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QTAG torsionfree modules

Ladislav Bican, Blas Torrecillas

Abstract. The structure theory of abelian p-groups does not depend on the properties of
the ring of integers, in general. The substantial portion of this theory is based on the fact
that a finitely generated p-group is a direct sum of cyclics. Given a hereditary torsion
theory on the category R-Mod of unitary left R-modules we can investigate torsionfree
modules having the corresponding property for all torsionfree factor-modules (and a natural
requirement concerning extensions of some homomorphisms). This paper continues in our
previous investigations of the structural properties of such modules.

Keywords: torsion theory, torsionfree module, σ-QTAG-module, kernel of purity, center of
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Classification: 16S90, 16D70

Introduction.

In the study of the structure of abelian p-groups the decomposability theorems
play a very important role. This theory has been extended to modules over dif-
ferent types of rings (not necessarily commutative), see for example [S1], [S2], [B1]
and [B2]. Singh observed in [S1] that a large number of results on decomposability
does not depend upon the nature of the ring involved, but of the properties of the
module. Following this idea, many authors have been interested in the class of
modules (TAG-modules) where results on decomposibility can be obtained.
In [T1], [T2], [T3], [BT1] and [BT2] similar properties are assumed for a torsion-

free module and some results about decomposability are extended to this class of
modules. Recently Singh [S3] weakened the condition on the modules in the class
(he called them QTAG-modules) and he also showed that many results can be ex-
tended to these modules (cf. [S3]). The aim of this paper is to study the class of
torsionfree modules with similar properties, then we extend our preceding results
to this new class. We also investigated the kernels and centers of the modules in
this class. Both concepts are established using the h-purity or the more general
α-purity and they are modelled after the usual notions in primary abelian groups.
We will establish our results in the general setting of an arbitrary hereditary

torsion theory σ. The paper is organized as follows. After fixing notation in first
section, we will establish the properties on σ-QTAG-modules that will be used
throughout the paper. In Section 2 we extend the results about decomposability
of [BT1]. The third section is dedicated to the study of the h-kernels of purity.
We obtain some properties of these submodules of a σ-QTAG-module. In the last
section we study the centers of α-purity, α any ordinal, and we give some charac-
terizations of such submodules.
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1. General properties.

All the rings will be unitary and the modules will be left unitary modules. We
denote by R-Mod the category of left R-modules. Let σ be a hereditary torsion
theory on R-Mod and Lσ the Gabriel filter associated to σ. Tσ (resp. Fσ) will
denote the torsion (resp. torsionfree) class. See [AN], [BN], [G] and [S] for basic
results on torsion theories.
Let M be an R-module and N be a submodule of M . The submodule

ClMσ (N) = {x ∈M | (N : x) ∈ Lσ}

of M is called the σ-closure of N in M . It is clear that tσ(M/N) = ClMσ (N)/N ,
where tσ is the radical functor associated to σ. Since we use always the same torsion
theory σ, the subscript σ will be usually omitted. We say that N is σ-closed (resp.

σ-dense) in M if ClM (N) = N (resp. M).
A left R-module M is called σ-finitely generated (resp. σ-cyclic) if there exists

a finitely generated (resp. cyclic) submodule of M that is σ-dense in M .
A nonzero left R-module M is said to be σ-cocritical if and only if M is σ-

torsionfree and for any nonzero submodule N of M , M/N is σ-torsion. Let M
be a σ-torsionfree left module. We say that M has a σ-composition series if there
exists a chain of submodules

0 =M0 ⊂M1 ⊂ . . . ⊂Mn =M

having the property that Mi+1/Mi is a σ-cocritical module for 0 ≤ i ≤ n − 1. If
such σ-composition series exists, we shall say that M has finite σ-length and write
ℓ(M) = n.
We recall the following definitions from [T1]. A σ-torsionfree module M is called

σ-uniserial if it has exactly one σ-composition series. An element x ∈ M is called
σ-uniserial (resp. uniform) if the cyclic module Rx is σ-uniserial (resp. uniform).
A left R- moduleM is called a σ-strongly uniserial module if it is σ-uniserial and for
any Rx, Ry ⊆M such that ClMσ (Rx) ⊆ Cl

M
σ (Ry), Rx is isomorphic to a submodule

of Ry.
We say that a σ-torsionfree module M is a σ-QTAG-module if it satisfies the

following two conditions:
(I) Every σ-finitely generated submodule of a σ-torsionfree homomorphic image

of M is a direct sum of σ-uniserial submodules;
(Ie) For every σ-uniserial submodule A of a σ-torsionfree homomorphic image N

of M every homomorphism f : A→ K into a σ-closed σ-uniserial submodule K of
N can be extended to g : ClN (A)→ K.
For the undefined notions we refer to [BT1].
Now we extend Lemma 2.14 of [BT1] to σ-QTAG-modules.

Lemma 1.1. Let U be a σ-closed submodule of a σ-QTAG-moduleM . If ϕ : U →
M is a monomorphism, then ϕ(U) is σ-closed in M .

Proof: Denote V = ClM (ϕ(U)). Proving indirectly, let v ∈ V \ϕ(U) be a uniform
element. Then Rv∩ϕ(U) is σ-dense in Rv and denoting Y = ClM (ϕ−1(Rv∩ϕ(U)))
the condition (Ie) gives the following commutative diagram
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Rv ∩ ϕ(U) −−−−→ Rv

ψ





y





y

Y Y

where ψ is ϕ−1 composed with the corresponding embedding.
The rest of the proof is the same as [BT1, Lemma 2.14]. �

We will denote by Jσ(M) the intersection of all submodules K of M such that
M/K is a σ-cocritical module.

Proposition 1.2. Let A1, . . . , An, U1, . . . , Um be σ-uniserial modules such that
Σni=1Ai = ⊕mj=1Uj . Then m ≤ n.

Proof: Let A be the external direct sum of Ai’s, U = Σ
n
i=1Ai = ⊕mj=1Uj and

f : A → U be the natural epimorphism. It is easy to see that U/Jσ(U) is a direct
sum of m σ-cocritical modules and it is an epimorphic image of A/Jσ(A) which is
sum of n σ-cocritical modules. By [BT1, Remark 1.1] we get the inequality m ≤ n.

�

Proposition 1.3. Let A,B be σ-uniserial submodules of a σ-QTAG-module M
such that ℓ(A) ≤ ℓ(B) and B is a σ-closed in M . Then B is a direct summand of
A+B.

Proof: Without loss of generality we can assume that A ∩ B 6= 0. If A + B is
σ-uniserial, then A ⊆ B by [BT1, Proposition 2.6]. Therefore we can with respect
to the condition (I) and Proposition 1.2 suppose that A + B = Y ⊕ C with Y,C
σ-uniserial and ℓ(C) ≤ ℓ(Y ).
Composing canonical embeddings of A and B with the canonical projections onto

Y and C, we get the following four homomorphism:

ϕAY : A→ Y, ϕAC : A→ C, ϕBY : B → Y and ϕBC : B → C.

