Csub(V ) is locally finite.

Proof: Let d(n) denote the cardinality of the V -free lattice with n generators. Let
A ∈ V and let C be a sublattice of Int(A) generated by n elements. Then there exist
atoms a1, . . . , ak of the lattice Int(A), k ≤ n, such that C ⊆ {∅} ∪ [a1) ∪ · · · ∪ [ak).
By Lemma 1, [ai) ∈ V and the cardinality of C ∩ [ai) is at most d(n). Thus the
cardinality of C is at most s(n) = 1+n·d(n). Since the variety Csub(V ) is generated
by {Int(A);A ∈ V } and for any A ∈ V a sublattice of Int(A) with n generators has
at most s(n) elements, the variety Csub(V ) is locally finite (see [3]). �

Lemma 2. Let L ∈ V be a lattice and let A be a finite sublattice of the lattice
Int(L). Then A is a sublattice of Int(K) for some finite sublattice K of L.

Proof: DenoteM1 = {x ∈ L; [x, y] ∈ A for some y ∈ L} andM2 = {x ∈ L; [y, x] ∈
A for some y ∈ L}. The sets M1 and M2 are finite, the sublattice K of L generated
by M1 ∪ M2 is finite and, clearly, A is a sublattice of Int(K). �

For a class K of lattices, let H(K), S(K), and P (K) denote the class of all ho-
momorphic images, sublattices, and direct products of members of K, respectively.
For a class K, the variety generated by K is equal to HSP (K).

Theorem 2. Let A ∈ V be a finite lattice. Then A ∈ HSP (Int(B)) for some finite
lattice B ∈ V . If A is subdirectly irreducible, then A ∈ HS(Int(B)) for some finite
lattice B ∈ V .

Proof: Since A ∈ HSP ({Int(L);L ∈ V }), there exist lattices Li ∈ V , i ∈ I,
a sublattice C of the product of Int(Li), i ∈ I, and a homomorphism f of C onto A.
We can assume that C is finitely generated and so, by Theorem 1, C is finite. Thus
we may suppose that I is finite. Let πi denote the i-th projection of the product
of Int(Lj), j ∈ I, onto Int(Li). For any i ∈ I, πi(C) is a finite sublattice of Int(Li)
and, by Lemma 2, πi(C) is a sublattice of Int(Bi) for some finite sublattice Bi

of Li. We get that the lattice A belongs to HSP ({Int(Bi); i ∈ I}). It is easy
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to show that for any pair of lattices A, B, A ⊆ B implies Int(A) ⊆ Int(B); thus
Int(Bi), i ∈ I are sublattices of Int(B), where B is the product of all Bi, i ∈ I;
hence A ∈ HSP (B). If A is subdirectly irreducible, then, since congruence lattices
of lattices are distributive, A ∈ HS(Int(B)) (see [1]). �

Corollary 1. Let A ∈ Csub(V ) be a finite subdirectly irreducible lattice. Then
any dual ideal of A generated by an atom of A belongs to the variety V .

Proof: By Theorem 2, A ∈ HS(Int(B)) for some finite lattice B ∈ V . Thus for
any atom a ∈ A, the dual ideal [a) of A generated by a is a homomorphic image
of a sublattice of a dual ideal [d) of Int(A), d 6= ∅. By Lemma 1, [d) ∈ V and so
[a) ∈ V , too. �

3. The variety Csub(D).

Let D denote the class of all distributive lattices. The class D is a self-dual
locally finite variety. Any finite distributive lattice is a sublattice of a finite Boolean
algebra. Now we can reformulate the results of Section 2 as follows.

Theorem 3. The following assertions hold:

1. The variety Csub(D) is locally finite.
2. Let A ∈ Csub(D) be a finite subdirectly irreducible lattice. Then

(i) A ∈ HS(Int(B)) for some finite Boolean algebra B;
(ii) for any atom a ∈ A, the dual ideal [a) is a distributive lattice.

Since any locally finite variety is generated by its finite members, we can imme-
diately obtain

Proposition 1. Csub(D) = HSP ({Int(Bn);n = 2, 3, . . . }), where Bn denotes the

Boolean algebra with n atoms.

