Convergence of approximating fixed points sets for multivalued nonexpansive mappings

PAOLAMARIA PIETRAMALA

Abstract. Let K be a closed convex subset of a Hilbert space H and $T:K \multimap K$ a non-expansive multivalued map with a unique fixed point z such that $\{z\} = T(z)$. It is shown that we can construct a sequence of approximating fixed points sets converging in the sense of Mosco to z.

Keywords: multivalued nonexpansive map, fixed points set, Mosco convergence

Classification: 47H09, 47H10

Let H be a Hilbert space, K a closed convex subset of H, T a multivalued nonexpansive map from K in the family of non empty compact subsets of K. It is our object in this paper to show that in a specific case it is possible to construct a sequence of approximant sets converging in the sense of Mosco to a fixed point of T.

Our investigation is prompted by the papers of Browder [1], Reich [2], Singh and Watson [3], in which analogous problems are treated for singlevalued mappings. In particular, in [1] it is shown that: if K is a closed convex bounded subset of a Hilbert space and $T: K \to K$ is a nonexpansive map, then, for any $x_0 \in K$, the sequence $\{x_\lambda\}_{0 \le \lambda < 1}$ of the fixed points of the contraction maps T_{λ,x_0} defined by $T_{\lambda,x_0}(x) = \lambda T(x) + (1-\lambda)x_0$ converges, as x approaches 1, strongly in K to the fixed point of T in K closest to x_0 . The paper [3] extends this result to the case of not self-mappings (but $T(\partial K) \subseteq K$) and K not necessarily bounded (but T(K) bounded).

The following example of multivalued self-map defined on a closed convex bounded subset of a finite-dimensional Hilbert space shows that the recalled results cannot be extended to genuine multivalued case.

Let $H = \mathbb{R}^2$, $K = [0,1] \times [0,1]$ and T the nonexpansive map defined by:

 $T(a,b) = \text{triangle whose vertices are } (0,0), (a,0), (0,b), \ \forall (a,b) \in K.$

Thus, for $(x_0, y_0) \in K$ the point $((1 - \lambda)x_0, (1 - \lambda)y_0)$ is a fixed point of the map $T_{\lambda,(x_0,y_0)}$ for all $\lambda \in [0,1)$ and we have $((1 - \lambda)x_0, (1 - \lambda)y_0) \to (0,0)$ as λ approaches 1. If $x_0 > y_0$ $(x_0 < y_0)$, then the fixed point of T closest to (x_0, y_0) is $(x_0,0)$ $((0,y_0))$, but the net of the fixed points sets of $T_{\lambda,(x_0,y_0)}$ does not converge to $(x_0,0)$ $((0,y_0))$ even in the weaker convergence of sets, that is, the Kuratowski convergence.

698 P. Pietramala

In the setting of Hilbert spaces, our result is formulated for nonexpansive maps T that have a unique fixed point z and this point satisfies $\{z\} = T(z)$. The precise generality of the class of functions satisfying this condition is not known but it has been studied, for example, in [4], [5], [6]. More recently the interest in optimization theory for such type of maps has prompted a corresponding interest in fixed point theory, since in [7] it has been shown that the maximization of a multivalued map T with respect to a cone, which subsumes ordinary and Pareto optimization, is equivalent to a fixed point problem of determining y such that $\{y\} = T(y)$.

Now we introduce some necessary notations and definitions. Let K be a closed convex subset of a Hilbert space H. We denote by $\mathcal{CB}(H)$ the family of non empty closed bounded subsets of H and by $\mathcal{K}(K)$ the family of non empty compact subsets of K.

For $A \in \mathcal{CB}(H)$ we define

$$d(x, A) = \inf\{\|x - y\| : y \in A\}.$$

For any $A, B \in \mathcal{CB}(H)$ we note with D(A, B) the Hausdorff distance induced by the norm of H, i.e.

$$D(A,B) = \max\{\sup_{a \in A} d(a,B), \sup_{b \in B} d(b,A)\}.$$

Remark. If $B = \{b\}$ and $A \in \mathcal{CB}(H)$, we have that for all $a \in A$

$$||a - b|| \le D(A, B).$$

We denote by \rightarrow and \rightarrow the strong and weak convergence, respectively.

Let $\{A_n\}$ be a sequence of closed subsets of H. We define the inner limit $(\liminf A_n)$ by

$$\liminf A_n = \{x \in H : \exists \text{ a sequence } \{x_n\}, \ x_n \in A_n \text{ such that } x_n \to x\}$$

and the weak-outer limit $(w - \limsup A_n)$ by

$$w-\limsup A_n=\{x\in H:\exists \text{ a subsequence }\{A_{n_k}\} \text{ of }\{A_n\} \text{ and } a \text{ sequence }\{x_{n_k}\},\ x_{n_k}\in A_{n_k} \text{ such that } x_{n_k}\rightharpoonup x\}.$$

We will say that $\{A_n\}$ converges to A in the sense of Mosco $(A_n \xrightarrow{(M)} A)$ if $\liminf A_n = w - \limsup A_n = A$.

