Some results on the product of distributions and the change of variable

EMIN ÖZCAG, BRIAN FISHER

Abstract. Let F and G be distributions in \mathcal{D}' and let f be an infinitely differentiable function with f'(x) > 0, (or < 0). It is proved that if the neutrix product $F \circ G$ exists and equals H, then the neutrix product $F(f) \circ G(f)$ exists and equals H(f).

Keywords: distribution, neutrix product, change of variable Classification: 46F10

In the following, we let N be the neutrix, see van der Corput [1], having domain $N' = \{1, 2, ..., n, ...\}$ and range the real numbers, with negligible functions finite linear sums of the functions

$$n^{\lambda} \ln^{r-1} n$$
, $\ln^r n : \lambda > 0$, $r = 1, 2, ...$

and all functions which converge to zero in the normal sense as n tends to infinity.

We will use n or m to denote a general term in N' so that if $\{a_n\}$ is a sequence of real numbers, then $N - \lim_{n \to \infty} a_n$ means exactly the same thing as $N - \lim_{m \to \infty} a_m$.

Note that if $\{a_n\}$ is a sequence of real numbers which converges to a in the normal sense as n tends to infinity, then the sequence $\{a_n\}$ converges to a in the neutrix sense as n tends to infinity and

$$\lim_{n \to \infty} a_n = \underbrace{\operatorname{N-lim}_{n \to \infty} a_n}_{n \to \infty}$$

We now let $\rho(x)$ be a fixed infinitely differentiable function having the following properties:

(i) $\rho(x) = 0 \text{ for } |x| \ge 1,$ (ii) $\rho(x) \ge 0,$ (iii) $\rho(x) = \rho(-x),$ (iv) $\int_{-1}^{1} \rho(x) dx = 1.$

Putting $\delta_n(x) = n\rho(nx)$ for n = 1, 2, ..., it follows that $\{\delta_n(x)\}$ is a regular sequence of infinitely differentiable functions converging to the Dirac delta-function $\delta(x)$.

Now let \mathcal{D} be the space of infinitely differentiable functions with compact support and let \mathcal{D}' be the space of distributions defined on \mathcal{D} . Then, if F is an arbitrary distribution in \mathcal{D}' , we define

$$F_n(x) = (F * \delta_n)(x) = \langle F(t), \delta_n(x-t) \rangle$$

for n = 1, 2, ... It follows that $\{F_n(x)\}$ is a regular sequence of infinitely differentiable functions converging to the distribution F(x).

The following definition for the product of two distributions was given in [2].

Definition 1. Let F and G be distributions in \mathcal{D}' and let $G_n = G * \delta_n$. We say that the neutric product $F \circ G$ of F and G exists and is equal to the distribution H on the interval (a, b) if

(1)
$$N-\lim_{n\to\infty} \langle FG_n, \phi \rangle = \langle H, \phi \rangle$$

for all functions ϕ in \mathcal{D} with support contained in the interval (a, b). If

$$\lim_{n \to \infty} \langle FG_n, \phi \rangle = \langle H, \phi \rangle,$$

we simply say that the product F.G exists and equals H.

Note that if we put $F_m = F * \delta_m$, we have

$$\langle FG_n, \phi \rangle = \underset{m \to \infty}{\mathbf{N} - \lim} \langle F_m G_n, \phi \rangle$$

and so the equation (1) could be replaced by the equation

(2)
$$N-\lim_{n\to\infty} \left[N-\lim_{m\to\infty} \langle F_m G_n, \phi \rangle\right] = \langle H, \phi \rangle$$

The next definition for the change of variable in distributions was given in [3].

Definition 2. Let F be a distribution in \mathcal{D}' and let f be a locally summable function. We say that the distribution F(f(x)) exists and is equal to the distribution H on the interval (a, b) if

$$\underset{n \to \infty}{\operatorname{N-lim}} \int_{-\infty}^{\infty} F_n(f(x))\phi(x) \, dx = \langle H, \phi \rangle$$

for all test functions ϕ in \mathcal{D} with support contained in the interval (a, b), where

$$F_n(x) = (F * \delta_n)(x).$$

The following theorem was proved in [5].

