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Stable points of unit ball in Orlicz spaces

Marek Wis la

Abstract. The aim of this paper is to investigate stability of unit ball in Orlicz spaces,
endowed with the Luxemburg norm, from the “local” point of view. Firstly, those points
of the unit ball are characterized which are stable, i.e., at which the map z → {(x, y) :
1

2
(x + y) = z} is lower-semicontinuous. Then the main theorem is established: An Orlicz

space Lϕ(µ) has stable unit ball if and only if either Lϕ(µ) is finite dimensional or it is
isometric to L∞(µ) or ϕ satisfies the condition ∆r or ∆0r (appropriate to the measure µ

and the function ϕ) or c(ϕ) < ∞, ϕ(c(ϕ)) < ∞ and µ(T ) < ∞. Finally, it is proved that
the set of all stable points of norm one is dense in the unit sphere S(Lϕ(µ)).
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1. Introduction.

A convex set C of a real Hausdorff topological space X is called stable if the
midpoint map Φ : C × C → C,Φ(x, y) = 1

2 (x + y) is open with respect to the
inherited topology in C [1], [4]. Stable compact sets have been investigated in [5],
[9], [13]. Stability is a useful tool in studying extremal operators between Banach
spaces [1]. Further, the set of extreme points of a stable set is closed. Thus “stabil-
ity” arguments can be applied to the description of extreme points of the unit ball
of C(K, X), K being a compact Hausdorff space and X a Banach space, namely,
applying the Michael selection theorem [7],

f ∈ ExtB(C(K, X))⇐⇒ f(k) ∈ ExtB(X) for every k ∈ K

provided the unit ball B(X) of X is stable.
Finite dimensional Banach spaces (with dimX > 2) can have non-stable unit

balls, for let X = R
3 and

B = conv({(x, y, 0) : x2 + y2 ≤ 1} ∪ {(±1, 0± 1)}).

A full description of stable convex subsets of finite dimensional topological spaces
can be found in [11]. The above defined setB cannot be a unit ball of any generalized
finite dimensional Orlicz space – this is due to the fact that every such space has
stable unit ball [3], [15]. This property is no longer true in the infinite dimensional
case; even in the case of classical Orlicz sequence spaces ℓϕ : ℓϕ has stable unit ball
if and only if either ℓϕ is isometric to ℓ∞ or ϕ satisfies the condition ∆2 [14].
The aim of this paper is to extend the latter result to the case of Orlicz spaces

Lϕ(µ) of functions defined on an arbitrary measure space via the description of
stable points of the unit ball B(Lϕ(µ)).
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2. Basic definition and auxiliary results.

Let (T,Σ, µ) be a measure space with a nonnegative, σ-finite and complete mea-
sure µ (µ 6≡ 0) and let ϕ : R → [0,+∞] be a convex, even, non-identically equal
to 0, vanishing at 0 and left-continuous for a > 0 function such that c(ϕ) = sup{a :
ϕ(a) < ∞} > 0. By an Orlicz space Lϕ(µ)Lϕ(µ)Lϕ(µ) ([8], [10]), we mean the set of all
measurable functions x : T → R such that Iϕ(λx) < ∞ for some λ > 0, where the
modular Iϕ is defined by

Iϕ(x) =

∫

T
ϕ(x(t)) dµ.

Lϕ(µ) is equipped with the equality “almost everywhere” (a.e.) and the Luxem-
burg norm [6]

‖x‖ϕ = inf{λ > 0 : Iϕ(λ
−1x) ≤ 1}.

(Note that ‖x‖ϕ ≤ 1 iff Iϕ(x) ≤ 1; Iϕ(x) = 1 implies ‖x‖ϕ = 1; Iϕ(x) < 1 ⇒
(‖x‖ϕ = 1 iff Iϕ(λx) = +∞ for every λ > 1); ‖xn − x‖ϕ → 0 iff Iϕ(λ(xn − x))→ 0
for every λ > 0.) The subspace

Eϕ(µ) = {x ∈ Lϕ(µ) : Iϕ(λx) < ∞ for every λ > 0}

is called the space of finite elements.
Let r be any number greater than 1. The function ϕ is said to satisfy the

condition ∆r (ϕ ∈ ∆r in short) if:

(a) there exists a constant c > 1 such that ϕ(ra) ≤ cϕ(a) for every a (re-
spectively, every a ≥ a0, ϕ(a0) < ∞) provided µ is atomless and infinite
(respectively, finite);

(b) there exist b > 0, c > 1 and a nonnegative sequence (dn) such that Σndn <
∞, and ϕ(ra)µ(en) ≤ cϕ(a)µ(en) + dn for every a with ϕ(a)µ(en) ≤ b and
every n ∈ N provided µ is purely atomic and {en : n ∈ N ⊆ N} is the set of
all atoms of T .

(c) a combination of (a) and (b) if T has both an atomless and purely atomic
part.

If c(ϕ) =∞, then

ϕ ∈ ∆r for some r > 1⇐⇒ ϕ ∈ ∆r for every r > 1⇐⇒ ϕ ∈ ∆2 .