A net $\{A_{\lambda}\}_{{\lambda}\in[0,1)}$ of closed subsets of H converges to A in the sense defined before if every sequence $\{A_{\lambda_n}\}$, $\lambda_n\to 1$ as $n\to\infty$, converges in such sense to A.

A multivalued map $T: K \to \mathcal{K}(K)$ is said to be lipschitzian if

$$D(T(x), T(y)) \le L||x - y||$$

for every $x, y \in K$, $L \leq 0$. T is said to be a contraction if L < 1 and nonexpansive if L = 1. A map $T : K \to \mathcal{K}(K)$ is said to be demiclosed if $x_n \rightharpoonup x$, $y_n \to y$ and $y_n \in T(x_n)$ imply $y \in T(x)$.

Let $T: K \to \mathcal{K}(K)$ be a nonexpansive map. For $x_0 \in K$ and $\lambda \in [0,1)$ we denote by T_{λ,x_0} the contraction map defined by

$$T_{\lambda,x_0}(x) = \lambda T(x) + (1-\lambda)x_0, \ \forall x \in K.$$

Finally, we denote by

$$F(T) = \{x \in K : x \in T(X)\}$$

and

$$F(T_{\lambda,x_0}) = \{x \in K; x \in T_{\lambda,x_0}(x)\}$$

the sets of fixed points of T and T_{λ,x_0} , respectively.

Theorem 1. Let K be a closed convex subset of a Hilbert space $H, T : K \to \mathcal{K}(K)$ a nonexpansive map such that $F(T) = \{z\}$, and let this point z satisfy $T(z) = \{z\}$. Then, for every $x_0 \in K$,

$$F(T_{\lambda,x_0}) \xrightarrow{(M)} F(T)$$
 as $\lambda \to 1$.

PROOF: We have to prove that $F(T_{\lambda_n,x_0}) \xrightarrow{(M)} \{z\}$ as $n \to \infty$ for every sequence $\lambda_n \to 1, \ 0 \le \lambda_n < 1$.

Since we have always $\liminf \subseteq w - \limsup$, it remains to prove that $w - \limsup F(T_{\lambda_n,x_0}) \subseteq \{z\}$ and $\{z\} \subseteq \liminf F(T_{\lambda_n,x_0})$.

Step 1. $w - \limsup F(T_{\lambda_n, x_0}) \subset \{z\}.$

Let $x \in w - \limsup F(T_{\lambda_n, x_0})$, then there exist a subsequence $\{\lambda_{n_j}\}$ of $\{\lambda_n\}$ and a sequence $\{y_{\lambda_{n_j}}\}$, $y_{\lambda_{n_j}} \in F(T_{\lambda_{n_j}, x_0})$ such that $y_{\lambda_{n_j}} \rightharpoonup x$.

Since $y_{\lambda_{n_i}} \in F(T_{\lambda_{n_i},x_0})$, there exists $w_{\lambda_{n_i}} \in T_{\lambda_{n_i},x_0}(y_{\lambda_{n_i}})$ such that

$$y_{\lambda_{n_j}} = \lambda_{n_j} w_{\lambda_{n_j}} + (1 - \lambda_{n_j}) x_0.$$

Thus

$$\|y_{\lambda_{n_j}} - w_{\lambda_{n_j}}\| = (1 - \lambda_{n_j}) \|w_{\lambda_{n_j}} 0x_0\| \to 0 \text{ as } \lambda_{n_j} \to 1$$

because $\{w_{\lambda_{n_j}}\}$ is bounded. From the demiclosedness of I-T [8] it follows that $0 \in (I-T)(x)$, hence x=z.