Claim: ϕ = ϕBY is an isomorphism.
Suppose that ϕBY is not monic. Since Ker ϕBY ∩ Ker ϕBC = 0 and B is σ-

uniserial, we necessarily have Ker ϕBC = 0. Hence ℓ(B) ≤ ℓ(C), which yields
a contradiction. Thus ϕBY is monic.
On the other hand, since Y is σ-uniserial and Y = ϕAY (A) + ϕBY (B), [BT1,

Proposition 2.6] implies that Y = ClY (ϕBY (B)) and Lemma 1.1 yields the claim.
Now for b ∈ B ∩ C it is ϕ(b) = 0, hence b = 0. It remains to show that

A+ B = B + C. For a ∈ A we have a = y + c, y ∈ Y, c ∈ C and y = ϕ(b) for some
b = y + c′ ∈ Y⊕ C. Thus a = y + c = b+ c− c′ ∈ B ⊕ C and we are through. �

Proposition 1.4. Let A,B be any two σ-uniserial submodules of a σ-QTAG-
module M such that A ∩ B 6= 0, B is σ-closed in M and ℓ(A) ≤ ℓ(B). Then
there exists a monomorphism ϕ : A→ B extending the identity on A ∩B.

Proof: By Proposition 1.3 we have A+B = B⊕C where, obviously, ℓ(A) > ℓ(C).
Therefore, the mapping A →֒ B ⊕ C → C cannot be monic and consequently
A →֒ B ⊕ C → B must be monic, A being σ-uniserial. The rest is clear. �
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Proposition 1.5. Let A,B be two σ-uniserial submodules of a σ-QTAG-module
M such that A∩B = 0 and B is σ-closed in M . If ϕ : W → B is a homomorphism
of a submodule W of A into B such that ℓ(A/ClA(W )) ≤ ℓ(B/ClB(ϕ(W ))), then
ϕ can be extended to a homomorphism ψ : A→ B.

Proof: Consider the pushout diagram

W
ι

−−−−→ A

ϕ





y





y

i

B
j

−−−−→ K

whereK = (A⊕B)/L, L = {(w,−ϕ(w)) | w ∈W}, i(a) = (a, 0)+L, j(b) = (0, b)+L.
The homomorphism j is obviously monic, hence j(B) is σ-closed by Lemma 1.1.

Since Ker i = Kerϕ, by the hypothesis we have that ℓ(i(A)) ≤ ℓ(j(B)). By Proposi-
tion 1.3, j(B) is a direct summand ofK and we denote by p the corresponding canon-
ical projection of K into j(B). Now ψ = j−1pi : A → B is a homomorphism and
for w ∈ W we have ψ(w) = j−1pi(w) = j−1p((w, 0) + L) = j−1p((0, ϕ(w)) + L) =
j−1pjϕ(w) = ϕ(w) and the proof is complete. �

A uniform element x in M is said to be of σ-exponent n (denoted e(x) = n) if

ℓ(Rx) = n. Let x 6= 0 be uniform inM ; the supremum of the ℓ(U/ClU (Rx)), where
U is a σ-uniserial module containing x, is called the σ-height of x in M . It will be
denoted by HM (x) (or simply H(x) if there is no confusion). We put H(0) =∞ and
H(x) ≤ H(0) for any nonzero uniform element x from M .

Lemma 1.6. Let A, B be σ-uniserial submodules of a σ-QTAG-moduleM with A∩
B = 0,W be a σ-closed submodule of B and ϕ : A→ B/W be any homomorphism
with ℓ(W ) ≤ ℓ(Kerϕ). Then there is ψ : A→ B lifting ϕ.

Proof: The direct sum A⊕B as a submodule of M is a σ-QTAG-module and we
can work with M = A⊕B. Consider the pullback diagram

K
q

−−−−→ B

p





y





y

π

A
ϕ

−−−−→ B/W

with K = {(a, b) ∈ A ⊕ B | ϕ(a) = π(b)}, p, q projections. It is easy to see that p
is onto and q(K) = π−1(ϕ(A)).
Now

ℓ(ϕ(A)) = ℓ(A)− ℓ(Ker ϕ) ≤ ℓ(A)− ℓ(W )

gives

ℓ(q(K)) = ℓ(π−1(ϕ(A))) = ℓ(ϕ(A)) + ℓ(W ) ≤ ℓ(A).
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It follows from Proposition 1.3 that K = A′⊕C where ℓ(C) ≤ ℓ(A′) (the case C = 0
is also possible) and A′, C are σ-uniserial.
Consider the map ρ : B → (A ⊕ B)/K given by ρ(b) = (0, b) + K. If (a, b) ∈

A ⊕ B is arbitrary, then ϕ(a) = π(b′) for some b′ ∈ B. Hence (a, b′) ∈ K. Now
(a, b)+K = (a, b)− (a, b′)+K = ρ(b− b′) and ρ is surjective. However, Ker ρ =W ,
hence B/W ∼= (A⊕B)/K and K is σ-closed in A⊕B.
Since A′ is σ-uniserial then either p|A′ is monic and then ℓ(A′) ≤ ℓ(A) or q|A′ is

monic and also ℓ(A′) = ℓ(q(A′)) ≤ ℓ(q(K)) ≤ ℓ(A), in any case

(1) ℓ(C) ≤ ℓ(A′) ≤ ℓ(A).

If p|A′ is monic then p(A′) is σ-closed in A by Lemma 1.1. By (1) we have

ClA(p(C)) ⊆ p(A′) = ClA(p(A′)), hence p(A′) = A since p(K) = p(A′)+ p(C) = A.
Therefore p|A′ is an isomorphism.

If p|A′ is not monic then ClA(p(A′)) 6= A, for otherwise

ℓ(A) = ℓ(p(A′)) < ℓ(A′)

contradicts (1). Therefore ClA(p(C)) = A and consequently

ℓ(A) = ℓ(p(C)) = ℓ(C)− ℓ(Ker(p|C )) ≤ ℓ(C) ≤ ℓ(A)

implies that p|C is monic. By Lemma 1.1 p(C) is σ-closed in A. Hence p(C) = A
and p|C is an isomorphism.
Thus, without loss of generality we can assume that p : A′ → A is an isomor-

phism. Denoting η = ip−1 : A→ A′ → K we set ψ = qη : A→ B and for a ∈ A we
have πψ(a) = πqip−1(a) = πq(a, b) = π(b) = ϕ(a) by the definition of K. �

Lemma 1.7. Let M be a σ-QTAG- module. If U1⊕ . . .⊕Um ⊆M is a direct sum
of σ-closed σ-uniserial submodules ofM and 0 6= ui ∈ Ui are such that H

Ui(ui) = k

and x = u1 + . . .+ um is σ-uniserial, then H
M (x) ≥ k.

Proof: For each j ∈ {1, . . . ,m} the composed map

Rx ⊆ Ru1 ⊕ . . .⊕Rum → Ruj

is the natural epimorphism ϕj : Rx→ Ruj. Since Rx is σ-uniserial,
⋂m
j=1Kerϕj =

Kerϕt for some t ∈ {1, . . . ,m} and so we have Rx ∼= Rut and fj : Rut → Ruj → 0
naturally.
Take vt ∈ Ut with Cl

Ut(Rvt) = Ut. Then Rut ∩ Rvt is σ-dense in Rut and

we can choose an element rvt = sut with Cl
Rut(Rsut) = Rut. For each j 6= t,

Proposition 1.5 gives the commutative diagram

Rut −−−−→ Ut

fj





y





y

hj

Ruj −−−−→ Uj
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Set ht = 1Ut
, hj(vt) = wj and v = w1 + . . . + wm. Now it is easy to see that

Rvt and Rv are naturally isomorphic, V = Cl
M (Rv) is σ-uniserial and σ-closed and

therefore the condition (Ie) and Lemma 1.1 give the existence of the isomorphism
ψ making the diagram

Rv −−−−→ V

ψ̄





y





y

ψ

Rvt −−−−→ Vt

commutative.
For α ∈ (Rsut : ut) ∈ L we have αut = rαsut for some rα ∈ R, and αx =

Σαfj(ut) = Σfj(rαsut) = rαsx showing that Cl
Rx(Rsx) = Rx. Moreover, sx =

sΣuj = Σhj(sut) = Σhj(rvt) = rv and so Rx = ClRx(Rsx) = ClRx(Rrv) ⊆

ClM (Rv) = V . Consequently ℓ(V/ClV (Rx)) = ℓ(V )− ℓ(Rsx) = ℓ(Ut)− ℓ(Rsut) =

ℓ(Ut/Cl
Ut(Rut)) = k in view of the fact that Rsx = Rrv ∼= Rrvt = Rsut. Thus

HM (x) ≥ k, as desired. �

Using this result, we are able to extend the Lemma 2.4 of [T1] for σ-QTAG-
modules. The proof follows the same argument, but we include it for completeness.