The above equivalences remain true if µ is atomless (then ϕ ∈ ∆r for some r > 1
implies that c(ϕ) = ∞). If µ is purely atomic with Σnµ(en) = ∞ and ϕ ∈ ∆r

for some r > 1, then ϕ vanishes only at 0 (indeed, dn ≥ ϕ(ra(ϕ))µ(en) for every
n ∈ N, where a(ϕ) = sup{a : ϕ(a) = 0}). Thus the above equivalences hold
true also in the case of purely atomic measure µ with an infinite number of atoms
provided 0 < infn µ(en) ≤ supn µ(en) < ∞ – no matter whether ϕ takes only
finite values or not (if ϕ ∈ ∆r0 , then evidently ϕ ∈ ∆r for every 1 < r ≤ r0; for
r > r0, consider br = ϕ(a′r0/r) · infn µ(en) > 0, where a′ = sup{a > 0 : ϕ(a) ≤
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br0/ supn µ(en)} > 0). If dimLϕ(µ) < ∞ (i.e., T consists of a finite number of
atoms), then ϕ ∈ ∆r for some r > 1 if and only if Lϕ(µ) is not isometric to L∞(µ)
(take any a0 ∈ (a(ϕ), c(ϕ)), 1 < r < c(ϕ)/a0 and put b = ϕ(a0) · infn µ(en) >
0, dn = ϕ(ra0) · supn µ(en) < ∞). However, if 0 < a(ϕ) ≤ c(ϕ) < ∞ then ϕ does
not satisfy the condition ∆r for any r > c(ϕ)/a(ϕ).
Note that if c(ϕ) =∞ and Lϕ(µ) is finite dimensional, then Lϕ(µ) = Eϕ(µ). If

c(ϕ) = ∞ and dimLϕ(µ) = ∞, the equality Lϕ(µ) = Eϕ(µ) holds if and only if
ϕ ∈ ∆2 (cf. [8, Theorem 8.13, p. 52], see also the proof of Lemma 5 below), thus,
applying the Lebesgue dominated convergence theorem, we have then

(

Iϕ(x) = 1⇐⇒ ‖x‖ϕ = 1
)

if and only if ϕ ∈ ∆2 .

In fact, we can replace the condition ∆2 by ∆r for some r > 1 in the last equivalence.
Then the assumption c(ϕ) =∞ is used in the “if” part of the proof only, so, in any
case, we have that if ϕ /∈ ∆r for any r > 1, then there exists x ∈ Lϕ(µ) such that
‖x‖ϕ = 1 but Iϕ(x) < 1 and that is what we need in the sequel.

If Σ contains only a finite number, say m, of atoms, then the Orlicz space Lϕ(µ)

can be identified with the finite dimensional generalized Orlicz space ℓ(ϕ1,...,ϕm)

which consists of all (finite) sequences x = (xn)
m
n=1 with Iϕ(x) = Σ

m
n=1ϕn(λxn) <

∞ for some λ > 0, where ϕn(a) = ϕ(a)µ({en}), n = 1, 2, . . . , m, yielded with the
Luxemburg norm. The unit ball of that space is stable [3], [15] independently of
the shape of the function ϕ.
The infinite dimensional case of Orlicz spaces was investigated by A. Suarez–

Granero [12]: B(Lϕ(µ)) is stable provided ϕ takes only finite values and ϕ ∈ ∆2.
In the sequel, we shall use that result, but in a somewhat weakened form (cf. Propo-
sition 1 below).

Let C be a convex set of a topological vector space and let Φ : C × C → C be
defined by Φ(x, y) = 1

2 (x + y). A point z ∈ C is called stable (or C is said to be

stable at z, cf. [11, p. 197]) if for every (x, y) ∈ C ×C with 1
2 (x+ y) = z and every

open neighborhood W of (x, y), Φ(W ) is an open neighborhood of z. Equivalently,
z is stable if and only if the mapping

C ∋ ζ 7→ Φ−1(ζ) ∈ C × C

is lower-semicontinuous at z, that is, if, for any open set W ⊂ C × C with W ∩
Φ−1(z) 6= ∅, there exists an open neighborhood U ⊂ C of z such thatW ∩Φ−1(ζ) 6=
∅ for every ζ ∈ U . Therefore C is stable if and only if every point z ∈ C is stable.

Let us note that every extreme point is stable and that the stability of a point z
with ‖z‖ < 1 can be deduced from the fact that every open convex set is stable.
Further, L∞(µ) has the 3.2 intersection property, so its unit ball is stable (cf. [1]).

Let us turn back to the Suarez–Granero result. Omitting the assumption that ϕ
takes only finite values (it is superfluous there) we have

Proposition 1 [12]. Every point z ∈ B(Lϕ(µ)) with Iϕ(z) = 1 is stable.
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Note. In order to establish stability of a point z ∈ B(Lϕ(µ)) it is sufficient to
restrict the investigation to the case of Lϕ(µ) being neither finite dimensional nor
isometric to L∞(µ) and to the case of z with norm one, modular less than one and
not being an extremal point of B(Lϕ(µ)).
Then z will be stable if for every ε > 0 and every distinct x, y of norm one with

1
2 (x + y) = z (if e.g. ‖x‖ϕ < 1 then ‖z‖ϕ < 1) there exists δ > 0 such that for
every w with ‖w − z‖ϕ < δ we can find u, v ∈ B(Lϕ(µ)) satisfying the following
conditions:

‖u − x‖ϕ < ε, ‖v − y‖ϕ < ε and w =
1

2
(u+ v).

If x, y ∈ B(Lϕ(µ)), z = 1
2 (x + y) and Iϕ(z) = 1, then an easy calculation shows

that ϕ(z(t)) = 1
2 [ϕ(x(t)) + ϕ(y(t))] for almost every t ∈ T (i.e., ϕ is affine on each

non one-point interval [min{|x(t)|, |y(t)|}, max{|x(t)|, |y(t)|}] for a.e. t ∈ T ). The
next proposition provides conditions under which the converse implication holds
true as well.