700 P. Pietramala

Step 2. $\{z\} \subseteq \liminf F(T_{\lambda_n,x_0}).$

Let $x_{\lambda_n} \in F(T_{\lambda_n,x_0})$. We prove that $x_{\lambda_n} \to z$. On the contrary, suppose that there exists $\varepsilon_0 > 0$ and a subsequence $\{\lambda_{n_j}\}$ of $\{\lambda_n\}$ such that

$$||x_{\lambda_{n_i}} - z|| \ge \varepsilon_0.$$

From $x_{\lambda_{n_i}} = \lambda_{n_j} w_{\lambda_{n_i}} + (1 - \lambda_{n_j}) x_0, w_{\lambda_{n_i}} \in T(x_{\lambda_{n_i}})$ it follows that

$$\left\| \frac{x_{\lambda_{n_j}} - (1 - \lambda_{n_j})x_0}{\lambda_{n_j}} - z \right\| = \left\| w_{\lambda_{n_j}} - z \right\|.$$

Furthermore, from the previous Remark, we have

$$||w_{\lambda_{n_j}} - z|| \le D(T(x_{\lambda_{n_j}}), T(z))$$

and the nonexpansivity of T yields

$$||w_{\lambda_{n_i}} - z|| \le ||x_{\lambda_{n_i}} - z||.$$

Hence

$$\left\| \frac{x_{\lambda_{n_j}} - x_0}{\lambda_{n_i}} - (z - x_0) \right\|^2 \le \left\| (x_{\lambda_{n_j}} - x_0) + (x_0 - x) \right\|^2,$$

which implies

(2)
$$||x_{\lambda_{n_{j}}} - x_{0}||^{2} \leq 2 \frac{\lambda_{n_{j}}}{1 + \lambda_{n_{j}}} \langle x_{\lambda_{n_{j}}} - x_{0}, z - x_{0} \rangle$$
$$\leq \langle x_{\lambda_{n_{j}}} - x_{0}, z - x_{0} \rangle$$
$$\leq ||x_{\lambda_{n_{j}}} - x_{0}|| ||z - x_{0}||.$$

If it were $x_{\lambda_{n_i}} = x_0$ for a certain j, we should have

$$x_0 = \lambda_{n_j}, w_{\lambda_{n_j}} + x_0 - \lambda_{n_j} x_0$$
$$= w_{\lambda_{n_j}} \in T(x_{\lambda_{n_j}})$$
$$= T(x_0).$$

Then $x_0 = z$, contradicting (1).

Thus, from (2) it follows

$$||x_{\lambda_{n_i}} - x_0|| \le ||z - x_0||,$$

which implies that the subsequence $\{x_{\lambda_{n_j}}\}$ is bounded. Hence there exists a subsequence $\{x_{\lambda_{n_{j_k}}}\}$ of $\{x_{\lambda_{n_j}}\}$ such that $x_{\lambda_{n_{j_k}}} \rightharpoonup x$. Proceeding as in the proof of Step 1, we obtain x=z. At this point, the well known relation

$$||z - x_0|| \le \liminf ||x_{\lambda_{n_{i_t}}} - x_0||$$

and (see (2))

$$\limsup \|x_{\lambda_{n_{j_{t}}}} - x_{0}\| \le \|z - x_{0}\|$$

imply

$$||x_{\lambda_{n_{j_{1}}}} - x_{0}|| \to ||z - x_{0}||.$$

Hence, we have $x_{\lambda_{n_{j_{k}}}} \to z$, contradicting (1).

Remark. In the following example, our theorem works.

Let H = R, $K = [0, \infty)$, $T : K \to \mathcal{K}(K)$ be the nonexpansive map defined by $T(x) = [0, \frac{x}{2}]$. Thus $F(T) = \{0\}$, $\{0\} = T(0)$ and the net of fixed point sets of $T_{\lambda,x_0}, F(T_{\lambda,x_0}) = [(1-\lambda)x_0, 2(1-\lambda)x_0]$, converges to F(T) in the sense of Mosco.

References

- Browder F.E., Convergence of approximants to fixed points of nonexpansive nonlinear mappings in Banach spaces, Arch. Rational. Mech. Anal. 24 (1967), 82–90.
- Reich S., Strong convergence theorems for resolvents of accretive operators in Banach spaces,
 J. Math. Anal. Appl. 75 (1980), 287–292.
- [3] Singh S.P., Watson B., On approximating fixed points, Proc. Symp. Pure Math. 45 (part 2) (1986), 393-395.
- [4] Reich S., Fixed points of contractive functions, Boll. UMI 5 (1972), 26-42.
- [5] Ćirić L.B., Fixed points for generalized multivalued contractions, Mat. Vesnik, N. Ser. 9 (24) (1972), 265–272.
- [6] Iséki K., Multivalued contraction mappings in complete metric spaces, Math. Sem. Notes 2 (1974), 45–49.
- [7] Corley H.W., Some hybrid fixed point theorems related to optimization, J. Math. Anal. Appl. 120 (1986), 528–532.
- [8] LamiDozo E., Multivalued nonexpansive mappings and Opial's condition, Proc. Amer. Math. Soc. 38 (1973), 286–292.

Universitá della Calabria, Dipartimento di Matematica, Arcavacata di Rende, Cosenza, Italy

(Received November 5, 1990)