Lemma 1.8. Let x1, . . . xn be uniform elements of a σ-QTAG-module M . If
HM (xi) ≥ k for some k ∈ N and all i = 1, . . . , n, then HM (x) ≥ k for every
uniform element x ∈

∑n
i=1Rxi.

Proof: By hypothesis there exists a σ-closed σ-uniserial submodule Ti of M con-
taining xi such that ℓ(Ti/Cl

Ti(Rxi)) ≥ k. There is zi ∈ Ti with Cl
M (Rzi) = Ti

and by (I) we have

n
∑

i=1

Ti =
∑

i

ClM (Rzi) ⊆ Cl
M (

∑

i

Rzi) =

m
⊕

j=1

Uj ,

where Uj are σ-closed σ-uniserial submodules of M .
We have x = y1 + · · · + yn = u1 + · · · + um, yi ∈ Rxi and uj ∈ Uj . Consider

an arbitrary t ∈ {1, . . . ,m} with ut 6= 0. Denoting by pit the composed map
Ti →֒ ⊕mj=1Uj → Ut we see that ut =

∑n
i=1 pt(yi) =

∑n
i=1 pit(yi).

For pt(yi) 6= 0 we have yi /∈ Ker pit and therefore Kerpit ⊂ Cl
Ti(Ryi), as Ti is

σ-uniserial. Moreover, it is not difficult to see that

pt(Cl
Ti(Ryi)) = Cl

pt(Ti)(Rpt(yi)).

Hence

Ti/Cl
Ti(Ryi) ∼= pt(Ti)/pt(Cl

Ti(Ryi)) =

pt(Ti)/Cl
pt(Ti)(Rpt(yi)) ⊆ Ut/Cl

pt(Ti)(Rpt(yi))
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and consequently ℓ[Ut/Cl
pt(Ti)(Rpt(yi))] ≥ k for every i ∈ {1, . . . , n} with

pt(yi) 6= 0. Now

Rt = R
∑

i

pt(yi) ⊆
∑

i

Rpt(yi) ⊆
∑

i

ClUt(Rpt(yi)).

The last sum equals its greatest summand, U being σ-uniserial, and by the preceding
we obtain ℓ(Ut/Cl

Ut(Rut)) ≥ k. Now it is sufficient to use Lemma 1.7. �

As in [T1], we define the following submodule:

Hk(M) = Cl
M (

∑

{Rx | x is uniform element of M with HM (x) ≥ k}).

From Lemma 1.8 it follows that all uniform elements in Hk(M) are of σ-height at
least k.

Lemma 1.9. Let M = A+B be a σ-QTAG-module. Then:

(i) For each k ∈ N , Hk(M) = Cl
M (Hk(A) + Hk(B));

(ii) If M = A⊕B, then Hk(M) = Hk(A) ⊕Hk(B);
(iii) If M = A⊕B and 0 6= x ∈ A is uniform, then HM (x) = HA(x). �

2. Decomposability results.

Lemma 2.1. Let U, V be σ-closed σ-uniserial submodules of a σ-QTAG-moduleM .
Then:

(i) If U ⊆ V , then ℓ(V/U) = m if and only if Hm(V ) = U ;
(ii) If H1(U) = H1(V ) = X 6= 0, then there exists a monomorphism f : U → V
extending the identity on X ;

(iii) If H1(U) = H1(V ) = X 6= 0, there are u ∈ U\X and v ∈ V \X such that
u− v ∈ Soc(M) is uniform;

(iv) If u ∈ U\H1(U) and v ∈ V \H1(V ) are elements such that u− v ∈ Soc(M),
then H1(U) = H1(V ). �

Lemma 2.2. Let U be a σ-closed σ-uniserial submodule of a σ-QTAG-module
M , z ∈ Soc(M) and u ∈ U\H1(U) be arbitrary. If V = Cl

M (R(u + z)), then
H1(U) = H1(V ).

Proof: We denote W = ClM (Rz). Using [BT1, Lemma 3.8] we have

H1(U) = H1(Cl
M (Ru)) ⊆ H1(Cl

M (R(u + z) +Rz)) = H1(Cl
M (V +W ))

= ClM (H1(V +W )) = Cl
M (H1(V ) + H1(W )) = Cl

M (H1(V ))

= H1(Cl
M (V )) = H1(V ) = H1(Cl

M (R(u+ z)) ⊆ H1(Cl
M (Ru+Rz))

= H1(Cl
M (U +W )) = ClM (H1(U +W )) =

(by Lemma 2.1 (iv)) = ClM (H1(U)) = H1(U). �
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A submodule N of a σ-QTAG-moduleM is called h-neat if H1(M)∩N = H1(N).
The results obtained in [T3] can be extended to σ-QTAG-modules. We will state
the next one for the future references. A submodule N of a module M is called
closed if N has no essential extension in M .

Theorem 2.3. Let N be a submodule of a σ-QTAG-module M . Then N is closed
in M if and only if N is σ-closed and h-neat in M . �

We will say that a submodule N of M is h-pure if and only if

Hk(N) = N ∩Hk(M)

for all k ∈ N .

Lemma 2.4. Let N be a σ-closed submodule of a σ-QTAG-module M and K̄ =
K/N be a σ-closed σ-uniserial submodule of M̄ = M/N . If U, V ⊆ K are σ-
uniserial σ-closed submodules of K such that U ∩V = 0, ℓ(U) ≤ ℓ(V ) and Ū , V̄ are
σ-dense in K̄, then there exists an epimorphism ϕ : V → U such that v−ϕ(v) ∈ N
for each v ∈ V .

Proof: The intersection W̄ = Ū ∩ V̄ is clearly σ-dense in K̄. Let W ⊆ U be the
inverse image of W̄ under U → Ū and Z ⊆ V that under V → V̄ . Obviously,W is σ-
dense in U and Z is σ-dense in V . Now we have (W+N)/N = (Z+N)/N which gives
ℓ(Z∩N) = ℓ(Z)−ℓ(W̄ ) = ℓ(V )−ℓ(W̄ ) ≥ ℓ(U)−ℓ(W̄ ) = ℓ(W )−ℓ(W̄ ) = ℓ(W ∩N).
Let ψ : Z →W/(W ∩N) be the composed map Z → (Z +N)/N = (W +N)/N ∼=
W/(W ∩N). We have Kerψ = Z ∩N and so ψ lifts to ρ : Z → W by Lemma 1.6
and clearly, Im ρ is σ-dense in W and also in U . By the condition (Ie) we have the
following diagram

Z
i

−−−−→ V

ρ





y





y

ϕ

W
j

−−−−→ U

with ϕ(V ) σ-dense in U . Now ϕ induces ϕ̄ : V/Kerϕ → U where Im ϕ = Im ϕ̄
is σ-dense in U . However U ∩ V = 0 gives U ∼= (U ⊕ Kerϕ)/Kerϕ and it follows
from Lemma 1.1 that ϕ̄ and consequently ϕ is onto. Finally, for z ∈ Z we have
ψ(z) = w+W ∩N where z +N = w +N . Thus z − ϕ(z) = z −w+w− ϕ(z) ∈ N
since π(w − ϕ(z)) = ψ(z) − πρ(z) = 0 where π : W → W/W ∩N is the canonical
projection. Now for v ∈ V there is I ∈ L with Iv ⊆ Z. For each r ∈ I we have
rv − ρ(rv) ∈ N , hence I(v − ϕ(v)) ⊆ N . Thus v − ϕ(v) ∈ N , N being σ-closed
in M . �

Proposition 2.5. Let N be a σ-closed submodule of a σ-QTAG-module M . Then
N is h-pure in M if and only if for every uniform element x̄ ∈ M̄ = M/N there
exists a uniform element y ∈M with Rȳ σ-dense in Rx̄ and e(x̄) = e(y).