Theorem 1. Let F be a distribution in \mathcal{D}' and let f be an infinitely differentiable function with f'(x) > 0, (or < 0), for all x in the interval (a, b). Then the distribution F(f(x)) exists on the interval (a, b).

Further, if F is the p-th derivative of a locally summable function $F^{(-p)}$ on the interval (f(a), f(b)), (or f(b), f(a)), (g inverse of f), then

(3)
$$\langle F(f(x)), \phi(x) \rangle = (-1)^p \int_{f(a)}^{f(b)} F^{(-p)}(x) [g'(x)\phi(g(x))]^{(p)} dx =$$

(4)
$$= (-1)^p \int_{-\infty}^{\infty} F^{(-p)}(f(x)) f'(x) \left[\frac{1}{f'(x)} \frac{d}{dx}\right]^p \left[\frac{\phi(x)}{f'(x)}\right] dx$$

for all ϕ in \mathcal{D} with support contained in the interval (a, b).

Using the equation (3), it was proved that if f had a single simple zero at the point $x = x_1$ in the interval (a, b), then

(5)
$$\delta^{(s)}(f(x)) = \frac{1}{|f'(x_1)|} \left[\frac{1}{f'(x)} \frac{d}{dx}\right]^s \delta(x - x_1)$$

on the interval (a, b) for s = 0, 1, 2, ..., showing that the Definition 2 is in agreement with the definition of $\delta^{(s)}(f(x))$ given by Gel'fand and Shilov [6].

The problem of defining the product $F(f) \circ G(g)$ was considered in [4]. Putting $F(f) = F_1$ and $G(g) = G_1$, the product $F_1 \circ G_1 = H_1$ is of course defined by the equation

$$\underset{n \to \infty}{\operatorname{N-lim}} \left[\underset{m \to \infty}{\operatorname{N-lim}} \langle F_{1m} G_{1n}, \phi \rangle \right] = \langle H_1, \phi \rangle,$$

for all ϕ in \mathcal{D} , where $F_{1m} = F_1 * \delta_m$ and $G_{1n} = G_1 * \delta_n$.

However, it was pointed out that since the distributions F(f) and G(g) were defined by the sequences $\{F_m\}$ and $\{G_n\}$, the product $F(f) \circ G(g)$ should be defined by these sequences, leading to the following definition.

Definition 3. Let F and G be distributions in \mathcal{D}' , let f and g be locally summable functions and let $F_m = F * \delta_m$ and $G_n = G * \delta_n$. We say that the neutrix product $F(f) \circ G(g)$ of F(f) and G(g) exists and is equal to the distribution H on the interval (a, b) if $F_m(f) G_n(g)$ is a locally summable function on the interval (a, b)and

$$N_{n \to \infty}^{-} \lim_{m \to \infty} \langle F_m(f) G_n(g), \phi \rangle = \langle H_1, \phi \rangle$$

for all ϕ in \mathcal{D} with support contained in the interval (a, b).

The following two examples were given in [4] and show that the neutrix product $F(f) \circ G(g)$ can be equal to, but is not necessarily equal to the neutrix product $F_1 \circ G_1$.

Example 1. Let $F = x_{+}^{1/2}$, $G = \delta'(x)$, $f = x_{+}^{2}$ and $g = x_{+}$. Then

$$F(f) = F_1 = x_+, \quad G(g) = G_1 = \frac{1}{2}\delta'(x)$$

and

$$F(f) \circ G(g) = -\frac{1}{2}\delta(x) = F_1 \circ G_1.$$

Example 2. Let $F = x_{+}^{-1/2}$, $G = \delta(x)$, f = x and $g = x_{+}^{1/2}$. Then

$$F(f) = F_1 = x_+^{-1/2}, \quad G(g) = G_1 = 0$$

and

$$F(f) \circ G(g) = \delta(x) \neq 0 = F_1 \circ G_1.$$

The following theorem was, however, proved in [4].

