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Making factorizations compositive

Reinhard Börger

Abstract. The main aim of this paper is to obtain compositive cone factorizations from
non-compositive ones by itereration. This is possible if and only if certain colimits of
(possibly large) chains exist. In particular, we show that (strong-epi, mono) factorizations
of cones exist if and only if joint coequalizers and colimits of chains of regular epimorphisms
exist.
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Introduction.

Factorizations of morphisms have been investigated for a long time (see e.g. [11]);
later several authors became interested in factorizations of sources — or cones
(cf. [2], [6], [8], [9], [14], [17], [18], [21], [22]). The main examples are decompo-
sitions f = me of a morphism f , where either e is epic and m is strongly monic, or
e is strongly epic and m is monic. If one tries to find a “canonical” decomposition
with e regularly epic, some problems arise, due to the fact that regular epimorphisms
are in general not closed under composition. Other examples are monotone-light
factorizations for certain notions of connectedness, where the monotone morphisms
need not compose. Such factorizations were first investigated by Ehrbar and Wyler
(cf. [5]) and later by Tholen [20] for morphisms; generalizations to sources have
been considered in [1], [2], and [21]. In Section 1 of the present paper we repeat
the basic theory. Moreover, we show that a reasonable class E of morphisms is
right cancellable (i.e. ee′ ∈ E implies e ∈ E if E is closed under composition with
split-epimorphisms).

Our main question is when orthogonal (=“composable”) factorizations can be
obtained from locally orthogonal (=“not necessarily composable”) ones by iteration.
This was already studied in [16]; we give a more systematic treatment in Section 2.

In order to handle large chains, we work in a model S of Zermelo–Fraenkel set
theory containing a universe U . The elements of S are called conglomerates, and
the elements of U are called sets. The sub-conglomerates of U are called classes.
The cardinality of U is called ∞. A hyperordinal is an ordinal α < ∞+ in S, i.e.
an ordinal of cardinality ≤ ∞. The name “ordinal” is reserved for ordinals in U ,
i.e. hyperordinals <∞.
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Since every hyperordinal is in bijection with a class, we can use well-ordered
classes rather than hyperordinals. Then all results can be re-formulated in von
Neumann–Gödel–Bernays set-theory, which is weaker than ZF + {∃ universe}. We
stress this fact, but we shall not give this formulation because it is technically more
complicated.

For any category, we require that it has≤ ∞ objects and small hom-sets. “Small”
always means “of cardinality <∞”, i.e. “in bijection with a set”.

In Section 3 we apply the framework to the class of regular epimorphisms. Under
“reasonable” conditions, the composites of chains of regular epimorphisms are just
strong epimorphisms. An example due to MacDonald and Stone [15] shows that it
does not suffice to consider only colimits of chains indexed by an ordinal or the class
of all ordinals; a simple generalization shows that the length of the chain cannot
even be bounded by a fixed hyperordinal. Extending a notion given by Gabriel and
Ulmer [7], we define the decomposition number δ(A) of a “reasonable” category A.
The generalized MacDonald–Stone example shows that indeed every hyperordinal
appears as δ(A) for some A. Note that there may be proper chains of regular
epimorphisms of length > δ(A), but the composite of such a chain can always be
represented as a composite of a shorter chain.

1. Local factorization classes.

1.1 (1) We start by recalling some basic facts about locally orthogonal factoriza-
tions. By a source factorization in a category A we mean a pair (e, (mi)i∈I ), where
I is some class and e,mi are A-morphisms such that the domains of all mi coin-
cide with the codomain of e. If e is an identity morphism 1A, we call (1A, (mi)i)
a source and usually abbreviate it by (mi)i, keeping in mind that A has to be given
additionally in case I = ∅. We say that (e, (mi)i∈I ) is a factorization of a source
(fi)i∈I if miei = fi for all i ∈ I.

An A-morphism p is called orthogonal to a source factorization if, for all mor-
phisms g, hi (i ∈ I) with mieg = hip (i ∈ I), there is a unique morphism t with
tp = eg and mit = hi (i ∈ I). In this case we write p⊥(e, (mi)). For a class E of
A-morphisms, we call a source factorization (e, (mi)) an E-factorization if e ∈ E .
This E-factorization is called locally orthogonal if p⊥(e, (mi)i) for all p ∈ E ; it is
called orthogonal if p⊥(1, (mi)) for all p ∈ E . E is called a (local) factorization class
if E is closed under composition with isomorphisms, and if every source in A ad-
mits a (locally) orthogonal E-factorization. If (locally) orthogonal E-factorizations
exist just for morphisms, i.e. for source indexed by singletons, we call E a (local)
factorization class for morphisms.