Proposition 2. Assume that Lϕ(µ) is neither finite dimensional nor isometric to
L∞(µ). Let z ∈ B(Lϕ(µ)) and define, for n = 2, 3, . . . ,

An = {t ∈ T : |z(t)| < (1−
1

n
)c(ϕ)}, if c(ϕ) < ∞ and ϕ(c(ϕ)) < ∞

and An = T otherwise. If ‖zχAn
‖ϕ = 1 for some n ≥ 2, then the following

conditions are equivalent:

(i) Iϕ(z) < 1,
(ii) there exist a set E ⊂ An of positive measure and functions x, y ∈ B(Lϕ(µ))

such that 1
2 (x+ y) = z, ‖zχE‖ϕ < 1 and

2ϕ(z(t)) < ϕ(x(t)) + ϕ(y(t)) for every t ∈ E.

Proof: We should only prove the implication (i) ⇒ (ii). Let T = M ∪ S, where
M, S denote, respectively, the purely atomic and atomless part of the measure space
(T,Σ, µ). Then either ‖zχM∩An

‖ϕ = 1 or ‖zχS∩An
‖ϕ = 1. Indeed, otherwise

Iϕ(λzχM∩An
) ≤ 1 and Iϕ(λzχS∩An

) ≤ 1 for some λ > 1, so Iϕ(λzχAn
) < ∞ and,

in virtue of the Lebesgue dominated convergence theorem, Iϕ(λ
′zχAn

) < 1 for some

1 < λ′ ≤ λ, i.e., ‖zχAn
‖ϕ ≤ (λ′)−1 < 1 – a contradiction.

Let 1 < ̺ < 2 be a number such that (1− 1
n)̺ ≤ 1. The rest of the proof will be

split into two parts.

1◦) ‖zχS∩An
‖ϕ = 1. Since Iϕ(̺zχS∩An

) = +∞, the set

D = {t ∈ An ∩ S : 2ϕ(z(t)) < ϕ(̺z(t))}

is of positive measure. We claim that there exists 1 < ̺′ ≤ ̺ such that ϕ(̺′z(t)) <
∞ on some subset F ⊆ D of positive measure. That is clear (̺ = ̺′) when either
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c(ϕ) = ∞ or c(ϕ) < ∞ with ϕ(c(ϕ)) < ∞. Suppose that c(ϕ) < ∞, ϕ(c(ϕ)) = ∞
and that ϕ(̺′z(t)) = ∞ for every 1 < ̺′ ≤ ̺ and a.e. t ∈ D. Then ̺′|z(t)| ≥ c(ϕ)
for every 1 < ̺′ ≤ ̺; so |z(t)| ≥ c(ϕ) for a.e. t ∈ D. Hence Iϕ(z) = ∞ –
a contradiction. To simplify the notation we shall assume that ̺′ = ̺.
Applying the fact that ϕ(̺z(t)) < ∞ for t ∈ F , we can find a set E ⊂ F such

that Iϕ(̺zχE) ≤ 1− Iϕ(z) < 1. Thus ‖zχE‖ϕ ≤ ̺−1 < 1. Define

x = zχT\E + ̺zχE , y = zχT\E + (2− ̺)zχE .

Plainly, x, y ∈ B(Lϕ(µ)). Further, for every t ∈ E,

ϕ(x(t)) + ϕ(y(t)) ≥ ϕ(̺z(t)) > 2ϕ(z(t)).

2◦) ‖zχM∩An
‖ϕ = 1. By assumptions, c(ϕ) > 0 and the set M ∩ An is infinite.

Without loss of generality, we can identify M ∩ An with the set N of all natural
numbers.
Since Iϕ(zχN) < 1, there exists p ∈ N such that

Iϕ(zχ{p,p+1,...}) < 2η,

where η = 1− Iϕ(z) > 0.
Define 〈p, m〉 = {p, p+ 1, . . . , m} if m ≥ p, 〈p, m〉 = ∅ otherwise. Further, let

h(m) = Iϕ(zχT\〈p,m〉) + Iϕ(̺zχ〈p,m〉), m ∈ N.

Since Iϕ(̺zχN) =∞, h(m)→ ∞ as m → ∞. Let q := min{m ≥ p − 1 : h(m) < 1}.
Then 0 ≤ h(q) < 1 and 1 ≤ h(q + 1) ≤ ∞. Since, in any case, the interval
[ϕ(zq+1), ϕ(̺zq+1)] is contained in the range of ϕ (which is equal to [0, ϕ(c(ϕ))] ∪
{∞} if c(ϕ) < ∞ and to [0,∞) if c(ϕ) = ∞) we can find 1 < σ ≤ ̺ < 2 such that
Iϕ(x) = 1, where

x = zχT\〈p,q+1〉 + ̺zχ〈p,q〉 + σzχ{q+1} .

Note that Iϕ(̺zχT\〈p,q+1〉) = ∞ (otherwise Iϕ(σz) < ∞, so ‖z‖ϕ < 1). Using

similar arguments, we infer the existence of the numbers r ∈ N, r ≥ q + 1 and
1 < τ ≤ ̺ < 2 such that Iϕ(y) = 1, where

y = zχT\〈p,r+1〉 + (2− ̺)zχ〈p,q〉 + (2− σ)zχ{q+1} + ̺zχ〈q+2,r〉 + τzχ{r+1} .

Put

x = zχT\〈p,r+1〉 + ̺zχ〈p,q〉 + σzχ{q+1} + (2− ̺)zχ〈q+2,r〉 + (2− τ)zχ{r+1} .

Obviously 1
2 (x+ y) = z and Iϕ(x) ≤ Iϕ(x) = 1. Further

Iϕ(x) ≥ Iϕ(x)− Iϕ(zχ〈q+2,r+1〉) ≥ 1− Iϕ(zχ{p,p+1,...}) > 1− 2η.
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Finally, observe that ϕ is not affine on at least one interval from the following
ones:

[(2− ̺)|z(m)|, ̺|z(m)|], m ∈ 〈p, q〉 ∪ 〈q + 2, r〉;

[(2− σ)|z(q + 1)|, σ|z(q + 1)|]; [(2− τ)|z(r + 1)|, τ |z(r + 1)|].