Theorem 2. Let F and G be distributions in \mathcal{D}' , let f be a locally summable function and let g be an infinitely differentiable function. If the distributions $F(f) = F_1$ and $G(g) = G_1$ exist and the neutrix product $F(f) \circ G(g)$ exists on the interval (a, b), then

$$F(f) \circ G(g) = F_1 \circ G(g)$$

on the interval (a, b). In particular, if g(x) = x, then

$$F(f) \circ G(g) = F_1 \circ G_1$$

on the interval (a, b).

In this theorem, $F_1 \circ G(g)$ was used to denote the distribution defined by

$$\underset{n\to\infty}{\mathrm{N-lim}}\langle F_1G_n,(g),\phi\rangle.$$

We now prove the following theorem.

Theorem 3. Let F and G be distributions in \mathcal{D}' and let f be an infinitely differentiable function with f'(x) > 0, (or < 0), for all x in the interval (a, b). If the neutrix product $F \circ G$ exists and is equal to H on the interval (f(a), f(b)), (or (f(b), f(a))), then

$$F(f) \circ G(f) = H(f)$$

on the interval (a, b).

PROOF: Note first of all that the distributions F(f) and G(f) exist on the interval (f(a), f(b)), (or (f(b), f(a))), by Theorem 1.

We will suppose that f'(x) > 0 and that g is the inverse of f on the interval (a, b). Letting ϕ be an arbitrary function in \mathcal{D} with support contained in the interval (a, b) and making the substitution t = f(x), we have

$$\int_{-\infty}^{\infty} F_m(f(x))G_n(f(x))\phi(x) \, dx = \int_{-\infty}^{\infty} F_m(t)G_n(t)\phi(g(t))g'(t) \, dt =$$
$$= \int_{-\infty}^{\infty} F_m(t)G_n(t)\psi(t) \, dt,$$

where $\psi(t) = \phi(g(t))g'(t)$ is a function in \mathcal{D} with support contained in the interval (f(a), f(b)). It follows that

$$\underset{n \to \infty}{\mathbf{N}-\lim} \left[\underset{m \to \infty}{\mathbf{N}-\lim} \langle F_m(f)G_n(f), \phi \rangle \right] = \langle H, \psi \rangle$$

for all ϕ or ψ .

Further, on making the substitution t = f(x), we have

$$\int_{-\infty}^{\infty} H_n(t)\psi(t) dt = \int_{-\infty}^{\infty} H_n(t)\phi(g(t))g'(t) dt =$$
$$= \int_{-\infty}^{\infty} H_n(f(x))\phi(x) dx$$

and so

$$\underset{n \to \infty}{\operatorname{N-lim}} \langle H_n, \psi \rangle = \langle H(f), \phi \rangle.$$

The result of the theorem follows.

Theorem 4. Let F and G be distributions in \mathcal{D}' and let f be an infinitely differentiable function with f'(x) > 0, (or < 0), for all x in the interval (a,b). If the neutrix products $F \circ G$ and $F \circ G'$, (or $F' \circ G$), exist on the interval (f(a), f(b)), (or (f(b), f(a))), then

$$[F(f) \circ G(f)]' = [F(f)]' \circ G(f) + F(f) \circ [G(f)]'$$

on the interval (a, b).

PROOF: The usual law

$$(F \circ G)' = F' \circ G + F \circ G'$$

for the differentiation of a product holds, see [2], and so the result of the theorem follows immediately from Theorem 3. $\hfill \Box$

Theorem 5. Let f be an infinitely differentiable function with f'(x) > 0, (or < 0), for all x in the interval (a, b) and having a simple zero at the point $x = x_1$ in the interval (a, b). Then the neutrix products $(f(x))^r_+ \circ \delta^{(s)}(f(x))$ and $\delta^{(s)}(f(x)) \circ$ $(f(x))^r_+$ exist and

(6)
$$(f(x))_{+}^{r} \cdot \delta^{(s)}(f(x)) = \delta^{(s)}(f(x)) \cdot (f(x))_{+}^{r} = 0$$

for s = 0, 1, ..., r - 1 and r = 1, 2, ... and

(7)

$$(f(x))_{+}^{r} \circ \delta^{(s)}(f(x)) = \delta^{(s)}(f(x)) \circ (f(x))_{+}^{r} = \frac{(-1)^{r} s!}{2(s-r)!} \frac{1}{|f'(x_{1})|} \left[\frac{1}{f'(x)} \frac{d}{dx}\right]^{s-r} \delta(x-x_{1}),$$

for r = 0, 1, ..., s and s = r, r + 1, r + 2, ... on the interval (a, b).