(2) From [21] we recall the basic properties of locally orthogonal factorizations.
First, any orthogonal E-factorization is locally orthogonal. E is a factorization class
(for morphisms) if and only if E is both a locally orthogonal factorization class (for
morphisms) and closed under composition. A local factorization class consists only
of epimorphisms; this is no longer true for local factorization classes for morphisms.
Indeed, even the class of all A-morphisms is a factorization class for morphisms.

E is a local factorization class if and only if the following two conditions hold:
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(i) The pushout

-
f

?

e

?

e′

-
f ′

always exists for e ∈ E , and e′ ∈ E holds.

(ii) For any (possibly large or empty) source (ei) with all ei ∈ E the cointersec-
tion (=generalized pushout)

?

ei

Q
Q

Q
Q

Q
Q

Q
QQ

~

d

-
pi

exists, and d ∈ E holds.

If E is a local factorization class for morphisms, the above colimits need not exist,
but in case of existence we can conclude e′ ∈ E , and d ∈ E .
A locally orthogonal E-factorization (e, (mi)i∈I ) is always rigid in the sense that

for any t with te = e and mit = mi for all i ∈ I it follows that t = 1. From this
one easily concludes that a locally orthogonal E-factorization of a given source is
unique up to a canonical isomorphism.
We are now interested in cancellation properties of local factorization classes.

We say that a class E of morphisms is right cancellable if ee′ ∈ E always implies
e ∈ E .

Proposition 1.2. The following assertions hold whenever E is a local factorization
class for morphisms:

(i) If ee′ ∈ E , then there are e′′ ∈ E and a split-epimorphism q with qe′′ = e.
(ii) If qe ∈ E for all e ∈ E and all split-epimorphisms q, then E is right can-
cellable.

(iii) If ee′ ∈ E and if e′ belongs to E or is epic, then e ∈ E .

Proof: (i) Consider a locally orthogonal E-factorization (e′′, q) of e. Now ee′⊥(e′′, q)
yields a unique l with lee′ = e′′e′ and ql = 1; thus q is split-epic.
(ii) is an immediate consequence of (i).
(iii): Start as in (i). If e′ ∈ E , we can apply the uniqueness part of e′⊥(e′′, q)

to conclude le = e′′ (cf. [20]). If e′ is epic, the latter equation follows immediately
from lee′ = e′′e′. Now rigidity of (q, e′′) yields lq = 1. Hence q is an isomorphism
and e = qe′′ ∈ E . �
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Note that in (i) we even obtained a “canonical” decomposition in the sense
that (e′′, q) is orthogonal. But this can always be achieved, if an E-(split-epic)
factorization exists at all, by the following

Proposition 1.3. Let E be a class of morphisms closed under composition with iso-
morphisms and let (e′, q′) be some locally orthogonal E-factorization of a morphism
qe with e ∈ E and q split-epic. Then q′ is also split-epic.

Proof: Since q is split-epic, there exists some s with qs = 1. From e⊥(e′, q′) we
get a unique t with te = e′ and q′t = q, hence q′ts = qs = 1. Thus q′ is split-epic.

�

2. Iterated factorizations.

If (e, (mi)) is a locally orthogonal E-factorization of some source (fi) for some
local factorization class E , we can continue by taking a locally orthogonal E-fac-
torization (e′, (m′

i)) of (mi). Since (e
′e, (m′

i)) is again a factorization of (fi), we
can take a locally orthogonal E-factorization of (m′

i) and iterate the construction
as often as possible. We shall see that we can obtain an orthogonal E-factorization
for some factorization class E ′ by transfinite iteration of this process if and only if
certain (possibly large) colimits of chains exist.
For any hyperordinal (see introduction) α ≥ 1 we consider the categoryKα whose

objects are all hyperordinals < α and with exactly one morphism kµν : µ −→ ν for
µ ≤ ν and no such morphism otherwise. By an α-chain in a category A we mean
a functor Kα −→ A; we usually write it as a family (eµν : Aµ −→ Aν)µ≤ν<α of
A-morphisms.
If E is a class of morphisms containing all isomorphisms and closed under com-