Indeed, otherwise,
Iϕ(x) + Iϕ(y) = 2Iϕ(z) = 2(1− η);

so Iϕ(x) = 1− 2η – a contradiction.
Taking E = {i}, where i ∈ 〈p, r + 1〉 is that index for which ϕ is not affine on

the corresponding interval, all the requirements of (ii) are satisfied and the proof of
Proposition 2 is concluded. �

3. Main results.

Theorem 3. A point z ∈ B(Lϕ(µ)) is stable if and only if at least one of the
following conditions is satisfied:

(i) Lϕ(µ) is finite dimensional,
(ii) Lϕ(µ) is isometric to L∞(µ),
(iii) ‖z‖ϕ < 1,
(iv) Iϕ(z) = 1,
(v) c(ϕ) < ∞, ϕ(c(ϕ)) < ∞ and ‖zχAn

‖ϕ < 1 for every n = 2, 3, . . . , where

An = {t ∈ T : |z(t)| < (1−
1

n
) c(ϕ)}.

Proof: (⇐) The sufficiency of each of the conditions (i) + (iv) was discussed in
Section 2.
Let us assume that none of the conditions (i) + (iv) is satisfied, but (v) holds. It is

easy to check that ϕ(c(ϕ)) > 0 (otherwise Lϕ(µ) is isometric to L∞(µ)). Let x, y be

arbitrary elements of B(Lϕ(µ)) such that x 6= y, 1
2 (x+y) = z and ‖x‖ϕ = ‖y‖ϕ = 1.

Fix 0 < ε < 1 and take α ∈ (12 , 1) such that ‖x − x‖ϕ < 1
3 · ε and ‖y − y‖ϕ < 1

3 · ε,
where

x = αx+ (1− α)y, y = (1− α)x + αy.

Evidently, 1
2 (x + y) = z and x 6= y. Further, x(t) = x(t) iff y(t) = y(t) iff x(t) =

y(t) = z(t). Thus ‖xχAn
‖ϕ < 1 and ‖yχAn

‖ϕ < 1 for every n ≥ 2.

Let Bn = {t ∈ T : (1 − 1
n)c(ϕ) ≤ |z(t)| < c(ϕ)}, n ≥ 2, and C = {t ∈ T :

|z(t)| = c(ϕ)}. We have x(t) = z(t) = y(t) for a.e. t ∈ C. Further, for every w with
Iϕ(w) < ∞, |w(t)| ≤ c(ϕ) for a.e. t ∈ T . Since ϕ(c(ϕ)) > 0, µ(Bn)→ 0 as n → ∞;
so

∫

Bn

ϕ(w(t)) dµ ≤ ϕ(c(ϕ))µ(Bn)→ 0 as n → ∞

uniformly on {w ∈ Lϕ(µ) : Iϕ(w) < ∞}.
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By the convexity of Iϕ and the inequality Iϕ(z) < 1, we infer that Iϕ(x) < 1 and
Iϕ(y) < 1. Thus, there exists 0 < β < 1 such that

max{Iϕ(x), Iϕ(y)}+ 2β < 1.

Next, fix n ≥ 6/ε with ϕ(c(ϕ))µ(Bn) < β. Since ‖xχAn
‖ϕ < 1, Iϕ(λxχAn

) ≤ 1 for
some λ > 1. In virtue of the Lebesgue dominated convergence theorem, we can find
γ > 1 such that

Iϕ(γxχAn
) ≤ Iϕ(xχAn

) + β

and, analogously,

Iϕ(γyχAn
) ≤ Iϕ(yχAn

) + β.

Let δ = min{(1− 1
γ )β, ε

6} and take an arbitrary w ∈ B(Lϕ(µ)) with ‖w−z‖ϕ < δ.

Then ‖ γ
γ−1 (w − z)‖ϕ < β < 1, so Iϕ(

γ
γ−1 (w − z)) ≤ β, for Iϕ(x) ≤ ‖x‖ϕ for every

x ∈ B(Lϕ(µ)). Finally, let

u(t) =

{

w(t) if t ∈ C ∪ Bn,

x(t) + w(t) − z(t) if t ∈ An;

v(t) =

{

w(t) if t ∈ C ∪ Bn,

y(t) + w(t) − z(t) if t ∈ An.

We claim that ‖u − x‖ϕ < ε and ‖v − y‖ϕ < ε. Since x(t) = z(t) for a.e. t ∈ C,

Iϕ(δ
−1(u − x)χC) = Iϕ(δ

−1(w − z)χC) ≤ Iϕ(δ
−1(w − z)) ≤ 1;

so ‖(u − x)χC
‖ϕ ≤ δ < ε/6. Further, since 1

2 (x(t) + y(t)) = z(t) for a.e. t ∈ T ,

|x(t)− z(t)| ≤ 1
n · c(ϕ) for a.e. t ∈ Bn. Thus

Iϕ(3ε
−1(u − x)χBn

) = Iϕ

(

1

2
(6ε−1(w − z)χBn

) +
1

2
(6ε−1(z − x)χBn

)

)

≤

≤
1

2
Iϕ(6ε

−1(w − z)) +
1

2
ϕ(
6

εn
· c(ϕ))µ(Bn) ≤

≤
1

2
Iϕ(δ

−1(w − z)) +
1

2
ϕ(c(ϕ))µ(Bn) ≤

1

2
(1 + β) ≤ 1;

so ‖(u − x)χBn
‖ϕ ≤ ε/3. Therefore

‖u − x‖ϕ ≤ ‖u − x‖ϕ + ‖x − x‖ϕ ≤

≤ ‖(u − x)χC‖ϕ + ‖(u − x)χBn
‖ϕ + ‖(w − z)χAn

‖ϕ + ‖x − x‖ϕ < ε.