PROOF: If g is an s times continuously differentiable function at the origin, then the product $g \cdot \delta^{(s)} = \delta^{(s)} \cdot g$ is given by

$$g(x) \cdot \delta^{(s)}(x) = \delta^{(s)}(x) \cdot g(x) = \sum_{i=0}^{s} (-1)^{s+i} {\binom{s}{i}} g^{s-i}(0) \delta^{(i)}(x).$$

It follows that

$$x_{+}^{r} \cdot \delta^{(s)}(x) = \delta^{(s)}(x) \cdot x_{+}^{r} = 0$$

for s = 1, 2, ..., r - 1 and r = 1, 2, ... and the equation (6) follows immediately on using Theorem 3.

It was proved in [2] that

$$x_{+}^{r} \circ \delta^{(s)}(x) = \delta^{(s)}(x) \circ x_{+}^{r} = \frac{(-1)^{r} s !}{2(s-r)!} \delta^{(s-r)}(x),$$

for $r, s = 0, 1, 2, ..., s \ge r$, and it follows on using Theorem 3 that

$$(f(x))_{+}^{r} \circ \delta^{(s)}(f(x)) = \delta^{(s)}(f(x)) \circ (f(x))_{+}^{r} = \frac{(-1)^{r} s!}{2(s-r)!} \delta^{(s-r)}(f(x)),$$

for $r, s = 0, 1, 2, \dots$ The equation (7) follows immediately on using equation (5).

Example 3.

(8)

$$(x + x^{2})_{+}^{r} \circ \delta^{(r)}(x + x^{2}) = \delta^{(r)}(x + x^{2}) \circ (x + x^{2})_{+}^{r} = \frac{1}{2}(-1)^{r}r![\delta(x) + \delta(x + 1)],$$
(9)

$$(x + x^{2})_{+}^{r} \circ \delta^{(r+1)}(x + x^{2}) = \delta^{(r+1)}(x + x^{2}) \circ (x + x^{2})_{+}^{r} = \frac{1}{2}(-1)^{r}(r + 1)![\delta'(x) + 2\delta(x) + \delta'(x + 1) + 2\delta(x + 1)]$$

for $r = 0, 1, 2, \ldots$ on the real line.

PROOF: The function $f(x) = x + x^2$ has simple zeros at the points x = 0, -1. It follows from the equations (5) and (7) that

$$(x+x^{2})_{+}^{r} \circ \delta^{(r)}(x+x^{2}) = \delta^{(r)}(x+x^{2}) \circ (x+x^{2})_{+}^{r} =$$
$$= \frac{1}{2}(-1)^{r}r! \,\delta(x+x^{2}) =$$
$$= \frac{1}{2}(-1)^{r}r! \,[\delta(x) + \delta(x+1)],$$

proving the equation (8) for r = 0, 1, 2, ...It again follows from the equations (5) and (7) that

It again follows from the equations (5) and (7) that

$$(x+x^2)_+^r \circ \delta^{(r+1)}(x+x^2) = \delta^{(r+1)}(x+x^2) \circ (x+x^2)_+^r =$$

$$= \frac{1}{2}(-1)^r(r+1)! \frac{1}{1+2x} \left[\delta'(x) + \delta'(x+1)\right] =$$

$$= \frac{1}{2}(-1)^r(r+1)! \left[\delta'(x) + 2\delta(x) + \delta'(x+1) + 2\delta(x+1)\right],$$
proving the equation (9) for $r = 0, 1, 2, ..., \square$

proving the equation (9) for $r = 0, 1, 2, \ldots$

Theorem 6. Let f be an infinitely differentiable function with f'(x) > 0, (or < 0), for all x in the interval (a, b) and having a simple zero at the point $x = x_1$ in the interval (a, b). Then the neutrix products $(f(x))^{-r} \circ \delta^{(s)}(f(x))$ and $\delta^{(s)}(f(x)) \circ \delta^{(s)}(f(x))$ $(f(x))^{-r}$ exist and