position with them, we call the above chain an E-admissible chain, if eµµ+1 ∈ E
for all µ with µ + 1 < α and if, moreover, the chain, considered as a functor,
preserves colimits of chains. The latter condition means that, for each limit hyper-
ordinal λ < α, Aλ is the colimit of the λ-chain (eµν)µ≤ν<λ with colimit morphisms

eµλ : Aµ −→ Aλ. For any α < ∞+ and any (α + 1)-chain (eµν), we call e0α the
composite of the (α+1)-chain. For α > 0 we denote by Eα the class of all compos-
ites of E-admissible (α+1)-chains. We define E0 to be the class of all isomorphisms.
Then we have E1 = E and Eβ ⊂ Eα for β < α. If all elements of E are epic, it
follows by transfinite induction that all Eα consist only of epimorphisms.
If α, β, γ are hyperordinals with α = β + γ and γ ≥ 1, then for any E-admissible

α-chain (eµν)µ≤ν<α the γ-chain (eβ+µ β+ν)µ≤ν<γ is also E-admissible. Moreover,
a colimit of (eβ+µ β+ν)µ≤ν<γ exists if and only if (eµν)µ≤ν<α has a colimit, and
in this case both colimits coincide. In particular, if all colimits of E-admissible
γ-chains exist, then every E-admissible α-chain admits a colimit.
In particular, for given α ≥ 1 we can choose the smallest γ ≥ 1 such that

α = β + γ for some hyperordinal β. Then γ is indecomposable [13], i.e. γ admits
no decomposition γ = ζ + η with ζ, η < γ, because then η ≥ 1 (since ζ < γ) and
α = (β + ζ) + η, 1 ≤ η < γ, contradicting the choice of γ. The question of whether
all colimits of E-admissible α-chains exist is reduced to the case of indecomposable
α. Any indecomposable hyperordinal is either = 1 or a limit hyperordinal.
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Moreover, for α ≥ 1 we can consider the cofinality type of α, i.e. the smallest β
with the property that there exists an unbounded order-preserving map ϕ : β −→
α. Then β is always a regular cardinal, and a colimit of an α-chain (eµν)µ≤ν<α

exists if and only if the β-chain (eϕ(µ)ϕ(ν))µ≤ν<β admits a colimit and in this case

both colimits coincide. But if (eµν)µ≤ν<1 is E-admissible, we cannot conclude that
(eϕ(µ)ϕ(ν))µ≤ν<β is E-admissible.

If α > 1 is indecomposable and if all colimits of E-admissible γ-chains exist for
all γ < α, then colimits of E-admissible α-chains need not exist. Indeed, in Kα

let E be the conglomerate of all identities and all kζ,ζ+1 for 0 ≤ ζ < α. Then the
identity functor Kα −→ Kα is an E-admissible α-chain without a colimit. On the
other hand, if 1 ≤ γ < α, then we shall see that every E-admissible γ-chain admits
a colimit in Kα. Since the domain β of e00 belongs to Kα, we have β < α. Induction
gives that for any ζ < γ the codomain of e0ζ is ≤ β + ζ, hence the supremum σ

of all those codomains is ≤ β + γ. But if we had β + γ ≥ α, then for the smallest
γ′ with β + γ′ ≥ α we should get 1 ≤ γ′ ≤ γ < α and α = β + γ′, contradicting
indecomposability of α. Thus σ ≤ β + γ < α, and σ is a colimit of (eµν)µ≤ν<γ

in Kα.

For any hyperordinal α ≥ 1 one easily sees that αω (i.e. the order type of ω × α

in lexicographic order) is an indecomposable hyperordinal > α. In particular, if
colimits of E-admissible chains α-chains exist for all α ≤ ∞, then colimits of E-
admissible chains need not exist. This is the reason why we use hyperordinals.

Theorem 2.2. For any local factorization class E and any hyperordinal α the
following statements are equivalent:

(i) Eα is local factorization class.

(ii) For any limit hyperordinal λ ≤ α, any E-admissible λ-chain admits a colimit.