Proof: (⇒) By [BT1, Proposition 3.13] we have Rx + N = Ry ⊕ N and the
condition obviously holds.
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(⇐) Assume that N it is not h-pure in M and let k be the smallest integer such
that there exists a uniform element x ∈ (Hk(M) ∩ N)\Hk(N). We can find a σ-
closed σ-uniserial submodule U ⊆M such that Hk(U) = Cl

M (Rx) = U∩N . Taking
y ∈ U with ClM (Ry) = U the hypothesis gives the existence of a uniform element
z ∈M such that Rz̄ is σ-dense in Rȳ and e(z) = k = e(ȳ). Since Rz̄ ∼= Rz/(Rz∩N),
we have Rz ∩N = 0 and V ∩N = 0 where V = ClM (Rz). Now U ∩ V ∩Hk(U) = 0
gives U ∩ V = 0 and by Lemma 2.4 there is an epimorphism ϕ : U → V such that
u− ϕ(u) ∈ N for each u ∈ U .

It is clear that Rx ∩ Ry is σ-dense in Rx. Hence there is an element rx = sy
such that ClM (Rrx) = Hk(U). The epimorphism ϕ induces ψ : Ry → R(y − ϕ(y))
naturally. By [BT1, Lemma 3.4] it follows that ψ(rx) ∈ Hk(N). From [BT1,
Lemma 4.2] we have Hk(V ) = 0, therefore ϕ(x) = 0, ψ(rx) = rx ∈ Hk(N) and
[BT1, Lemma 3.3] gives x ∈ Hk(N). This contradiction finishes the proof. �

Lemma 2.6. Let N be a σ-closed submodule of a σ-QTAG-module M , 0 6= S̄ =
S/N ⊆ M/N = M̄ be a σ-closed and σ-cocritical. Let U, V ⊆ S be σ-closed σ-
uniserial modules with Ū , V̄ σ-dense in S̄ such that U has the minimal length among
all such modules. Then either U ∩ V = 0 or ℓ(U) = ℓ(V ).

Proof: Assume U ∩ V 6= 0 and ℓ(U) < ℓ(V ). By Proposition 1.4 there is
a monomorphism ϕ : U → V extending the identity on U ∩ V . Since V̄ =
V/V ∩ N,V ∩ N = H1(V ) and so ϕ(U) ⊆ V ∩ N . Take u ∈ U such that

ClM (Ru) = U . Then ϕ(u) 6= u since u /∈ N and ϕ(u) ∈ N . Thus by (Ie) we

have η : U → W = ClM (R(u − ϕ(u))) induced by Ru → R(u − ϕ(u)) defined
naturally. Since u − ϕ(u) /∈ N , then W̄ is σ-dense in S̄. But U ∩ V ⊆ Ker η gives
ℓ(W ) < ℓ(U), a contradiction finishing the proof. �

LetN be a submodule of a moduleM . A submoduleK ofM is called a complement
of N in M if K is maximal with respect to K ∩N = 0.

Theorem 2.7. Let T be a σ-closed submodule of a σ-QTAG-module M and K
be any complement of T in M . Then there exists a mapping of the set of all σ-
closed σ-cocritical submodules ofM/(T⊕K) onto the family of σ-closed σ-cocritical
submodules of T̄ = [(H1(M) +K) ∩ T ]/H1(T ).

Proof: We will follow the same arguments as in [S3, Theorem 3.4]. By [BT1,
Proposition 4.24], T ⊕ K is σ-closed in M (we use [BT1, Lemma 4.4] that only
requires (I) and in [BT1, Proposition 3.2] (Ie) is enough).

(a) We have T ⊕K ⊆′ M , (T ⊕K)/K ⊆′ M/K and consequently it follows from
[BT1, Lemma 2.7] that

(2) U/K ⊆M/K σ-cocritical implies U ⊆ T ⊕K.

Consider a σ-closed σ-cocritical submodule S̄ = S/(T ⊕ K) ⊆ M/(T ⊕ K) = M̄ .

By [BT1, Lemma 2.12] there are uniform elements x ∈ S with ClM (Rx̄) = S̄

and we can take one of them with the smallest e(x) and set U = ClM (Rx). Now
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Ū = (U + T ⊕K)/(T ⊕K) ∼= U/U ∩ (T ⊕K) contains x̄ and so it is σ-dense in S̄.
Thus

(3) U ∩ (T ⊕K) = H1(U) = V

and we can take y with

(4) ClM (Ry) = V.

Now we can write

(5) y = t+ k, t ∈ T, k ∈ K, t 6= 0.

Clearly, for t = 0 the natural mapping U → (U +K)/K maps y and hence V onto
0 and so U/V ∼= (U + K)/K ⊆ M/K is σ-cocritical and x ∈ U ⊆ T ⊕K by (2),
which contradicts the choice of x.
Obviously, Rx ∩Ry is σ-dense in Rx ∩ V and so there is

(6) rx = sy ∈ Ry with ClRx∩V (Rsy) = Rx ∩ V.

Moreover,

(7) Rx/(Rx ∩ V ) is σ-cocritical.

(b) Now we will show that

(8) t /∈ H1(T ).

Proving indirectly assume that t ∈ H1(T ) and denote T1 = Cl
M (Rt). Then there

is a σ-closed σ-uniserial submodule T2 of T such that T2/T1 is σ-cocritical. Now,
k = y − t ∈ K ∩ H1(M) = H1(K), K being h-neat in M by Theorem 2.3. Thus,
there is a σ-closed σ-uniserial submodule K2 of K such that K2/K1 is σ-cocritical

and K1 = Cl
M (Rk).

Assume that U ∩ T2 = U ∩K2 = 0 and consider the following two commutative
diagrams:

Ry −−−−→ V −−−−→ U

p





y





y

λ





y

ϕ

Rt −−−−→ T1 −−−−→ T2

Ry −−−−→ V −−−−→ U

q





y





y

µ





y

ψ

Rk −−−−→ K1 −−−−→ K2
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where p, q are natural projections, λ and µ exist by the condition (Ie) and ϕ, ψ by
Proposition 1.5.
Consider now the composition

ρ : Rv → R(x− ϕ(x))→ (R(x− ϕ(x) +K)/K

of natural mappings. By (5) and (6) we have ρ(sy) = sy−ϕ(sy)+K = sy−st+K =
K, hence Rx ∩ V ⊆ Ker ρ and (R(x− ϕ(s)) +K)/K is σ-cocritical by (7). By (2)
we have x ∈ T ⊕K, which is a contradiction showing that

(9) U ∩ T2 6= 0 6= V ∩ T1.