Let us remark that, for any n ≥ 2, the lattice Int(Bn) is simple. Indeed, if
α is a nontrivial congruence relation on Int(Bn), then there exist intervals I, J of
Bn such that I ⊆ J, I 6= J and IαJ . Let c be an element from J \ I. Then
([c, c] ∩ I)α([c, c] ∩ J), i.e. ∅α[c, c]. Let c′ be the complement of c. We can easily
see that [c′, c′]α[0, 1] and that ([x, x] ∩ [c′, c′])α([x, x] ∩ [0, 1]) for any x ∈ Bn. If
x 6= c′, we get ∅α[x, x]. If c /∈ {0, 1}, then we have ∅α[0, 0], ∅α[1, 1] and so ∅α[0, 1].
Now assume that c ∈ {0, 1}. Let b ∈ Bn \ {0, 1}. Then ∅α[b, b] and ∅α[b′, b′]; hence
∅α[0, 1].
An interesting problem is to describe the variety Csub(D)∩M , whereM denotes

the variety of all modular lattices. We shall show that this variety contains all finite
lattices Mn having n atoms and n + 2 elements. Since the lattice M3,3 pictured
in Fig. 1 belongs to any variety of modular lattices that is not a subvariety of the
varietyHSP ({Mn;n = 1, 2, . . . }) (see [2]) and, by Theorem 3,M3,3 does not belong
to Csub(D), we can get the following result.

Theorem 4. Csub(D) ∩ M = HSP ({Mn;n = 1, 2, . . .}).

To prove Theorem 4, it suffices to show that any lattice Mn is a sublattice of
a lattice Int(B) for some finite Boolean algebra B.
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Lemma 3. For any natural number n ≥ 2, there exist subsets Ai, Bi, i = 1, 2, . . . , n
of S = {1, 2, . . . , n

2 (n+ 1)} such that the following conditions hold:

(1) if i 6= j, then Ai ∩ Aj = ∅ and Bi ∪ Bj = S;

(2) Ai * Bj iff (i, j) = (n, 1) or (i, j) 6= (1, n) and i < j.

Proof: By induction on n. Let n = 2. Put A1 = {1}, A2 = {2}, B1 = {1, 3},
B2 = {1, 2}. Now suppose that k ≥ 2 and A′

1, A
′

2, . . . , A
′

k, B′

1, . . . , B
′

k are subsets of

T = {1, 2, . . . , k
2 (k + 1)} satisfying the conditions (1) and (2). Denote s = k

2 (k+ 1)
and Ai = A′

i ∪ {s + i} for i = 1, 2, . . . , k and Ak+1 = {s + k + 1}. Put B1 =
T \ {s+ k + 1} and for all i, 2 ≤ i ≤ k − 1, Bi = B′

i ∪ {s+ 1, . . . , s+ k + 1}, Bk =
B′

k
∪ {s+ 2, . . . , s+ k + 1}, and finally Bk+1 = {1, 2, . . . , s+ 1} ∪ {s+ k+ 1}. One

can easily verify that the sets Ai, Bi are subsets of {1, 2, . . . ,
k+1
2 (k+2)} satisfying

the required conditions (1) and (2). �

Proposition 2. For any natural number n ≥ 2, the lattice Mn is a sublattice of

Int(B) for some finite Boolean algebra B.

Proof: Denote by B the Boolean algebra of all subsets of the set S = {1, 2, . . . ,
n
2 (n + 1)}. Let Ai, Bi (i = 1, . . . , n) be subsets of S satisfying the conditions (1)
and (2) of Lemma 3. Put Ii = [Ai, Bi], i = 1, . . . , n. Clearly, Ii ∈ Int(B) and
for any pair i, j, i 6= j, Ii ∨ Ij = [Ai ∧ Aj , Bi ∨ Bj ] = [∅, S]. Since for any pair
i, j, i 6= j, Ai * Bj or Bi * Aj , we have Ai ∨ Aj * Bi ∧ Bj ; thus Ii ∧ Ij = ∅. We
have showed that the intervals I1, . . . , In together with ∅ and [∅, S] form a sublattice
of Int(B) isomorphic to Mn. �

Fig. 1: M3,3
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