Analogously, ‖v − y‖ < ε.
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To prove the stability of z, we should show that u, v ∈ B(Lϕ(µ)). We have

Iϕ(u) = Iϕ(wχC ) + Iϕ(wχBn
) + Iϕ

( 1

γ
(γxχAn

) + (1−
1

γ
)

γ

γ − 1
(w − z)χAn

)

≤ ϕ(c(ϕ))µ(C) + ϕ(c(ϕ))µ(Bn) +
1

γ
· Iϕ(γxχAn

) + (1−
1

γ
) · Iϕ(

γ

γ − 1
(w − z)χAn

)

≤ Iϕ(xχC) + β +
1

γ
·
(

Iϕ(xχAn
) + β

)

+ (1−
1

γ
) · Iϕ(

γ

γ − 1
(w − z))

≤ Iϕ(x) + 2β < 1.

(⇒) Let us suppose that none of the conditions (i) + (v) is satisfied. Let n ∈ N

be any number such that ‖zχAn
‖ = 1 if c(ϕ) < ∞ and ϕ(c(ϕ)) < ∞, and put

n = 1, An = T in the other case.
By the lower semicontinuity of Iϕ and in virtue of Proposition 2, we can find

ε > 0, x, y ∈ B(Lϕ(µ)) with 1
2 (x + y) = z and a set E ⊂ An of positive measure

such that ‖zχE‖ϕ < 1 and

2Iϕ(zχE) < Iϕ(uχE) + Iϕ(vχE)

for every u, v ∈ B(Lϕ(µ)) with ‖u − x‖ϕ < ε and ‖v − y‖ϕ < ε.

Let 0 < δ < 2/n and fix k ∈ N with k > 2δ−1 > n. Since Iϕ(z) < 1, ‖zχE‖ϕ < 1
and ‖zχAn

‖ϕ = 1, we have Iϕ(λzχAn\E) = ∞ for every λ > 1. Let us take, if

c(ϕ) < ∞ and ϕ(c(ϕ)) < ∞, any countable covering (Ei)
∞
i=1 of the set An \ E

consisting of pairwise disjoint sets Ei ⊂ An \ E of positive and finite measure and
put ai = ϕ−1(i),

Ei = {t ∈ T \ E : ai−1 ≤ |z(t)| < ai}, i = 1, 2, . . . ,

in the other cases (since Iϕ(z) < 1, µ(Ei) < ∞ for each i ∈ N). Define

h(m) =

m
∑

i=1

Iϕ((1 +
1

k
)zχEi

) +

∞
∑

i=m+1

Iϕ(zχEi
), m = 0, 1, 2, . . .

(with the usual convention
∑

∅ = 0). We have

ϕ((1 +
1

k
)z(t)) ≤











ϕ(c(ϕ)) < ∞ for t ∈ An, if c(ϕ) < ∞, ϕ(c(ϕ)) < ∞,

ϕ((1 + 1
k )ai) < ∞ for t ∈ Ei, if c(ϕ) =∞ or

c(ϕ) < ∞ and ϕ(c(ϕ)) =∞.

Thus h(m) < ∞ for every m ∈ N. Further, h(m)→ ∞ as m → ∞, since
Iϕ((1 +

1
k
)zχAn\E) =∞.

Let p = max{m ≥ 0 : h(m) < 1} and let 0 < s ≤ k−1 be such a number that
Iϕ(w) = 1, where

w(t) =











(1 + 1
k )z(t) for t ∈

⋃p
i=1 Ei,

(1 + s)z(t) for t ∈ Ep+1,

z(t) otherwise.
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Suppose that there are u, v ∈ B(Lϕ(µ)) such that ‖u − x‖ϕ < ε, ‖v − y‖ϕ < ε and
1
2 (u + v) = w. Then, by the convexity of ϕ, we have

ϕ(a+ η) ≥ ϕ′
+(a)η + ϕ(a)

for every η ∈ R and |a| < c(ϕ), where ϕ′
+ denotes the right hand side derivative

of ϕ. Therefore

2 ≥ Iϕ(u) + Iϕ(v) =

= Iϕ(uχE) + Iϕ(vχE) + Iϕ([w + u − v]χT\E) + Iϕ([w + v − w]χT\E) >

> 2Iϕ(zχE) + 2Iϕ(wχT\E) +

∫

T\E
ϕ′

+(w(t))[u(t) + v(t)− 2w(t)] dµ =

= 2Iϕ(w) = 2.

This contradiction ends the proof of the theorem. �

Let {en : n ∈ N}, N ⊆ N, be the set of all atoms of T and let r > 1. We shall
say that a function ϕ satisfies the condition ∆0

r (on T ) – ϕ ∈ ∆0
r in short – if

- there exist a0 > 0 and c > 1 such that 0 < ϕ(a0) < ∞ and

ϕ(ra) ≤ cϕ(a) for every |a| ≤ a0,

provided the atomless part of T is of positive measure;
- there exist a0 > 0, b > 0, c > 1 and a nonnegative sequence (dn) such that

∑

n dn < ∞, 0 < ϕ(a0) < ∞ and

ϕ(ra)µ(en) ≤ cϕ(a)µ(en) + dn

for every |a| ≤ a0 with ϕ(a)µ(en) ≤ b and every n ∈ N provided µ is purely
atomic.

If ϕ ∈ ∆0
r for some r > 1 on the atomless part of T which is of positive measure,

then, evidently, ϕ ∈ ∆0
r on the whole set T . Further, if the measure of the atomless

part of T is either infinite or equal to zero and ϕ ∈ ∆r for some r > 1, then ϕ ∈ ∆0
r .

