On a class of locally Butler groups

Ladislav Bican

Abstract. A torsionfree abelian group B is called a Butler group if Bext(B,T)=0 for any torsion group T. It has been shown in [DHR] that under CH any countable pure subgroup of a Butler group of cardinality not exceeding \aleph_{ω} is again Butler. The purpose of this note is to show that this property has any Butler group which can be expressed as a smooth union $\bigcup_{\alpha<\mu}B_{\alpha}$ of pure subgroups B_{α} having countable typesets.

Keywords: Butler group, generalized regular subgroup

Classification: 20K20

All groups in this paper are abelian. If p is a prime and x an element of a torsionfree group G then $h_p^G(x)$ is the p-height of x in G and $t^G(x) = t(x)$ is the type of x in G. The typeset t(G) of G is the set of types of all non-zero elements of G. The corank of a pure subgroup H of G is the rank of G/H. If Π is a set of primes and T is a torsion group then we say that T is Π -primary if $T_p = 0$ for all $p \notin \Pi$.

If S is a subset of a torsionfree group G, then $\langle S \rangle_*^G$ denotes the pure subgroup generated by S. A subgroup H of G is said to be a generalized regular subgroup of G if G/H is torsion and for each rank one pure subgroup J of G, $(J/J\cap H)_p=0$ for almost all primes p. A torsionfree group G is said to be locally completely decomposable if, for each prime p, the localization $G_p=Z_p\otimes G$ is completely decomposable. For the unexplained terminology and notations see [F1].

A torsionfree group B is said to be a Butler group if Bext(B,T)=0 for all torsion groups T, where Bext is the subfunctor of Ext consisting of all balanced-exact extensions. It is known [BS] that this definition coincides with the familiar one if B has finite rank, i.e., a pure subgroup of a completely decomposable group, or, equivalently [B], a torsionfree homomorphic image of a completely decomposable group of finite rank.

Following [FV] we shall call a torsionfree group locally Butler if any its pure subgroup of finite rank is Butler. Dugas [D] proved that any Butler group, the cardinality of which does not exceed \aleph_1 is locally Butler. In this paper we are going to generalize this result by showing that the same property has any Butler group B expressible as a smooth union $\bigcup_{\alpha<\mu}B_{\alpha}$ of pure subgroups B_{α} with countable typesets. Doing this we also give for this class of groups an affirmative answer concerning the problems (1) and (2) formulated in [A].

Lemma 1. Let X be a subgroup of a torsionfree group G with G/X torsion and $J \leq G$ be of rank one. If H is a subgroup of G such that $(X + J) \cap H/X \cap H$

598 L. Bican

is Π -primary for some set of primes Π , then there is a subgroup K of J such that J/K is Π -primary and $(X+K)\cap H=X\cap H$.

PROOF: Decompose $J/X \cap J$ into $L/X \cap J \oplus K/X \cap J$, where $L/X \cap J$ is the Π -primary part of the torsion group $J/X \cap J$. Now consider the homomorphism $\psi: (X+J) \cap H \to J/X \cap J$ given for h=x+j by the formula $\psi h=j+X \cap J$. Obviously, ψ is well-defined and it naturally induces the monomorphism $\phi: (X+J) \cap H/X \cap H \to J/X \cap J$. By hypothesis, $Im\psi = Im\phi \leq L/X \cap J$ and so the results follow easily from the inclusion $\psi((X+K) \cap H) \leq K/X \cap J$.

Lemma 2. Let H be a corank one pure subgroup of a torsionfree group G with countable typeset. If K is a generalized regular subgroup of H, then there is a generalized regular subgroup L of G such that $L \cap H = K$.

PROOF: Obviously, there is an ordinal $\lambda \leq \omega$ such that $\{t^G(g) \mid g \in G \setminus H\} = \{t_i \mid i < \lambda\}$. For each $i < \lambda$ take a rank one pure subgroup J_i of G such that $t(J_i) = t_i$ and $J_i \cap H = 0$. Using the induction, we are going to show that for each $i < \lambda$ there is a generalized regular subgroup K_i of J_i such that $L_i = K + K_1 + ... + K_i$ meets H in K.