Moreover, (V ∩ T1) ∩ (V ∩K) ⊆ V ∩K ∩ T = 0 gives

(10) V ∩K = 0,

V being uniform.
To get a contradiction we will show that p is neither monic nor non-monic.

Assume first that p is monic. Then clearly ℓ(U) = ℓ(T2) and so Lemma 1.1 and
Proposition 1.4 give the existence of an isomorphism ϕ : U → T2 extending the
identity on U ∩ T2. Considering the natural mapping Rx → R(x − ϕ(x)) with
non-trivial kernel (containing Rx ∩ U ∩ T2) we see that e(x) > e(x − ϕ(x)), which
contradicts the choice of x.
Now, assume p is non-monic. Then q is monic since Ker p ∩ Ker q = 0 and Ry

is σ-uniserial. By (10) we can use ψ from the second diagram and consider the
natural mapping ν : Rx→ R(x−ψ(x)). If ν is not monic, then e(x−ψ(x)) < e(x)
contradicts the choice of x. Thus ν is an isomorphism. By (3), (4), (6) and (7) we
get ν(sy) = sy−sk = st and e(st) = e(sy) = ℓ(Rx∩V ) = e(x)−1 = e(y). However,
p is not monic, and so e(t) < e(y) = e(st) ≤ e(t), a final contradiction proving (8).
We can set

(11) Φ(S̄) = ClT̃ (Rt̃)

where Rt̃ = (Rt+H1(T ))/H1(T ) ∼= Rt/(Rt ∩H1(T )) = Rt/H1(Rt) by (8) and Rt̃
is σ-cocritical.

(c) Now, we will show that ClT̃ (Rt̃) does not depend on the particular choice of
U and y. Assume first that U is given and let y = t + k, y′ = t′ + k′ both have
the property (4). Clearly, Ry ∩ Ry′ is σ-dense in Ry and so in V . Thus we can

choose ry = sy′ with ClM (Rry) = V . Now Rry is σ-dense in Ry and so using
the canonical projection Ry → Rt we see that Rrt is σ-dense in Rt and similarly
Rst′ is σ-dense in Rt′. So, Rrt̃ is σ-dense in Rt̃, Rst̃′ is σ-dense in Rt̃′, hence

ClT̃ (Rt̃) = ClT̃ (Rrt̃) = ClT̃ (Rst̃′) = ClT̃ (Rt̃′), since ry = sy′ obviously gives
rt = st′.
Thus, let U, U ′ ⊆ S be different and assume U ∩ U ′ 6= 0. By Lemma 1.1 and

Proposition 1.4 there is an isomorphism ϕ : U → U ′ extending the identity on
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U ∩U ′. Then ϕ induces the natural epimorphism Rx→ R(x−ϕ(x)) with non-zero
kernel containing Rx∩U ∩U ′. Consequently e(x− ϕ(x)) < e(x) which contradicts
the choice of x.

(d) Assume finally that U ∩U ′ = 0 and that U ′ is not necessarily of minimal length,
but Φ(S̄) is constructed in the same way once we know that the corresponding
t′ is not in H1(T ). By Lemma 2.4 there is an epimorphism η : U ′ → U with
x′ − η(x′) ∈ T ⊕K. Now, by (6) and (7) we have rx′ ∈ H1(Rx

′), hence y′− η(y′) =
r(x′ − η(x′)) ∈ H1(Rx

′ − η(x′)) ⊆ H1(T ⊕ K). However, from (6) we get that
Rsy′ is σ-dense in V , hence in Ry′ and so [BT1, Lemma 3.1] and Lemma 1.9
gives y′ − η(y′) ∈ H1(T ⊕ K) = H1(T ) ⊕ H1(K). Thus t

′ − η(t′) ∈ H1(T ) and

Rt̃′ = Rη(t̃′). However, we already know that ClT̃ (Rη(t̃)) = ClT̃ (Rt̃) and the proof
of the independence is finished.

(e) It remains to show that the mapping Φ is onto. Let S̃ ⊆ T̃ be a σ-closed

σ-cocritical submodule. We can take t uniform with Rt̃ σ-dense in T̃ (see [BT1,
Lemma 2.12]). Then t /∈ H1(T ) is of the form t = u + k, u ∈ H1(M), k ∈ K, and
u = t− k 6= 0. By the condition (I) we now have Ru = Ru1 ⊕ . . .⊕Run with Rui
σ-uniserial. Now, under the canonical projection p : T ⊕K → T we have p(u) = t
and Rt = p(Ru) = Σni=1Rp(ui) and so we can with respect to [BT1, Proposition 2.6]

assume that Rt = ClRt(Rp(u1)). The canonical projection Ru → Ru1 shows that
u ∈ H1(M) gives u1 ∈ H1(M) and consequently there is a σ-closed σ-uniserial
submodule U of M such that U/ClU (Ru1) is σ-cocritical.
Now p(u1) = rt for some r ∈ R, where Rrt is σ-dense inRt. By [BT1, Lemma 3.3]

we see that rt /∈ H1(M) and consequently U * T ⊕ K, for otherwise Ru1 ⊆
H1(T ⊕K) would lead to rt ∈ H1(T ).
Moreover, U ∩ (T ⊕K) = ClM (Ru1) and so the construction from the part (b)

would lead to S̃. If U is of minimal length in S, S = ClM (U) and Φ(S) = S̃ by
the above construction (part (b)). If U is not of minimal length then we can take
U ′ ⊆ S of minimal length, ℓ(U ′) < ℓ(U). By Lemma 2.6 we have U ∩ U ′ = 0

and consequently the part (d) gives Φ(S) = S̃ (we used here freely the fact that

ClT̃ (Rrt̃) = ClT̃ (Rt̃) = S̃) and the proof is complete. �

Kulikov’s theorem was obtained in [T1] and extended in [BT1]. We can show the
same result for σ-QTAG-modules. The proof follows that one obtained there, we
only have to use the results on extensions of homomorphisms in σ-QTAG-modules
instead of the condition (II). We leave the proof to the reader.

Theorem 2.8. Let M be a σ-QTAG-module. M is direct sum of σ-uniserial sub-
modules if and only if it contains a chain of σ-closed submodules

M1 ⊆M2 ⊆ . . . ⊆Mn ⊆ . . .

with
⋃

Mi σ-dense in M and such that for each n ∈ N there exists kn with the
property H(x) ≤ kn for all uniform elements ofMn. In this case the direct decompo-

sition ofM into a direct sum of σ-uniserial submodules is unique up to isomorphism.
�
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3. Kernel of h-purity.

Definition 3.1. A submodule N of a module M is called a kernel of h-purity if
every h-neat hull of N is h-pure in M .

Proposition 3.2. LetN be a σ-closed submodule of a σ-QTAG-moduleM , n ∈ N .
The following two conditions are equivalent:

(i) Soc(Hn(M)) ⊆ N implies Hn(M) ⊆ N ;
(ii) If there is a σ-closed σ-uniserial submodule U of M such that U/(N ∩ U)
is σ-cocritical and U ⊆ Hn(M), then there exists a σ-closed σ-uniserial
submodule W of M such that ℓ(W ) = n+ 1 and W ∩N = 0.