(10)
$$(f(x))^{-r} \circ \delta^{(s)}(f(x)) = \frac{(-1)^r s!}{(r+s)!} \frac{1}{|f'(x_1)|} \left[\frac{1}{f'(x)} \frac{d}{dx}\right]^{r+s} \delta(x-x_1),$$

(11)
$$\delta^{(s)}(f(x)) \circ (f(x))^{-r} = 0,$$

for r = 1, 2, ... and s = 0, 1, 2, ... on the interval (a, b). **PROOF:** It was proved in [2] that

$$x^{-r} \circ \delta^{(s)}(x) = \frac{(-1)^r s!}{(r+s)!} \delta^{(r+s)}(x),$$

$$\delta^{(s)}(x) \circ x^{-r} = 0$$

for $r = 1, 2, \ldots$ and $s = 0, 1, 2, \ldots$ Equations (10) and (11) follow immediately as in the proof of Theorem 6.

Example 4.

(12)
$$(x^2 - 1)^{-1} \circ \delta(x^2 - 1) = -\frac{1}{4} [\delta'(x - 1) + \delta(x - 1) - \delta'(x + 1) + \delta(x + 1)],$$

(13) $\delta^{(s)}(x^2 - 1) \circ (x^2 - 1)^{-r} = 0,$

for r = 1, 2, ... and s = 0, 1, 2, ... on the real line.

PROOF: The function $f(x) = x^2 - 1$ has simple zeros at the points $x = \pm 1$. It follows from the equations (5) and (10) that

$$(x^{2}-1)^{-1} \circ \delta(x^{2}-1) = -\frac{1}{4x} [\delta'(x-1) + \delta'(x+1)] =$$

= $-\frac{1}{4} [\delta'(x-1) + \delta(x-1) - \delta'(x+1) + \delta(x+1)]$

proving equation (12).

The equation (13) follows immediately from the equations (5) and (11) for r = 1, 2, ... and s = 0, 1, 2, ...

Theorem 7. Let f be an infinitely differentiable function with f'(x) > 0, (or < 0), for all x in the interval (a, b) and having a simple zero at the point $x = x_1$ in the interval (a, b). Then the neutrix products $(f(x))^{\lambda}_{+} \circ (f(x))^{-\lambda-r}_{-}$ and $(f(x))^{-\lambda-r}_{-} \circ (f(x))^{\lambda}_{+}$ exist and

(14)

$$(f(x))_{+}^{\lambda} \circ (f(x))_{-}^{-\lambda-r} = (f(x))_{-}^{-\lambda-r} \circ (f(x))_{+}^{\lambda} = -\frac{\pi \operatorname{cosec}(\pi\lambda)}{2(r-1)!} \frac{1}{|f'(x_1)|} \left[\frac{1}{f'(x_1)} \frac{d}{dx}\right]^{r-1} \delta(x-x_1),$$

for $\lambda \neq 0, \pm 1, \pm 2, \dots$ and $r = 1, 2, \dots$ on the interval (a, b)

PROOF: It was proved in [2] that

$$x_{+}^{\lambda} \circ x_{-}^{-\lambda-r} = x_{-}^{-\lambda-r} \circ x_{+}^{\lambda} = -\frac{\pi \operatorname{cosec}(\pi \lambda)}{2(r-1)!} \delta^{(r-1)}(x),$$

for $\lambda \neq 0, \pm 1, \pm 2, \ldots$ and $r = 1, 2, \ldots$ Equation (14) follows immediately as in the proof of Theorem 6.