For n=1 we have $(K\oplus J_1)\cap H=K\oplus (J_1\cap H)=K$ and so we can set $K_1=J_1$. Assume that for some $1< n<\lambda$ the subgroup $L_{n-1}=K+K_1+\ldots+K_{n-1}$ with $L_{n-1}\cap H=K$ has been defined. Denoting $X_n=K_1+\ldots+K_{n-1}+J_n$ we have $(L_{n-1}+J_n)\cap H/L_{n-1}\cap H=(K+X_n)\cap H/K=K+(X_n\cap H)/K\simeq (X_n\cap H)/X_n\cap K$.

Now $X_n/X_n \cap H \simeq (X_n+H)/H$ is torsionfree, H being pure in G, and consequently $X_n \cap H$ is a finite rank Butler group. Moreover, for $0 \neq x \in X_n \cap K$, the natural embedding induces the monomorphism $\langle x \rangle_*^{X_n \cap H}/\langle x \rangle_*^{X_n \cap K} \to \langle x \rangle_*^H/\langle x \rangle_*^K$ and so [B1] gives that the factor-group $X_n \cap H/X_n \cap K$ has a finite number of non-zero primary components, only. A simple application of Lemma 1 gives the existence of $K_n \leq J_n$ with the desired properties.

Setting $L = K + \sum_{i < \lambda} K_i = \bigcup_{i < \lambda} L_i$ we have $L \cap H = (\bigcup_{i < \lambda} L_i) \cap H = \bigcup_{i < \lambda} (L_i \cap H) = K$ and it remains to show that L is generalized regular in G.

Take $0 \neq g \in L$ arbitrarily. For $g \in H$, it is $g \in L \cap H = K$ and consequently the factor-group $\langle g \rangle_*^G / \langle g \rangle_*^L = \langle g \rangle_*^H / \langle g \rangle_*^K$ has a finite number of non-zero primary components, only.

So, let $g \notin H$. There is $n < \lambda$ such that $t^G(g) = t_n = t(J_n)$. Since r(G/H) = 1, we have mg = x + h for some $0 \neq m \in Z, x \in K_n$ and $h \in K$, H/K being torsion. The set $\Pi = \{p \mid h_p^G(mg) > h_p^G(x)\} \cup \{p \mid p|m\} \cup \{p \mid (J_n/K_n)_p \neq 0\} \cup \{p \mid (\langle h \rangle_*^H/\langle h \rangle_*^K)_p \neq 0\}$ of primes is obviously finite and for each prime $p \notin \Pi$ we have $h_p^L(x) = h_p^G(x) \geq h_p^G(mg)$, therefore $h_p^G(mg) \leq h_p^G(h) = h_p^K(h) \leq h_p^L(h)$ and consequently $h_p^L(g) = h_p^L(mg) = h_p^L(x+h) \geq h_p^L(x) \cap h_p^L(h) \geq h_p^G(mg) = h_p^G(g)$ showing that $\langle g \rangle_*^G/\langle g \rangle_*^L$ is Π -primary and finishing therefore the proof.

Lemma 3. Let $G = \bigcup_{\alpha < \mu} G_{\alpha}$ be a smooth union of pure subgroups of a torsionfree group G where μ is a limit ordinal. If, for each $\alpha < \mu$, L_{α} is a generalized regular subgroup of G_{α} such that $L_{\alpha} \leq L_{\beta}$ and $L_{\alpha} \cap G_0 = L_0$ whenever $\alpha \leq \beta < \mu$, then $L = \bigcup_{\alpha < \mu} L_{\alpha}$ is a generalized regular subgroup of G satisfying $L \cap G_0 = L_0$.

PROOF: If $0 \neq g \in L$ is arbitrary, then $g \in L_{\alpha}$ for some $\alpha < \mu$ and the inclusion $\langle g \rangle_*^{L_{\alpha}} \leq \langle g \rangle_*^L$ induces the epimorphism $\langle g \rangle_*^{G_{\alpha}}/\langle g \rangle_*^L \rightarrow \langle g \rangle_*^G/\langle g \rangle_*^L$, from which the assertion follows easily.

Theorem 4. Let $G = \bigcup_{\alpha < \mu} G_{\alpha}$ be a smooth union of pure subgroups G_{α} of a torsionfree group G having countable typesets. If K is a generalized regular subgroup of G_0 then there is a generalized regular subgroup L of G such that $L \cap G_0 = K$.