Proof: (i)⇒ (ii): If (ii) does not hold then there exists U with the stated property
and Soc(W ) ⊆ N wheneverW is σ-uniserial σ-closed and ℓ(W ) = n+1. Especially,
U ⊆ Hn(M) means that Hn(M) * N . On the other hand, if Z ⊆ Soc(Hn(M)) is σ-
closed, then there is a σ-closed σ-uniserial submodule W ⊆M such that ℓ(W/Z) =
n. Then ℓ(W ) = n+ 1 gives Z ⊆ N , which contradicts (i).
(ii) ⇒ (i): Let Soc(Hn(M)) ⊆ N but Hn(M) * N . Then there is a σ-closed

σ-uniserial submodule Z ⊆ Hn(M) such that Z * N and Soc(Z) ⊆ N . Take
Z ∩ N ⊆ X ⊆ Z with X σ-closed and X/(Z ∩ N) σ-cocritical. Then X ∩ N =
Z ∩N and X ⊆ Hn(M). By (ii) there is a σ-closed σ-uniserial submodule W of M
such that ℓ(W ) = n + 1 and W ∩ N = 0, which contradicts the hypothesis since
Soc(W ) ⊆ Soc(Hn(M)). �

Proposition 3.3. Let N be a σ-closed h-pure submodule of a σ-QTAG-module
M , n ∈ N . If Soc(Hn(M)) ⊆ N then Hn(M) ⊆ N .

Proof: We shall use Proposition 3.2. Let U be a σ-closed σ-uniserial submodule
of M such that U/(U ∩ N) is σ-cocritical and U ⊆ Hn(M). By h-purity we have
V = U ∩N ⊆ N ∩ Hn+1(M) = Hn+1(N) and consequently there are σ-closed σ-
uniserial modules W ⊆ N and Z ⊆M such that ℓ(W/V ) = n+ 1 and ℓ(Z/U) = n.
By Proposition 1.4 there is an isomorphism ϕ : W → Z extending the identity
on W ∩ Z = V . Take w ∈ W\H1(W ) and consider the natural epimorphism
ψ : Rw → R(w − ϕ(w)). In view of Kerψ = Rw ∩ V we have e(w − ϕ(w)) = n+ 1.
For rw ∈ U\V it is ψ(rw) ∈ Soc(Hn(M)), but ψ(rw) /∈ N since rw ∈ N and
ϕ(rw) /∈ N . �

An element y ∈M is called a predecessor of x ∈M if ClM (Rx) ⊆ ClM (Ry) and
ℓ(Ry/ClRy(Rx)) = 1. For uniform elements x, y ∈M we use the notation x ∼ y in

case ClM (Rx) = ClM (Ry).

Lemma 3.4. Let V be a σ-closed σ-uniserial submodule of a σ-QTAG-module M ,
W be a σ-closed σ-cocritical submodule of M which is not contained in V , and
U = H1(V ). IfX = Cl

M (R(v+w)) for arbitrary elements v ∈ V \U and 0 6= w ∈W ,
then X = V ⊕W if and only if V/U 6∼=W .

Proof: (⇒) Proving indirectly suppose that ψ : V/U → W is an isomorphism
which naturally induces ϕ : V → W with the kernel U . Take v ∈ V \U arbitrarily,
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denote w = ϕ(v) and consider the natural mapping ν : Rv → R(v + w). The
condition (Ie) and Lemma 1.1 show that ν extends to an isomorphism µ : V → X .

Take rv ∈ U with ClM (Rrv) = U . We have µ(rv) = r(v + ϕ(v)) = rv. Now for
an arbitrary u ∈ U we have Iu ⊆ Rrv for some I ∈ L. Now for each s ∈ I we have
su = tsrv, so s(µ(u)−u) = µ(tsrv)−su = tsrv−su = 0 which yields I(µ(u)−u) = 0
and consequently µ|U = 1U . Thus µ induces the isomorphism V/U ∼= X/U showing
that ℓ(X/U) = 1. Hence X ⊂ V ⊕W since ℓ((V ⊕W )/U) = 2.

(⇐) Assuming (0 : w) ⊆ (U : v) we get the composed mapping Rw ∼= R/(0 :
w)→ R/(U : v) ∼= (Rv+U)/U ⊆ V/U which is monic,W being σ- cocritical, and so
it extends to an isomorphismW → V/U by (Ie) and Lemma 1.1. This contradiction
gives the existence of an element r ∈ (0 : w)\(U : v). Then r(v + w) = rv ∈ V \U
shows that V = ClM (Rrv) = ClM (Rr(v+w)) ⊆ X . Especially, v ∈ X gives w ∈ X ,
hence W ⊆ X and we are through. �

A σ-QTAG-module M is called homogeneous if any two σ-cocritical submodules
of any two torsionfree homomorphic images of M are isomorphic.

Theorem 3.5. Let N be a σ-closed submodule of a σ-QTAG- moduleM . Then N
is kernel of h-purity provided for every n ∈ N one of the following two conditions
is satisfied:

(i) Soc(M) = ClM [Soc(N) + Soc(Hn(M))];
(ii) For every uniform element x ∈ Hn+1(M) ∩ N and every its predecessor

y ∈ Hn(M) there are z ∈ Soc(M) and r ∈ R such that ry ∼ y and ry + z ∈
N ∩Hn(M).

If M is homogeneous, then the converse is true.

Proof: Let N ⊆ K be an h-neat hull of N . Then H1(M) ∩K = H1(K) and we
shall continue by the induction.

Let Hn(M) ∩K = Hn(K) for some n ≥ 1. Take x ∈ Hn+1(M) ∩K uniform and
let y ∈ Hn(M)\K be its predecessor. Since x ∈ H1(M) ∩K = H1(K), x has also
a predecessor y′ ∈ K and by Lemma 2.1 we can assume that y − y′ ∈ Soc(M).
If the condition (i) is satisfied then I(y− y′) ⊆ Soc(N) + Soc(Hn(M)) for some

I ∈ L. Now, we obviously can take s ∈ I\(ClM (Rx) : y). Then s(y − y′) = u + v,
u ∈ Soc(Hn(M)), v ∈ Soc(N) and y ∼ sy. Thus sy − u = sy′ + v ∈ Hn(M) ∩K =
Hn(K) and using Lemma 2.2 we obtain x ∈ H1(Cl

M (Ry)) = H1(Cl
M (Rsy)) =

H1(Cl
M (R(sy − u))) ⊆ H1(Hn(K)) ⊆ Hn+1(K).

If the condition (i) is not satisfied, then it is not satisfied for all k > n and so let
the condition (ii) hold. If we prove that x ∈ N then there are z ∈ Soc(M) and r ∈ R
such that ry ∼ y and ry + z ∈ N ∩ Hn(M) ⊆ Hn(K). Using Lemma 2.2 we now
have x ∈ H1(Cl

M (Ry)) = H1(Cl
M (Rry)) = H1(Cl

M (R(ry + z)) ⊆ H1(Hn(K)) ⊆
Hn+1(K).

So, assume that x /∈ N . By [T3, Proposition 3.5] it is Soc(N) = Soc(K) and we

can find the smallest m with Hm(Cl
M (Rx)) ⊆ N . Now take

v ∈ Hm−1(Cl
M (Rx))\Hm(Cl

M (Rx))
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and

rv ∈ Hm(Cl
M (Rx))\Hm+1(Cl

M (Rx)).

Then v ∈ Hn+m(M), rv ∈ Hn+m+1(M) ∩N and by (ii), tv + z ∈ Hn+m(M) ∩N
for some z ∈ Soc(M) and t ∈ R with v ∼ tv. But tv ∈ ClM (Rx) ⊆ K gives
z = (tv + z) − tv ∈ Soc(M) ∩ K = Soc(K) = Soc(N) and so tv ∈ N . But then

v ∈ ClM (Rv) = ClM (Rtv) ⊆ N , which contradicts the choice of v.
Assume now M is homogeneous. Proving indirectly suppose that neither (i) nor

(ii) is satisfied and find an h-neat hull K of N in M which is not h-pure in M . So
let for some n ∈ N

(12) ClM [Soc(N) + Soc(Hn(M))] ⊂ Soc(M)

and there exists x ∈ Hn+1(M) ∩N uniform and its predecessor

(13) y ∈ Hn(M)

such that

(14) sy + z /∈ Hn(M) ∩N for each z ∈ Soc(M) and each s ∈ R with sy ∼ y.