Example 5. Let f(x) = t be the inverse of the function $g(t) = t + t^3 = x$. Then

(15)
$$(f(x))^{\lambda}_{+} \circ (f(x))^{-\lambda-1}_{-} = (f(x))^{-\lambda-1}_{-} \circ (f(x))^{\lambda}_{+} = -\frac{1}{2}\pi \operatorname{cosec}(\pi\lambda)\delta(x),$$

(16)
$$(f(x))^{\lambda}_{+} \circ (f(x))^{-\lambda-2}_{-} = (f(x))^{-\lambda-2}_{-} \circ (f(x))^{\lambda}_{+} =$$
$$= -\frac{1}{2}\pi\operatorname{cosec}(\pi\lambda)[\delta'(x) + \delta(x)],$$

for $\lambda \neq 0, \pm 1, \pm 2, \ldots$ on the real line.

Proof:

$$g'(t) = 1 + 3t^2 > 0$$

for all t, it follows that f'(x) > 0 for all x and so on using the equation (3) with p = 1, we have for all ϕ in \mathcal{D}

$$\begin{aligned} \langle \delta(f(x)), \phi(x) \rangle &= -\int_{-\infty}^{\infty} H(x) d[(1+3x^2)\phi(x+x^3)] = \\ &= -\int_{-\infty}^{\infty} d[(1+3x^2)\phi(x+x^3)] = \phi(0). \end{aligned}$$

It follows that

(17)
$$\delta(f(x)) = \delta(x).$$

Using the equation (3) again with p = 2, we have for all x in \mathcal{D}

$$\begin{aligned} \langle \delta'(f(x)), \phi(x) \rangle &= \int_0^\infty d[(1+3x^2)\phi(x+x^3)]' = \\ &= -\phi'(0) - \int_0^\infty d[(1+3x^2)\phi(x+x^3)] = \\ &= -\phi'(0) + \phi(0). \end{aligned}$$

It follows that

(18) $\delta'(f(x)) = \delta'(x) + \delta(x).$

It now follows from the equations (15) and (17) that

$$(f(x))^{\lambda}_{+} \circ (f(x))^{-\lambda-1}_{-} = (f(x))^{-\lambda-1}_{-} \circ (f(x))^{\lambda}_{+} =$$
$$= -\frac{1}{2}\pi \operatorname{cosec}(\pi\lambda)\delta(f(x)) =$$
$$= -\frac{1}{2}\pi \operatorname{cosec}(\pi\lambda)\delta(x),$$

proving the equation (15) for $\lambda \neq 0, \pm 1, \pm 2, \ldots$

It again follows from the equations (14) and (18) that

$$(f(x))^{\lambda}_{+} \circ (f(x))^{-\lambda-2}_{-} = (f(x))^{-\lambda-2}_{-} \circ (f(x))^{\lambda}_{+} =$$
$$= -\frac{1}{2}\pi\operatorname{cosec}(\pi\lambda)\delta'(f(x)) =$$
$$= -\frac{1}{2}\pi\operatorname{cosec}(\pi\lambda)[\delta'(x) + \delta(x)],$$

proving the equation (16) for $\lambda \neq 0, \pm 1, \pm 2, \ldots$

References

- van der Corput J.G., Introduction to the neutrix calculus, J. Analyse Math. 7 (1959–60), 291–398.
- [2] Fisher B., A non-commutative neutrix product of distributions, Math. Nachr. 108 (1982), 117–127.
- [3] _____, On defining the distribution $\delta^{(r)}(f(x))$ for summable f, Publ. Math. Debrecen **32** (1985), 233–241.
- [4] _____, On the product of distributions and the change of variable, Publ. Math. Debrecen 35 (1988), 37–42.
- [5] Fisher B., Özcağ E., A result on distributions and the change of variable, submitted for publication.
- [6] Gel'fand I.M., Shilov G.E., Generalized Functions, vol. I., Academic Press, 1964.

DEPARTMENT OF MATHEMATICS, THE UNIVERSITY, LEICESTER, LE1 7RH, GREAT BRITAIN

(Received April 22, 1991)