Proof: (i)⇒(ii) For an E-admissible λ-chain (eµν), any e0ν is a composite of the

(ν + 1)-chain obtained by truncation, therefore e0ν ∈ Eν ⊂ Eλ ⊂ Eα. Now the
local factorization class E consists of epimorphisms and admits cointersections, so
the cointersection of all e0ν exists, and all e0ν are epimorphic. Thus the above
cointersection is also a colimit of the given chain.

(ii) ⇒ (i) Start with an arbitrary source (fi)i. By transfinite induction we shall
construct an E-admissible (α+ 1)-chain (eµν) and arrows mνi (ν ≤ α, i ∈ I) with
mνieµν = mµi (µ ≤ ν ≤ α, i ∈ I) such that (e0ν , (mνi)i∈I) is a locally orthogonal
Eν -factorization of (fi) for all ν ≤ α. Then for ν = α we get the conclusion.

First, define e00 := 1 and m0i := fi for all i ∈ I. Now assume 1 ≤ κ ≤ α and let
all eµν ,mνi be defined for all µ ≤ ν < κ, i ∈ I. Then we distinguish two cases:

Case I: κ = σ+1 for some hyperordinal σ. By induction hypothesis, (e0σ, (mσi))
is a locally orthogonal Eν -factorization. Take a locally orthogonal E-factorization
(eσκ, (mκi)) of (mσi) and define eµκ := eσκeµσ for µ < σ. Now by straightforward
computations we see that (e0κ, (mκi)) is a locally orthogonal E

κ-factorization of (fi).

Case II: κ is a limit hyperordinal. By (ii), the κ-chain (eµν)µ≤ν<κ admits a colimit
and hence can be extended to an E-admissible (κ + 1)-chain (eµν)µ≤ν≤κ, thus
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e0κ ∈ Eκ. For i ∈ I, the colimit property yields a morphismmκi withmκieµκ = mµi

for all µ < κ, in particular mκie0κ = m0i = fi. Therefore (e0κ, (mκi)) is an Eκ-
factorization of (fi), which can easily been seen to be locally orthogonal.

�

2.3 (1) If f ∈ Eα for some local factorization class E and some α <∞+, then there
may be many non-isomorphic representations of f as a composite of an E-admissible
α-chain. But the proof of 2.2 gives us the possibility to choose a canonical one, at
least up to a unique natural isomorphism. Indeed if we apply the construction
to the morphism (i.e. singleton-indexed source) f , the construction gives as an E-
admissible (α+1)-chain (eµν) and a morphism mα such that (mα, e0α) is a locally
orthogonal Eα-factorization of f which is then canonically isomorphic to (1, f).
Hence mα is invertible, and this gives a canonical representation of f .
(2) Note that 2.2 (ii) is trivially satisfied for α < ω. In particular, we obtain 5.1

of [1] as the special case α = 2 of 2.2.

Lemma 2.4. Let E be a class of morphisms containing all isomorphisms and closed
under composition with them. Then there exists a hyperordinal α with Eβ = Eα

for all hyperordinals β ≥ α.

Proof: Assume the contrary. Then the conglomerate K := {β < ∞+ |
⋃
{Eα |

α < β} 6⊆ Eβ} cannot have an upper bound <∞+. Since ∞+ is a regular cardinal
in U+, K must have cardinality ∞+. Now {Eβ\

⋃
{Eα | α < β} | β ∈ K} is

a conglomeraste of ∞+ pairwise disjoint nonempty classes of morphisms. But this
is impossible, because the category has cardinality ≤ ∞. �

Now we show how to extend local factorization classes to factorization classes:

Theorem 2.5. For a hyperordinal α and a local factorization class E , the following
statements are equivalent:

(i) Eα is a factorization class.

(ii) Eβ = Eα for all hyperordinals β ≥ α, and every E-admissible chain admits
a colimit.

(iii) Eα+1 = Eα, and any E-admissible λ-chain admits a colimit for any limit
hyperordinal λ ≤ α.

