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On the behaviour of solutions to the nonlinear elliptic

Neumann problem in unbounded domains

L.Tarba, J.Stará

Abstract. The asymptotic behaviour is studied for minima of regular variational problems
with Neumann boundary conditions on noncompact part of boundary.
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Let F be a Caratheodory function such that

(1) C1|ξm|p − g(x) ≦ F (x, ξ0, . . . , ξm) ≦ C2|ξm|p + f(x),

where p > 1, C1, C2 are positive constants, x = (x1, . . . , xn) ∈ G ⊂ Rn, ξi ∈ RNi ,

Ni = Cn−1n+i−1, 0 ≦ i ≦ m; g(x) ≧ 0, f(x) ≧ 0 are given functions, G is an
arbitrary domain that may be unbounded and on which some natural conditions
will be imposed below. We shall denote C∞

0 (G,Γ) the space of functions vanishing
in a neigbourhood of Γ and having a finite norm

‖f‖ =

(
∫

G

∑

|α|=m

|Dαf(x)|p dx

)
1
p

,

where Γ is a part of the boundary ∂G of the domain G with (n−1) dimensional finite
and positive measure. Then W

p,m
0 (G,Γ) is a completion of C∞

0 (G,Γ) according to
the above mentioned norm.
Let ψ be a given function having the generalized derivatives Dαψ ∈ Lp(G) for

all α with |α| = m. We denote by Mψ(G,Γ) the set of all functions v having the
generalized derivatives Dαv ∈ Lp(G) for all α with |α| = m, such that v − ψ ∈
W
p,m
0 (G,Γ).
The function u ∈ Mψ(G,Γ) is said to be a solution of the variational problem

for a functional

(2) Φ(v,G) =

∫

G
F (x, v(x), Dv(x), . . . , Dmv(x)) dx

satisfying the Dirichlet data on Γ and Neumann zero conditions on Γ̃ = ∂G \ Γ̄ if

Φ(u,G) = min{Φ(v,G); v ∈ Mψ(G,Γ)}.
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The aim of this paper is to get estimates of the rate of decrease in the infinity
for solutions of the variational problem satisfying Neumann zero conditions on the
non-compact part of the boundary. The analogous questions for solutions of higher
order elliptic equations satisfying the Dirichlet zero conditions on the lateral sur-
face of a cylinder and having the bounded Dirichlet integral was first investigated
by P.D. Lax ([1]). Recently, these problems and in particular the asymptotics of
solutions have been exploited in a significant number of articles (i.e. [2], [3], [4],
[5], [6]). We would like to remark that the problem being considered is not covered
by the above mentioned papers that prevalently study the Dirichlet boundary value
problem or use much stronger conditions on the functional. Moreover, as there are
no requirements as to the smoothness of F , in general the Euler equation does not
exist for the functional Φ(u,G).
If Γ is sufficiently smooth part of ∂G then for any function ψ having the gen-

eralized derivatives Dαψ ∈ Lp(G) for all α with |α| = m there are the traces

Dβψ

∣

∣

∣

∣

Γ
∈ Lp(Γ) for β such that |β| ≤ m−1. Then the condition v−ψ ∈W

p,m
0 (G,Γ)

means that the traces of v and ψ on Γ coincide.
Let H = {Qn−1×]−∞;∞[}, where Qn−1 is an (n− 1) dimensional ball and Qr

is an n-dimensional ball with radius r.

We shall denote by u

∣

∣

∣

∣

GT

restriction of the function u on the domain GT =

G ∩ {xn > T }, as well as ΓT = G ∩ {xn = T }.
Now we introduce a definition of the type of domains we shall deal with in the

theorem.

Definition. Let Ω be a domain in Rn,Ω1 its convex subdomain. We call Ω star-
shaped with respect to Ω1 if for every point s ∈ Ω all intervals connecting point s
with any point t ∈ Ω1 are contained in Ω.

Theorem. Let a domain G ⊂ H have the following structure: there are such

numbers T0 and positive r, a that

(i) ∂GT0 ∩ Γ = ∅,
(ii) for every number A ≧ T0 a domain G∩{A− a < xn < A+ a} is starshaped
with respect to the ball Qr contained in G ∩ {A − a

4 < xn < A + a
4}. Let

functions f , g from (1) decrease exponentially at infinity, i.e. f · exp(ηq xn) ∈

Lq(G), g · exp(η1q1 xn) ∈ Lq1(G) with q, q1 > 1 and η, η1 positive. Let

Mψ(G,Γ) 6= ∅ and u be a solution of the variational problem (2). Then
there is a number κ > 0 such that

∫

G
eκ·xn

∑

|α|=m

|Dαu|p dx <∞.

Before starting the proof of the theorem we need the following

Lemma. Let the domain G and the function u be the same as in the theorem.
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Then for every number T such that T ≧ T0 we have

Φ(u,GT ) = min{Φ(v,GT ); v ∈ M
u
∣

∣

GT

(GT ,ΓT )}.