Assume first, that

(15) sy + z ∈ N for some z ∈ Soc(M) and some s ∈ R with sy ∼ y.

If z − u ∈ Hn(M) for some u ∈ Soc(N), then sy + z − u ∈ N ∩ Hn(M), which
contradicts (14), since z − u ∈ Soc(M). Thus

(16) z − u /∈ Hn(M) for each u ∈ Soc(N).

Now let N ⊆ K be any h-neat hull of N in M . Then x ∈ Hn+1(M) ∩ K =
Hn+1(K), since by the hypothesis all h-neat hulls of N are h-pure in M . Then,
there exists a predecessor of x

(17) y′ ∈ Hn(K)

which can be chosen, by Lemma 2.1, such that

(18) y − y′ ∈ Soc(M) is uniform.

Therefore,

(19) z′ = z + s(y − y′) ∈ Soc(M) ∩K = Soc(K) = Soc(N)

by (15), (17), (18) and [T3, Proposition 3.5]. This gives z− z
′ = s(y− y′) ∈ Hn(M)

by (13) and (17), which contradicts (16) in view of (19).
This contradiction shows that (15) is impossible and
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(20) y + z /∈ N for each z ∈ Soc(M).

Suppose that x ∈ H1(N) and t ∈ N be its predecessor such that y− t ∈ Soc(M),
by Lemma 2.1. Then t = y + (t− y) ∈ N contradicts (20) and

(21) x /∈ H1(N).

Now from (12) we get the existence of a uniform element

(22) v ∈ Soc(M)

and

(23) v − u /∈ Soc(Hn(M)) for each u ∈ Soc(N).

Consider N ′ = ClM (N +R(y + v)) and

(24) w = a+ r(y + v), a ∈ N, r ∈ R,

be such that

(25) Rw ⊆ N ′ is σ-cocritical.

First, we are going to show that

(26) rv = 0.

If not, then w−rv = a+ry ∈ Soc(M) by (22) and (25). For Ry = Rry we get from
(13) and Lemma 2.2 that x ∈ H1(Cl

M (Ry)) = H1(Cl
M (Rry)) = H1(Cl

M (ry− (a+
ry))) = H1(Cl

M (Ra)) ⊆ H1(N), which contradicts (21). Thus, Rry ⊂ Ry, hence
Rry ⊆ Rx and w − rv ∈ N . So, rv ∈ N ′ and consequently v ∈ N ′ by (22). By the

hypothesis and Lemma 3.4, we have ClM (R(y+v)) ⊂ ClM (Ry) ⊕ClM (Rv). Hence
ClM (R(y + v))/ClM (Rx) = ClM (R(y + v))/[ClM (R(y + v)) ∩ N ] is σ-cocritical.
Consequently, (R(y+ v)+N)/N ∼= R(y+ v)/(R(y+ v)∩N) is also σ-cocritical and
so is N ′/N , the last module being obviously σ-dense in it. Since v /∈ N by (23), we

have N ′ = N ⊕ ClM (Rv) and so y = (y + v) − v ∈ N ′ is of the form y = v′ + u,

v′ ∈ ClM (Rv), u ∈ N . But then y − v′ = u ∈ N , which contradicts (20) owing
to (22).

Thus (26) is proved and from (24) we have w = a+ry. As above, H1(Cl
M (Ra)) =

H1(Cl
M (Rry)) and Ry = Rry leads to a contradiction with (21). Thus Rry ⊆ Rx,

w ∈ N and Soc(N) = Soc(N ′).

If K is an h-neat hull of N ′ inM , then by [T3, Proposition 3.5]K is a neat hull of
N inM and so it is pure inM . Then x ∈ Hn+1(M)∩K = Hn+1(K). Hence, there is
a predecessor t′ of x in Hn(K) with y−t′ ∈ Soc(M) (and also y−t′ ∈ Soc(Hn(M))).
Now v + (y − t′) = (v + y) − t′ ∈ Soc(M) ∩ K = Soc(K) = Soc(N) and so
t′ − y = v − (v + (y − t′)) ∈ Soc(Hn(M)), which contradicts (23) and the proof is
complete. �
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4. Centers of α-purity.

Now we introduce the following submodules of a σ-QTAG-module M extending
the definition in [BT1].

Let M be a σ-QTAG-module and let α be any ordinal, Hα(M) is defined by
transfinite recursion as follows:

i) H0(M) = 0;
ii) If α is not a limit ordinal, say α = β + 1, then Hα(M) = H1(Hβ(M));
iii) If α is a limit ordinal, then

Hα(M) =
⋂

β<α

Hβ(M).

M is called of type τ , if τ is the smallest ordinal number such that Hτ (M) =
Hτ+1(M). For any x (6= 0), the generalized height h(x) is defined as follows: If
x ∈ Hτ (M), put h(x) = ∞ > α, α any ordinal. Let x /∈ Hτ (M), then there exists
an ordinal β < τ , such that x ∈ Hβ(M), but x /∈ Hβ +1(M); define h(x) = β.

Lemma 4.1. Let M be a σ-QTAG-module. Then:

(i) For any x, y ∈M , h(x+ y) ≥ min(h(x), h(y)) and equality holds, whenever
h(x) 6= h(y).

(ii) If M = A⊕B, then Hα(M) = Cl
M (Hα(A) ⊕Hα(B)) for any ordinal α; for

x = a+ b, a ∈ A, b ∈ B, we have h(x) = min(h(a), h(b)).
(iii) For any ordinals α, β; Hα(Hβ(M)) = Hα+β(M).
(iv) Let K be a σ-closed submodule and p : M → M/N be the canonical pro-

jection. If x ∈ Hα(M) is uniform, then p(x) ∈ Hα(M/N).
(v) For any homomorphism f :M → N , where N is also a σ-QTAG-module,

f(Hα(M)) ⊆ Hα(N). �

Lemma 4.2. Let K and N be submodules of a σ-QTAG-module M , such that K
is σ-closed in M . Let y be any uniform element of M such that (Ry + K)/K is
σ-cocritical and (K + Ry) ∩N 6= 0 and K ∩N = 0. Then there exists r ∈ R such
that ry = x+ z, for some x ∈ K and z ∈ N , and ry ∼ y.

Proof: As (K + Ry) ∩ N 6= 0, for some x ∈ K, u 6= 0 in N , r ∈ R, we have
u = x + ry. Now K ∩ N = 0, gives ry /∈ K. As Ry is σ-uniserial we have
Ry = ClRy(Rry). �

A submodule N of M is said to be α-pure in M , if Hβ(M) ∩N = Hβ(N) for all
β ≤ α. Then a submodule N of M is h-pure if and only if N is (ω + 1)-pure where
ω is the first infinite ordinal.
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Theorem 4.3. Let M be a σ-QTAG-module, α any ordinal number and N any
submodule of Hα(M). Then any complement K of N in M is (α + 1)-pure and
Hβ(K) is a complement of N in Hβ(M) for all β ≤ α.