Proof: (i)⇒(ii) For β ≥ α, consider a (β+1)-chain (eµν). By transfinite induction

we obtain e0ν ∈ Eα for all ν ≤ β. In particular, we have e0β ∈ Eα, proving Eβ ⊂ Eα

and therefore Eβ = Eα.
Now consider any E-admissible chain (eµν)µ≤ν<λ. If λ is not a limit hyperordinal,

the colimit of this chain trivially exists. For λ a limit hyperordinal, we already know
that Eα = Eβ for β := max{α, λ}, and we conclude the existence of the colimit from
2.2. (ii)⇒(iii) is trivial.
(iii)⇒(i) By 2.2, Eα is a local factorization class, therefore any given source (fi)i

admits a locally orthogonal Eα-factorization (e, (mi)). For a locally orthogonal E-
factorization (p, (ui)) of (mi) we have pe ∈ Eα+1 = Eα, hence pe⊥(e, (mi)). Now it
follows easily that p is invertible and that (e, (mi)) is an orthogonal E

α-factorization,
proving (i). �
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Corollary 2.6. For a local factorization class E , the following statements are equiv-
alent:

(i) There exists a factorization class E ′ with E ⊂ E ′.
(ii) Every E-admissible chain admits a colimit.
(iii) There exists a hyperordinal α such that Eα = Eα+1, and every E-admissible

λ-chain admits a colimit for any limit hyperordinal λ ≤ α.

Proof: (i)⇒(ii) For an E-admissible chain (eµν)ν<λ, it follows by transfinite
induction that e0ν ∈ E ′ for all ν < λ. If λ is a limit hyperordinal, the colimit
of (eµν) can be constructed as a cointersection of all e0ν , ν < λ; otherwise the
existence of the colimit is trivial.
(ii)⇒(iii) The existence of α with Eα = Eα+1 follows from 2.4. The rest is

trivial.
(iii)⇒(i) follows from 2.5 by choosing E ′ := Eα. �

2.7 (1) In a cocomplete category, all colimits of α-chains exist for α < ∞. Hence,
by 2.6, a local factorization class E can be extended to a factorization class, if
Eα+1 = Eα for some α < ∞. But α cannot be chosen uniformly, as the following
example shows: For a hyperordinal α, the category Kα+1 (as in 2.1) admits all
(even large) colimits, particularly all colimits of chains. The class E of all identity
morphisms and all kµµ+1 (for µ < α) turns out to be a local factorization class.

Now kµν ∈ Eβ is always equivalent to ν ≤ µ+ β. In particular, we have k0α ∈ Eα,

but k0α 6∈ Eβ for β < α.

3. Regular and strong epimorphisms.

We want to use the above results to clarify the relationship between regular
and strong epimorphisms. (See [12] for definitions and notice that most results
remain valid if we define regular epimorphisms in the narrower sense of being the
coequalizer of a pair of morphisms.)
If a regular epimorphism p admits a kernel pair (i.e. a pullback of p with itself),

then p is the coequalizer of its kernel pair. If a category has kernel pairs and
coequalizers of kernal pairs, then the regular epimorphisms form a local factorization
class for morphisms. Indeed the decomposition (e,m) of a morphism f can be
constructed by taking e to be the codominion of f , i.e. the coequalizer of the kernel
pair of f (cf. [10]).
Now consider an object A and a family of pairs xi, yi : Bi −→ A of parallel

morphisms, I being an arbitrary class. A morphism p : A −→ C is called a joint
coequalizer of (xi, yi)i if pxi = pyi for all i ∈ I and if for any f : A −→ D with
fxi = fyi for all i ∈ I there exists a unique h : C −→ D with hp = f . In particular,
a morphism is a regular epimorphism if and only if it is a joint coequalizer of some
family of pairs (and then also of the family of all pairs (x, y) with px = py).

Proposition 3.2. For any category A, the following statements are equivalent:

(i) A has coequalizers, and the regular epimorphism form a local factorization
class in A.

(ii) A has coequalizers and cointersections of regular epimorphisms.
(iii) A has all joint coequalizers.
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Proof: (i)⇒(ii) follows immediately from the characterization of local factorization
classes by pushouts and cointersections in 1.1.
(ii)⇒(iii) The joint coequalizer of a family (xi, yi)i∈I can be constructed as the

cointersection of all coequalizers ei of (xi, yi) (i ∈ I).
(iii)⇒(i) A locally orthogonal regularly epic factorization (e, (mi)) of a source

(fi)i∈I can be constructed by taking e as the joint coequalizer of all pairs (x, y)
with fix = fiy for all i ∈ I. �

3.3 (1) Note that in 2.2(ii) we do not require the existence of pushouts of pairs
(e, f) with common domain and e regularly epic. Of course, the existence of such
pushouts also follows from (i) and therefore from (ii). One can construct such
pushouts directly from (iii):

-
e

?