Proof: Let there exist a function û different from u such that û ∈ M
u
∣

∣

GT

(GT ,ΓT )

and Φ(û, GT ) = min{Φ(v,GT ); v ∈ M
u
∣

∣

GT

(GT ,ΓT )} < Φ(u,GT ). Denote now

ũ =

{

û− u, for x ∈ GT

0, for x ∈ G \GT

and consider a new function w = u+ ũ. It follows from the definition of generalized
derivatives that there exist Dαw ∈ Lp(G) for all α, |α| = m. In addition, w ∈
MΨ(G,Γ). Let us evaluate

Φ(w,G) =

∫

G∩{xn<T}
F (x, u(x), Du(x), . . . , Dmu(x)) dx

+

∫

GT

F (x, û(x), Dû(x), . . . , Dmû(x)) dx

=

∫

G∩{xn<T}
F (x, u(x), Du(x), . . . , Dmu(x)) dx +Φ(û, GT )

<

∫

G∩{xn<T}
F (x, u(x), Du(x), . . . , Dmu(x)) dx +Φ(u,GT ) < Φ(u,G).

The last inequality gives the contradiction. �

Proof of the theorem: Let us introduce the domains

Ωi = G ∩ {A+ (2i− 3)a < xn < A+ (2i− 1)a}, i ≧ 1.

Taking into account the structure of the domain G it can be shown that in every
domain Ωi there exist balls Q

i
r of fixed radius r such that

Qir ⊂ G ∩ {A+ (2i−
9

4
)a < xn < A+ (2i−

7

4
)a}

and the domains Ωi are starshaped with respect to Q
i
r.

Let us consider a function

zi(x) = u(x)− ūi −
n

∑

i1=1

aii1xi1 − · · · −
n

∑

i1,...,im−1=1

aii1...im−1
xi1 . . . xim−1

where the numbers ūi, a
i
i1
, . . . , aii1...im−1

are chosen so that all the derivatives Dαzi
with |α| < m are orthogonal to constants in a domain Ωi.
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Let σi(xn) ∈ C∞(R), σi ≤ 1,

σi(xn) =

{

1, for xn ≧ A+ (2i− 1)a,

0, for xn ≤ A+ (2i− 3)a.

Denote for the simplicity u
∣

∣

GA+(2i−3)a
= ψi. Taking into account the Lemma, we

can easily conclude that for every i ≧ 1

(3) Φ(u,GA+(2i−3)a) =

= min{Φ(v,GA+(2i−3)a); v ∈ MΨi
(GA+(2i−3)a,ΓA+(2i−3)a)}.

Let us consider a function u − σizi in a domain GA+(2i−3)a. It is clear that

u−σizi ∈ MΨi
(GA+(2i−3)a,ΓA+(2i−3)a). By using the assumption of the theorem

and the inequality (1) and (3) we obtain

(4)

∫

GA+(2i−3)a

∑

|α|=m

∣

∣Dαu(x)
∣

∣

p
dx

≤C

∫

GA+(2i−3)a

g(x) dx +Φ(u,GA+(2i−3)a)

≤C

∫

GA+(2i−3)a

g(x) dx +Φ(u− σizi, GA+(2i−3)a)

≤C

[

e
− η

q
[A+(2i−3)a]

+ e
−

η1
q1
[A+(2i−3)a]

+

∫

GA+(2i−3)a

∑

|α|=m

∣

∣Dα(u− σizi)
∣

∣

p
dx

]

,

where the constant C depends on C1, C2, H,A, a,m, n, η, η1, q, q1, f and g but does
not depend on i.
Taking into account the choice of σi, zi we get the following estimate for the last

integral in (4)

∫

GA+(2i−3)a

∑

|α|=m

∣

∣Dα(u − σizi)
∣

∣

p
dx =

∫

Ωi

∑

|α|=m

∣

∣Dα(u− σizi)
∣

∣

p
dx

≤C

[
∫

Ωi

∑

|α|=m

∣

∣Dαu
∣

∣

p
dx+

∫

Ωi

∑

|s1|+|s2|=m,|s2|≤m−1

∣

∣Ds1σiD
s2zi

∣

∣

p
dx

]

≤C

[
∫

Ωi

∑

|α|=m

∣

∣Dαu
∣

∣

p
dx+

∫

Ωi

∑

|s2|≤m−1

∣

∣Ds2zi
∣

∣

p
dx

]

,

where the constant C does not depend on i. (We shall denote by C different
constants specifying, if necessary, what they depend on. Generally, they do not
depend on i.)
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Applying the Steklov inequality ([7]) for domains Ωi starshaped with respect to
Qir and taking into account the orthogonality of functions zi to constants, we obtain
for all i and s2 such that |s2| ≤ m− 1

(5)

∫

Ωi

∣

∣Ds2zi
∣

∣

p
dx ≤ C

[

|

∫

Ωi

Ds2zi dx|+ (

∫

Ωi

∑

|s3|=|s2|+1

∣

∣Ds3zi
∣

∣

p
dx)

1
p

]p

.

Since the first integral on the right hand side of this inequality is equal to zero for
all s2 such that |s2| ≤ m− 1 then

∫

Ωi

∣

∣Ds2zi
∣

∣

p
dx ≤ C

∫

Ωi

∑

|s3|=|s2|+1

∣

∣Ds3zi
∣

∣

p
dx.