PROOF: By transfinite induction based on Lemmas 2 and 3.

Corollary 5. Let H be a pure subgroup of a torsionfree group G with countable typeset. If K is a generalized regular subgroup of H then there exists a generalized regular subgroup L of G such that $L \cap H = K$.

Corollary 6 [D]. Let H be a countable pure subgroup of a torsionfree group G of cardinality \aleph_1 . If K is a generalized regular subgroup of H then there is a generalized regular subgroup L of G such that $L \cap H = K$.

Now we are prepared to prove the main result giving a partial solution of the problems (1) and (2) stated in [A].

Theorem 7. Let a torsionfree group G be a smooth union $G = \bigcup_{\alpha < \mu} G_{\alpha}$ of pure subgroups G_{α} with countable typesets. The following conditions are equivalent:

- (i) G is locally completely decomposable and if L is a generalized regular subgroup of G and H is a pure finite rank subgroup of G, then $(H/H \cap L)_p = 0$ for almost all primes p;
- (ii) G is locally completely decomposable and locally Butler.

PROOF: Assume (i) and let H be a rank finite pure subgroup of G. There is $\alpha < \mu$ such that $H \leq G_{\alpha}$ and consequently if K is a generalized regular subgroup of H, Corollary 5 gives the existence of a generalized regular subgroup M of G_{α} with $M \cap H = K$. A simple application of Theorem 4 leads to the existence of a generalized regular subgroup L of G satisfying $L \cap G_{\alpha} = M$ and hence $L \cap H = K$. By hypothesis $H/H \cap L = H/K$ has only a finite number of non-zero primary components and since H is locally completely decomposable by [F1, Th. 86.6], it is Butler by [B1]. For the converse see [A].

Theorem 8. Any Butler group G expressible as a smooth union $G = \bigcup_{\alpha < \mu} G_{\alpha}$ of pure subgroups G_{α} with countable typesets is locally Butler.

PROOF: By [A], any Butler group satisfies the condition (i) from Theorem 7. \Box

Corollary 9. Any Butler group with countable typeset is locally Butler.

Corollary 10 [D]. Any Butler group of cardinality \aleph_1 is locally Butler.

References

- [A] Arnold D., Notes on Butler groups and balanced extensions, Boll. Un. Mat. Ital. A(6) 5 (1986), 175-184.
- [B1] Bican L., Splitting in abelian groups, Czech. Math. J. 28 (1978), 356-364.

600 L. Bican

- [B2] _____, Purely finitely generated groups, Comment. Math. Univ. Carolinae 21 (1980), 209-218.
- [BS] Bican L., Salce L., Infinite rank Butler groups, Proc. Abelian Group Theory Conference, Honolulu, Lecture Notes in Math., vol. 1006, Springer-Verlag, 1983, 171-189.
- [BSS] Bican L., Salce L., Štěpán J., A characterization of countable Butler groups, Rend. Sem. Mat. Univ. Padova 74 (1985), 51-58.
- [B] Butler M.C.R., A class of torsion-free abelian groups of finite rank, Proc. London Math. Soc. 15 (1965), 680-698.
- [D] Dugas M., On some subgroups of infinite rank Butler groups, Rend. Sem. Mat. Univ. Padova 79 (1988), 153-161.
- [DHR] Dugas M., Hill P., Rangaswamy K.M., Infinite rank Butler groups II, Trans. Amer. Math. Soc. 320 (1990), 643-664.
- [DR] Dugas M., Rangaswamy K.M., Infinite rank Butler groups, Trans. Amer. Math. Soc. 305 (1988), 129-142.
- [F1] Fuchs L., Infinite Abelian groups, vol. I and II, Academic Press, New York, 1973 and 1977.
- [F2] _____, Infinite rank Butler groups, preprint.
- [FM] Fuchs L., Metelli C., Countable Butler groups, Contemporary Math., to appear.
- [FV] Fuchs L., Viljoen G., Note on the extensions of Butler groups, Bull. Austral. Math. Soc. 41 (1990), 117-122.

DEPARTMENT OF MATHEMATICS, CHARLES UNIVERSITY, SOKOLOVSKÁ 83, 186 00 PRAHA 8, CZECHOSLOVAKIA

(Received April 19, 1991)