Thus ϕ ∈ ∆0
r for some r > 1 provided dimLϕ(µ) < ∞ and Lϕ(µ) is not isometric

to L∞(µ).
If ϕ ∈ ∆0

r for some r > 1, then, for any number a′ ∈ (a(ϕ), c(ϕ)), we can
find 1 < r′ ≤ c(ϕ)/a′ such that ϕ ∈ ∆0

r′ with a′ instead of a (consider r′ =

min{r, c(ϕ)/a′} > 1, c′ = max{c, ϕ(r′a′)/ϕ(a0)} and b′ = b). Therefore, if ϕ ∈ ∆0
r

for some r > 1 and ‖x‖∞ < c(ϕ), then

‖x‖ϕ = 1⇐⇒ Iϕ(x) = 1.

Note that ϕ ∈ ∆0
r for some r > 1 iff ϕ ∈ ∆0

2 provided ϕ takes only finite values.
Before we present a theorem on stability of the unit ball in Lϕ(µ), we shall prove

an auxiliary lemma.
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Lemma 4. Let M, S be the purely atomic and atomless part of T , respectively. If
ϕ does not satisfy the condition ∆0

r for every r > 1 on M (respectively on S) and
µ(M) = ∞ (respectively µ(S) = ∞), then there exists a sequence (xk) of simple
functions with disjoint supports such that

‖xk‖∞ <
1

2k
·min{1, c(ϕ)}, Iϕ(xk) < 2

−k and Iϕ((1 +
1

k
)xk) ≥ 1

for every k ≥ 1. Thus, the point x =
∑

k xk ∈ B(Lϕ(µ)) is not stable.

Proof: (a) Assume that ϕ does not satisfy the condition ∆0
r for any r > 1 on S

and µ(S) =∞. Take, for every k ∈ N,

ak =
1

2k
·min{1, c(ϕ)}, ck = 2

k+1, rk = 1 +
1

k
.

Then we can find a sequence (βk) of positive numbers such that 0 < βk < ak and

ϕ((1 + 1
k )βk) > 2k+1ϕ(βk). Further, we can choose a sequence (Tk) of pairwise

disjoint measurable sets with ϕ(βk)µ(Tk) = 1/2
k+1 for every k ∈ N. Then the

sequence xk = βkξTk
, k ∈ N, possesses all the required properties.

(b) Now, let µ(M) = ∞ and assume that ϕ does not satisfy the condition ∆0
r

for any r > 1 on M = {en : n ∈ N}. Take ck, rk as above and put ak =
1

2krk
·

min{1, c(ϕ)} and bk = 1/2
k+1 for k ∈ N. Further, let

αn(k) := sup{ϕ(rka)µ(en) : 0 ≤ a ≤ ak, ϕ(a)µ(en) ≤ bk, ϕ(rka) > ckϕ(a)}

for n, k ∈ N. Then, for every k, n ∈ N, we have 0 ≤ αn(k) < ∞ and

ϕ(rka)µ(en) ≤ ckϕ(a)µ(en) + αn(k)

for every |a| ≤ ak with ϕ(a)µ(en) ≤ bk. Since ϕ /∈ ∆0
rk
,
∑

n αn(k) = ∞ for every
k ∈ N. Thus we can find a sequence (Nk) of pairwise disjoint subsets of N such
that αn(k) > 0 for every n ∈ Nk and

∑

n∈Nk
αn(k) > 2 for every k ∈ N. By the

definition of αn(k), for every k ∈ N and n ∈ Nk, we can find a number βn(k) such
that

0 ≤ βn(k) ≤ ak, ϕ(βn(k))µ(en) ≤ bk, ϕ(rkβn(k)) > ckϕ(βn(k))

and
ϕ(rkβn(k))µ(en) > αn(k)− 2

−n.

Thus
∑

n∈Nk
ϕ(rkβn(k))µ(en) > 1 for every k ∈ N. Define, for k ∈ N,

nk = max{p ∈ Nk :
∑

n∈Nk,n≤p

ϕ(rkβn(k))µ(en) < 1},

mk = min{p ∈ Nk : p > nk} and

xk = (βn(k)χNk∩{1,...,mk}(n))
∞
n=1 .
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Then ‖xk‖∞ ≤ ak,

Iϕ(xk) =
∑

n∈Nk,n≤nk

ϕ(βn(k))µ(en) + ϕ(βmk
(k))µ(emk

) ≤

≤
∑

n∈Nk,n≤nk

1

ck
· ϕ(rkβn(k))µ(en) + bk <

1

ck
+ bk =

1

2k

and

Iϕ((1 +
1

k
)xk) =

∑

n∈Nk,n≤mk

ϕ(rkβn(k))µ(en) ≥ 1.

(c) Let x =
∑

k
xk. Obviously, ‖x‖ϕ = 1 and Iϕ(x) < 1. Further, since ‖x‖∞ ≤

1
2 · min{1, c(ϕ)}, An = {t ∈ T : |x(t)| ≤ (1 − 1

n )c(ϕ)} = T for every n ≥ 2. Thus
‖xχAn

‖ϕ = ‖x‖ϕ = 1 for every n ≥ 2, so, by virtue of Theorem 3, x is not stable.
�

Theorem 5. The unit ball of the Orlicz space Lϕ(µ) is stable if and only if at least
one of the following conditions is satisfied:

(i) Lϕ(µ) is finite dimensional;
(ii) Lϕ(µ) is isometric to L∞(µ);
(iii) ϕ satisfies the condition ∆r for some r > 1;
(iv) ϕ satisfies the condition∆0

r for some r > 1 provided c(ϕ) < ∞ and ϕ(c(ϕ)) <
∞;

(v) ϕ satisfies the condition ∆0
r for some r > 1 on the purely atomic part of T

provided c(ϕ) < ∞, ϕ(c(ϕ)) < ∞ and the measure of the atomless part of T
is finite;

(vi) c(ϕ) < ∞, ϕ(c(ϕ)) < ∞ and µ(T ) < ∞.