f

?

f ′

-
e′

just take e′ as the joint coequalizer of all pairs (fx, fy) with ex = ey.
(2) In 3.2 (i) and (ii) the existence of coequalizers is crucial. Indeed, let A be

a groupoid, i.e. a category with all morphisms invertible and therefore regularly
epic. Then even all morphisms form a factorization class, and all cointersections
exist in A. However, a pair of distinct parallel morphisms admits no coequalizer;
hence 2.2 (iii) does not hold unless A is equivalent to a discrete category.
(3) Now we try to extend the class of regular epimorphisms to a factorization

class. First note that every regular epimorphism p is familially strong (cf. [18]),
i.e. p⊥(1, (mi)) for any mono-source (mi)i∈I . (Here (mi) is called a monosource, if
x = y holds whenever mix = miy for all i ∈ I.) In a category with coequalizers, we
have some kind of converse: if p⊥(1, (mi)) for every regular epimorphism p, then
(mi) is a mono-source. On the other hand, even in “nice” categories, familially
strong epimorphisms may be far from being regular (cf. [11], [12] and see 3.5 below.)
Every familially strong epimorphism is strong, and every strong epimorphism p is

extremal in the sense that p = me with m monic implies that m is an isomorphism.

Theorem 3.4. In any category with joint coequalizers, the following statements

are equivalent:

(i) There exists a factorization class, which contains all regular epimorphisms.
(ii) The strong epimorphisms form a factorization class.
(iii) Every regular-epi-admissible chain admits a colimit.

If these properties hold, then strong epimorphisms coincide with familially strong

and with extremal epimorphisms.

Proof: (i)=⇒(ii) Let E be a factorization class containing all regular epimor-
phisms, and let p be an extremal epimorphism. Then for an orthogonal E-factori-
zation (e,m) of p we have q⊥(1,m) for all q ∈ E , particularly for q regularly epic.
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But then m is monic and even an isomorphism by extremality of p = me. Therefore
we have p = me ∈ E .
This proves that E contains all extremal epimorphisms, in particular all famil-

ially strong ones. Therefore all pushouts of familially strong epimorphisms along
arbitrary morphisms and all cointersections of familially strong epimorphisms exist.
Moreover, the class of familially strong epimorphisms is stable under pushouts and
cointersections, hence it is a local factorization class. Since it is also closed under
composition, it is even a factorization class.

If we replace our original E by the class of familially strong epimorphisms, the
beginning of the proof shows that every extremal epimorphism is familially strong.
Therefore extremal, strong, and familially strong epimorphisms coincide, and they
form a factorization class.

(ii)⇒(i) is trivial, and (i)⇒(iii) is an immediate consequence of 2.6. �

3.5 (1) From 2.6 and 3.4 we see that, in a category with coequalizers, the strong
epimorphisms coincide with composites of chains of regular epimorphisms, provided
they form a factorization class. In this case, we define the decomposition number
δ(f) of a morphism f as the smallest ordinal α with the property that, for E the
class of regular epimorphisms, the locally orthogonal Eα-factorization of f is or-
thogonal; or, equivalently, coincides with the locally orthogonal Eα+1-factorization;
or, equivalently, the morphism eαα+1 in the proof of 2.2 is an isomorphism. This
is a slight modification of the decomposition number (=Zerlegungszahl) ζ defined
by Gabriel and Ulmer [7] under stronger conditions. Indeed, if δ(f) <∞ is a limit
ordinal, then δ(f) = ζ; if δ(f) is a successor ordinal, then δ(f) = ζ+1; if δ(f) ≥ ∞,
then ζ =∞. Moreover, we define the decomposition number δ(A) of a category A
to be the supremum of all decomposition numbers of A-morphisms, i.e. the smallest
hyperordinal α with Eα+1 = Eα.