If |s3| < m we apply the Steklov inequality once more. Finally we get

(6)

∫

Ωi

∣

∣Ds2zi
∣

∣

p
dx ≤ C

∫

Ωi

∑

|α|=m

∣

∣Dαu
∣

∣

p
dx

for every s2 such that |s2| ≤ m− 1. Note that in the inequality (6) the constant C
depends on meas Qir, meas Ωi,m, p but does not depend on i. Because of (5) and (6)
we have from (4)

∫

GA+(2i−3)a

∑

|α|=m

∣

∣Dαu
∣

∣

p
dx ≤

≤ C

[

e
− η

q
[A+(2i−3)a]

+ e
−

η1
q1
[A+(2i−3)a]

+

∫

Ωi

∑

|α|=m

∣

∣Dαu
∣

∣

p
dx

]

.

It follows from the last inequality

(7)

∫

Ωi

∑

|α|=m

∣

∣Dαu
∣

∣

p
dx ≧

≧
1

C

∫

GA+(2i−3)a

∑

|α|=m

∣

∣Dαu
∣

∣

p
dx−

(

e
− η

q
[A+(2i−3)a]

+ e
−

η1
q1
[A+(2i−3)a])

.

By using (7) we can estimate

∫

GA+(2i−1)a

∑

|α|=m

∣

∣Dαu
∣

∣

p
dx =

∫

GA+(2i−3)a

∑

|α|=m

∣

∣Dαu
∣

∣

p
dx−

∫

Ωi

∑

|α|=m

∣

∣Dαu
∣

∣

p
dx

≤ (1−
1

C
)

∫

GA+(2i−3)a

∑

|α|=m

∣

∣Dαu
∣

∣

p
dx + e

− η
q
[A+(2i−3)a]

+ e
−

η1
q1
[A+(2i−3)a]

≤ e−κ1
∫

GA+(2i−3)a

∑

|α|=m

∣

∣Dαu
∣

∣

p
dx+ e

− η
q
[A+(2i−3)a]

+ e
−

η1
q1
[A+(2i−3)a]

,
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where e−κ1 = 1− 1
C and does not depend on i.

Let κ2 = min{
η
q ,
η1
q1
, κ1}.It follows from the last inequality that

(8)

∫

GA+(2i−1)a

∑

|α|=m

∣

∣Dαu
∣

∣

p
dx ≤

≤ e−κ2
∫

GA+(2i−3)a

∑

|α|=m

∣

∣Dαu
∣

∣

p
dx+ 2e−κ2[A+(2i−3)a].

Let us denote A− a = T , thus (8) can be rewritten as follows

(9)

∫

GT+2ia

∑

|α|=m

∣

∣Dαu
∣

∣

p
dx ≤

≤ e−κ2
∫

GT+(2i−2)a

∑

|α|=m

∣

∣Dαu
∣

∣

p
dx+ 2e−κ2[T+2(i−1)a].

By induction we can get from (9) the inequalities
(10)

∫

GT+2ia

∑

|α|=m

∣

∣Dαu
∣

∣

p
dx ≤















































e−iκ2
∫

GT

∑

|α|=m

∣

∣Dαu
∣

∣

p
dx+ 2ie−κ2[T+2(i−1)a],

if 2a < 1,

e−iκ2
∫

GT

∑

|α|=m

∣

∣Dαu
∣

∣

p
dx+ 2ie−κ2[T+i−1],

if 2a ≧ 1.

Let 2a < 1. Then by using (10) we can get the estimate

∫

GT

eκxn
∑

|α|=m

∣

∣Dαu
∣

∣

p
dx

=

∫

Ω1

eκxn
∑

|α|=m

∣

∣Dαu
∣

∣

p
dx+

∫

Ω2

eκxn
∑

|α|=m

∣

∣Dαu
∣

∣

p
dx + . . .

+

∫

Ωi

eκxn
∑

|α|=m

∣

∣Dαu
∣

∣

p
dx+ . . .

≤ eκ(T+2a)
∫

GT

∑

|α|=m

∣

∣Dαu
∣

∣

p
dx

+ eκ(T+4a)
[

e−κ2
∫

GT

∑

|α|=m

∣

∣Dαu
∣

∣

p
dx+ 2e−κ2T

]

+ . . .
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+ eκ(T+2ia)
[

e−(i−1)κ2
∫

GT

∑

|α|=m

∣

∣Dαu
∣

∣

p
dx+ 2(i− 1)e−κ2[T+2(i−2)a]

]

+ . . .

= eκ(T+2a)
∫

GT

∑

|α|=m

∣

∣Dαu
∣

∣

p
dx ·

∞
∑

i=1

e(2aκ−κ2)(i−1)

+ 2e(κ−κ2)T+4aκ2
∞
∑

i=2

(i− 1)e2ai(κ−κ2) <∞,

if κ < κ2. By the same way we get the result for 2a ≧ 1 and κ < κ2
2a . �
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Czechoslovakia

(Received September 9, 1991)