Proof: (⇐) The sufficiency of (i) and (ii) is obvious. If ϕ ∈ ∆r for some r > 1 and
c(ϕ) =∞, then B(Lϕ(µ)) is stable by virtue of the Suarez–Granero theorem [12].
Let c(ϕ) < ∞, ϕ(c(ϕ)) =∞ and ϕ ∈ ∆r for some r > 1. Then µ must be purely

atomic and infn∈N µ(en) ≥ b/ϕ(c(ϕ)r−1), where {en : n ∈ N ⊆ N} is the set of
atoms of T . Then Lϕ(µ) ⊆ ℓ1 ⊆ c0, so ‖x‖∞ < c(ϕ) for every Iϕ(x) < ∞. Further,

ϕ ∈ ∆0
r , thus Iϕ(x) = 1 iff ‖x‖ϕ = 1, so B(Lϕ(µ)) is stable.

Let c(ϕ) < ∞, ϕ(c(ϕ)) < ∞. Fix any x with ‖x‖ϕ = 1. Then ‖x‖∞ ≤ c(ϕ).
If ‖x‖∞ < c(ϕ) and one of the conditions (iv), (v), (vi) is satisfied, then, by the
Lebesgue dominated convergence theorem, Iϕ(x) = 1, so x is stable (if T0 ⊆ T
is such a set that µ(T0) < ∞, then Iϕ(rxχT0) ≤ ϕ(r‖x‖∞)µ(T0) < ∞, where

1 < r <
c(ϕ)
‖x‖∞

).

If ‖x‖∞ = c(ϕ), then ‖xn‖∞ < ‖x‖∞ = c(ϕ) for every n ≥ 2, where xn =
xχ{t:|x(t)|<(1− 1

n
)c(ϕ)} . Thus Iϕ(xn) < Iϕ(x) = 1, and, by assumptions, Iϕ(rxn) <

∞ for some r > 1, so ‖xn‖ϕ < 1 for every n ≥ 2, hence, by Theorem 3, B(Lϕ(µ))
is stable.

(⇒) Assume that none of the conditions (i) + (vi) is satisfied.
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Let c(ϕ) = ∞ or ϕ(c(ϕ)) = ∞. Then ϕ /∈ ∆r for any r > 1, so there exists
x ∈ Lϕ(µ) such that ‖x‖ϕ = 1, but Iϕ(x) < 1 (cf. [8], [16, Lemma 3.2]). By
Theorem 3, B(Lϕ(µ)) is not stable.
Let c(ϕ) < ∞, ϕ(c(ϕ)) < ∞. Then µ(T ) = ∞. Let M, S be the purely atomic

and atomless parts of T , respectively. If µ(S) < ∞, then, by Lemma 4, B(Lϕ(µ)) is
not stable for ϕ /∈ ∆0

r on M for every r > 1. Finally, if µ(M) < ∞, then µ(S) =∞
and ϕ /∈ ∆0

r on S for every r > 1, so, once again, by Lemma 4, B(Lϕ(µ)) is not
stable and the proof is finished. �

It is easy to observe that the theorem on stability of the unit ball in Orlicz
sequence spaces (µ(en) = 1 for every n ∈ N) presented in [14] can be deduced from
Theorem 5 (note that ϕ ∈ ∆r for some (every) r > 1 iff ϕ ∈ ∆0

r for some (every)
r > 1 iff ϕ ∈ ∆2 in that case). In the case of an atomless measure we have the
following

Corollary 6. Let µ be an atomless measure. Then the unit ball of the Orlicz space
Lϕ(µ) is stable if and only if one of the following conditions is satisfied:

(i) Lϕ(µ) is isometric to L∞(µ);
(ii) c(ϕ) =∞ and ϕ satisfies the condition ∆2;

(iii) c(ϕ) < ∞, ϕ(c(ϕ)) < ∞ and either µ(T ) < ∞ or ϕ satisfies the condition
∆0

r for some r > 1.

Corollary 7. If the function ϕ takes only finite values, then the unit ball of the
Orlicz space Lϕ(µ) is stable if and only if either Lϕ(µ) is finite dimensional or ϕ
satisfies the condition ∆2.

4. Topological structure of stable points in the unit sphere.

It is evident that the set of stable points of B(Lϕ(µ)) is dense in B(Lϕ(µ)). We
shall show that the similar result is valid if we replace “the unit ball” by “the unit
sphere” S(Lϕ(µ)); more precisely, the set of all stable points of B(Lϕ(µ)) with norm
one (it will be denoted by Stab) is dense in S(Lϕ(µ)).

Proposition 8. Let Gn = {z ∈ Lϕ(µ) : ‖z‖∞ > (1 − 1
n ) · c(ϕ)} if c(ϕ) < ∞ and

ϕ(c(ϕ)) < ∞; Gn = ∅ otherwise; n = 1, 2, . . . . Then, for every n sufficiently large,
the set S(Lϕ(µ)) \ (Stab∪Gn) is of the first Baire category in S(Lϕ(µ)) \ Gn with

the topology induced from Lϕ(µ).

Note. If c(ϕ) < ∞, then Lϕ(µ) ⊂ L∞(µ) and, by the closed graph theorem, the
corresponding identity map is continuous. Thus the sets Gn are open in Lϕ(µ).