(2) Gabriel and Ulmer [7] prove δ(A) < ∞ for any locally presentable category
A; they even give a better estimate in a more general situation. In any cocomplete
category A which is cowellpowered with respect to strong epimorphisms, one easily
sees that δ(f) < ∞ for all f ; hence δ(A) ≤ ∞. Then, of course, all chains of
regular (even of strong) epimorphisms admit colimits. Examples of cowellpowered
categories with δ(A) =∞ are the duals of the category of semigroups and of rings
[7]. In these categories, all Eα are local factorization classes and Eα 6= Eβ for
α 6= β, α, β ≤ ∞. Moreover, even a total category (in the sense of [19]) need not
admit colimits of ∞-chains of regular epimorphisms [3].
(3) The main difference between our definition of decomposition number and the

one given by Gabriel and Ulmer is that we admit hyperordinals rather than just
ordinals and∞. By a modification of an example due to MacDonald and Stone [15],
we shall see that, indeed, every hyperordinal appears as a decomposition number
of a morphism as well as of a category. For α < ∞+, let Cα be the category of
objects (A, (ϕν)ν≤α), where A is a set and each ϕν is a partial unary operation
on A, defined on the set {x ∈ A | ∀µ < ν : ϕµ(x) = x}; in particular, ϕ0 is
everywhere defined. For ν ≤ α, define Aν = (N ∪ {0}, (ϕν

µ)µ≤α) by ϕ
ν
0(n) := n+ 1

for n ≥ 1, ϕν
µ(0) := 0 for µ < ν and ϕν

ν(0) := 1. Now (eµν : Aµ −→ Aν)µ≤ν≤α
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with eνν(n) := n and eµν(n) := 0 for µ < ν is a (regular-epi)-admissible chain;
hence e0α ∈ Eα is a strong epimorphism. But for ν < α we have e0α 6∈ Eν , because
for q ∈ Eν , q : A0 −→ (B, (ψµ)µ≤α), we can conclude that ψν+1 (and hence ψα)
is nowhere defined. Hence, we have δ(Cα) ≥ δ(e0α) = α. Since we can also prove
δ(Cα) ≤ α, we get δ(Cα) = α.
For a morphism f we have δ(f) = 0 if and only if f is monic. A category A

admits joint coequalizers and has δ(A) = 0 if and only if for all A,B ∈ |A| there is
at most one morphism A −→ B.
(4) Finally, we mention some properties of regular epimorphisms. Let A be a cat-

egory, in which regular epimorphisms form a local factorization class for morphisms;
for instance a category with kernel pairs and coequalizers of kernel pairs, or a cate-
gory with joint coequalizers. For all A-morphisms e, e′ for which ee′ is defined, we
can consider the following implications:

(i) e, e′ regularly epic =⇒ ee′ regularly epic,
(ii) e split epic, e′ regularly epic =⇒ ee′ regularly epic,
(iii) ee′ regularly epic =⇒ e regularly epic,
(iv) ee′ regularly epic, e′ epic =⇒ e regularly epic,
(v) e regularly epic, e′ split epic =⇒ ee′ regularly epic.

Obviously (i) implies (ii). If the implication (ii) holds for all e, e′, then (iii) is also
always satisfied by 1.2 (ii); but (iii) does not hold in general, see [12] and [4] for
counterexamples.
On the other hand, (iv) is always true by 1.2 (iii); it can even be proved without

the regular epimorphisms forming a local factorization class for morphisms [12].
One also easily sees that (v) holds in any category [12].
Nothing seems to be known about the implication (iii)⇒(ii). That (ii)⇒(i) does

not hold in general is shown by the following

Example 3.6. Let L be a category of all (X, i, a, b) with X a set, i ∈ {0, 1}, a, b ∈
X ; if i = 0 we also require a 6= b. A morphism f : (X, i, a, b) −→ (Y, j, c, d)
is given by a map f : X −→ Y such that either i = j, f(a) = c, f(b) = d or
i = 0, j = 1, f(a) = f(b) = c. For the constant map s : {0, 1} −→ {0, 1} with
value 0 and the unique map t : {0, 1} −→ {0} we see that the composite

({0, 1}, 0, 0, 1)
s

−→({0, 1}, 1, 0, 1)
t

−→({0}, 1, 0, 0)

is not regularly epic in L, but s and t are; thus L does not satisfy (i). On the other
hand, consider a composite

(X, i, a, b)
e′
−→(Y, j, c, d)

e
−→(Z, k, u, v)

with e′ regularly epic and e split-epic. Since e has a right-inverse l, we have i ≤ j =
k. Moreover, e is surjective, and we have l(u) = c, l(v) = d. In particular, we can
have u = v only if j = k = 1 and c = d, and we see that in this case e′ can only be
regularly epic if i = 1. In all cases we easily conclude that ee′ is regular epic; hence
L satisfies (ii). �
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