Proof: Consider any ordinal β ≤ α+1. To apply transfinite induction, let Hδ(M)∩
K = Hδ(K) for all δ < β. If β is a limit ordinal, then trivially Hβ(M) ∩ K =
Hβ(K). Let β = γ + 1 and Hβ(M) ∩K 6= Hβ(M). We can find a uniform element
x ∈ Hβ(M)∩K such that x /∈ Hβ(K). As x ∈ Hγ+1(M) = H1(Hγ(M)), there exists

x ∈ Y ⊆ Hγ(M) with ℓ(Y/Cl
Y (Rx)) = 1. Then Y ⊆ K. Therefore (K + Y ) ∩

Soc(N) 6= 0. Then y = k + n for some k ∈ K and n ∈ N , where Y = ClM (Ry). As
n ∈ Hα(M), y ∈ Hγ(M) with γ < α, k ∈ Hγ(M). So by the induction hypothesis
k ∈ Hγ(K). By Lemma 2.1, H1(Y ) = H1(Ru) ⊆ H1(Hγ(M)) = Hβ(M). Hence
x ∈ Hβ(K). This is a contradiction. Therefore K is (α+ 1)-pure in M .
The proof of the second part is similar. �

Let N be a submodule of a σ-QTAG-module M . We will say that N is center of
α-purity in M if every complement of N in M is α-pure submodule of M .

Theorem 4.4. Let N be a σ-closed submodule of a σ-QTAG-module M . Then
there exists a complement K of N in M which is not α-pure if and only if the
following condition is satisfied:

(∗) There are uniform elements u ∈ N and v ∈M such that u+ v is uniform and

(i) e(v) > e(u) = 1,
(ii) Rv ∩N = 0,
(iii) h(u) + 1 < α, h(v) = h(u) < h(u+ v).

Proof: (⇒) Let K ∩ N = 0 be maximal and not α-pure in M and let γ be the
smallest ordinal γ ≤ α such that Hγ(M) ∩ K 6= Hγ(K). Then γ is not a limit
ordinal. Write γ = δ+ 1. We can take x ∈ (Hγ(M)∩K)\Hγ(K) uniform. As K is
a complement by [T3, Theorem 3.4], H1(M) ∩K = H1(K). There exists V1 ⊆ K

σ-closed σ-uniserial with ℓ(V1/U) = 1, where U = Cl
M (Rx). Also there is a σ-

closed σ-uniserial submodule V of M such that U ⊂ U1 ⊂ V ⊆ K,V ⊆ Hδ(M). By
Proposition 1.4 there is an isomorphism τ : U1 → V1 extending the identity on U .
Since U1 ⊆ K (otherwise U ⊆ Hα(K) by the choice of α), [BT1, Lemma 2.16] shows
that R(z− τ(z)) is σ-cocritical for any z ∈ U1\U . So we can write z− τ(z) = u+w,
u ∈ N , w ∈ K, and set v = z − u = τ(z) + w ∈ K and (iii) is true. Further, v is
uniform as a homomorphic image of z (since Soc(M) = Soc(N) ⊕Soc(K) ∋ u+w).

Since z − v = u is uniform, Lemma 2.1 (iv) gives U = H1(U1) = H1(Cl
M (Rv)),

showing that e(v) > e(u) = 1.
Further, z = u+v has the height h(u+v) ≥ δ and to finish this part of the proof it

suffices to show that h(u) < δ. However, for h(u) ≥ δ we have v = z−u ∈ Hδ(M)∩
K = Hδ(K) and consequently x ∈ U = H1(Cl

M (Rv)) ⊆ H1(Hδ(M)) ⊆ Hα(M),
which contradicts the choice o γ. Hence h(u) < δ and so h(u) + 1 < α.
(⇐) Let K ⊆ Rv be maximal with respect to K ∩N = 0. Denoting T = H1(V ),

where V = ClM (Rv), we have T = H1(Cl
M (R(u + v))) by Lemma 2.1 (iv). Now,

h(u) = h(v) = β < h(u+ v) with β + 1 < α and T ⊆ H1(Hβ+1(M)) ⊆ Hβ+2(M).
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We claim that T * Hβ+2(K).
So assume that T ⊆ Hβ+2(K) and consider a σ-uniserial σ-closed submodule of

K, W , with T ⊆ W ⊆ Hβ+1(K). By Proposition 1.4 we can obtain h : V → W
extending the inclusion of T in W . By [BT1, Lemma 2.16] v−h(v) ∈ Soc(K). Now
u + v − h(v) ∈ Hβ+1(M). From [BT1, Lemma 3.4] we get Soc(M) = Soc(N) ⊕
Soc(K) and using the projection on Soc(N), Lemma 4.1 (iv) gives u ∈ Hβ+1(M),
which contradicts the choice of β and finishes the proof. �

Theorem 4.5. Let N be a submodule of a σ-QTAG-module M and Tγ =
Soc(Hγ(M)) for any ordinal γ. If either Soc(N) ⊆ Tδ, for some ordinal δ such that
α ≤ δ + 1 or for some ordinal β with β + 1 < α,

Tβ+2 ⊆ Soc(N) ⊆ Tβ

then N is a center of α-purity. If M is homogeneous the converse is true.

Proof: For some β with β+1 < α, we have Tβ+2 ⊆ Soc(N) ⊆ Tβ and suppose that

we have elements u, v from Theorem 4.4. Denote V = ClM (Rv), W = ClM (R(u +
v)) ⊆ H(M). By Lemma 2.1 (iv), H1(V ) = H1(W ) and so Soc(V ) ⊆ H1(V ) ⊆
H1(Hβ+1(M)) ⊆ Hβ+2(M) ⊆ Soc(N). Hence Rv ∩N 6= 0, which contradicts (ii).
To prove the converse assume that the condition is not satisfied. Then Soc(N)

is not contained in Tδ for any ordinal δ such that δ + 1 ≥ α. Let γ be the smallest
ordinal such that Soc(N) is not contained in Tγ . Then γ + 1 ≤ α and γ is not
a limit ordinal. Write γ = β + 1. We have β + 1 < α, Soc(N) ⊆ Tβ , but Soc(N)
is not contained in Tβ+1, consequently there exist σ-cocritical submodules U ⊆
Soc(N) ⊆ Hβ(M) and S ⊆ Hβ+2(M) but not contained in N . Thus there is

S ⊂ X ⊆ Hβ+1(M) with ℓ(X) = 2. By Lemma 3.4, V = Cl
M (R(x − v)) ⊂ X ⊕ U

and since V is not contained in Soc(M), V is σ-uniserial of σ-length 2. Denoting
v = x − u, we have H1(V ) = S = H1(X) by Lemma 2.1 (iv). Hence Rv ∩ N = 0.
Moreover h(u) = h(v) = β < β + 1 ≤ h(u+ v), e(v) = e(x) and we finish the proof
by applying Theorem 4.4. �

Example 4.6. Let M = 〈a〉 ⊕ 〈b〉 be a direct sum of cyclic groups, a be of order
p3, b order q 6= p and denote N = 〈b〉. Then T0 = 〈p2a〉 ⊕ 〈b〉 = Soc(M),
T1 = T2 = 〈p2a〉, T3 = 0, T2 is not contained in the Soc(N), Soc(N) ⊆ T0. So the
condition is not satisfied, but N is a center of purity: Let K be any complement,
K ∩N = 0. If no element of the form λa + µb, µb 6= 0 is in K, then K = 〈a〉. If
some element of the form λa+ µb, µb 6= 0, lies in K, then p3(λa+ µb) = p3µb ∈ K.
So αp3µ+ βq = 1 gives b = αp3µb ∈ K, which is impossible.
We see that the converse in Theorem 4.5 does not hold in general.
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