Proof: In virtue of Theorem 5, we can assume that Lϕ(µ) is neither finite dimen-
sional nor isometric to L∞(µ). Thus ϕ(c(ϕ)) > 0. Let q ≥ 2 be any number such

that ϕ( q−1
q+1 · c(ϕ)) > 0. Let us fix n ≥ q. Then

S(Lϕ(µ)) \ (Stab∪Gn) =
∞
⋃

m=1

Hm,
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where Hm = {x /∈ Gn : Iϕ(x) ≤ 1−
1
m , ‖x‖ϕ = 1}, m = 1, 2, . . . . Since Iϕ is lower

semicontinuous, each Hm is closed in S(Lϕ(µ)) \ Gn. Suppose that
⋃

m Hm is not
of the first Baire category, i.e. intHm 6= ∅ for some (fixed from now on) m ∈ N.
Then there exists z ∈ Hm and an open neighborhood U ⊂ S(Lϕ(µ)) \Gn of z such
that

sup
x∈U

Iϕ(x) ≤ 1−
1

m
.

We claim that Iϕ(λzχH) =∞ for every λ > 1, where

H = {t ∈ T : |z(t)| ≤
n − 1

n+ 1
· c(ϕ)} if c(ϕ) < ∞ and ϕ(c(ϕ)) < ∞,

and H = T otherwise. If H = T , then there is nothing to prove. Assume that
c(ϕ) < ∞, ϕ(c(ϕ)) < ∞ and suppose that Iϕ(λzχH) < ∞ for some λ > 1. Let

1 < λ′ ≤ min{λ, (1 + 1
n )}. Since |z(t)| ≤ (1−

1
n )c(ϕ) for a.e. t ∈ T , we have

Iϕ(λ
′z) ≤ Iϕ(λzχH) + Iϕ((1 +

1

n
)zχT\H) ≤

≤ Iϕ(λzχH) +KIϕ((zχT\H) < ∞,

where

K = ϕ(c(ϕ))/ϕ(
n − 1

n + 1
· c(ϕ)) < ∞.

Hence ‖z‖ϕ < 1 – a contradiction. Consequently, the set H can neither be empty
nor consist of a finite number of atoms.
Let us choose a countable covering (Tn)

∞
n=1 of H consisting of pairwise disjoint

sets Tn ⊂ H of positive and finite measure. In an analogous way as in the proof of
Proposition 2, step 2◦), for a given k ≥ n, we can find the numbers pk ∈ N ∪ {0}
and 0 < sk ≤ 1

k such that Iϕ(xk) = 1, where

xk = (1 +
1

k
)zχ

T pk

+ (1 + sk)zχTpk+1
+ zχ

T\Tpk+1

and T k =
⋃k

i=1 Ti. Further, if c(ϕ) < ∞ and ϕ(c(ϕ)) < ∞,

|xk(t)| ≤ (1 +
1

k
)|z(t)| ≤ (1 +

1

n
) ·

n − 1

n+ 1
· c(ϕ) = (1−

1

n
) · c(ϕ)

for every t ∈ H . Therefore, in any case, xk ∈ S(Lϕ(µ)) \ Gn for every k ≥ n.
Moreover, for every λ > 1 and k ≥ max{n, λ}, we have

Iϕ(λ(z − xk)) =

pk
∑

i=1

Iϕ(
λ

k
· zχTi

) + Iϕ(λskzχTpk+1
) ≤

λ

k
Iϕ(z) −−−−→

k→∞
∞,

i.e., ‖z − xk‖ϕ → 0. Thus xk ∈ U , so Iϕ(xk) ≤ 1−
1
m for large k – a contradiction.

�
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Theorem 9. The set Stab is dense in S(Lϕ(µ)).

Proof: If c(ϕ) =∞ or c(ϕ) < ∞ but ϕ(c(ϕ)) =∞, the statement is an immediate
consequence of Proposition 8 and the Baire category theorem ([2]).
Assume that c(ϕ) < ∞, ϕ(c(ϕ)) < ∞ and let x ∈ S(Lϕ(µ)) \ Stab. In virtue

of Theorem 3, Iϕ(x) < 1 and there exists p ∈ N such that Iϕ(λxχT\Dn
) = ∞ for

every λ > 1 and n ≥ p, where Dn = {t ∈ T : |x(t)| ≥ (1 − 1
n ) · c(ϕ)}, n = 2, 3, . . . .

Evidently

ϕ((1 −
1

n
)c(ϕ))µ(Dn) ≤ Iϕ(x) ≤ 1,

so supn>m µ(Dn) < ∞ for sufficiently large m ∈ N. Define

xn = xχT\Dn
+ (1−

1

n
)c(ϕ) · sgnx · χDn

, n ≥ 2.

Then, for every λ > 0 and n > max{2, λ, m},

Iϕ(λ(x − xn)) = Iϕ(λ(x − (1 −
1

n
)c(ϕ) · sgnx) · χDn

) ≤

≤ ϕ(
λ

n
· c(ϕ))µ(Dn) ≤

λ

n
· ϕ(c(ϕ)) · sup

n>m
µ(Dn) −−−−→

n→∞
0,

i.e., ‖x− xn‖ϕ → 0. Further, |xn(t)| ≤ (1−
1
n )c(ϕ) for a.e. t ∈ T , i.e., xn /∈ Gn for

n ≥ 2, where Gn’s denote the sets defined in Proposition 8. Since Iϕ(λxnχT\Dn
) =

∞ for every λ > 1 and n ≥ p, ‖xn‖ϕ = 1; so xn ∈ S(Lϕ(µ))\Gn for n ≥ p. But, for
large n, Stab \Gn is dense in S(Lϕ(µ))\Gn by Proposition 8 and the Baire category
theorem, so we can find a sequence (yn), yn ∈ Stab such that ‖yn − x‖ϕ → 0 and
the proof is completed. �

Corollary 10. If [0,∞) ⊆ ϕ(R), then Stab is a dense Gδ subset of S(L
ϕ(µ)).
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