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On the regularity of the minimizer of
a functional with exponential growth

GARY M. LIEBERMAN

Abstract. Minimizers of a functional with exponential growth are shown to be smooth.
The techniques developed for power growth are not applicable to the exponential case.
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In this note we prove that minimizers of the functional
I(u) = / exp(|Dul?) da
Q

over the class of all functions making I(u) finite are smooth by showing that they
are classical solutions of the corresponding Euler—-Lagrange equation. If the expo-
nential function is replaced by a power function, such a result is standard (see [3,
Chapter 5]), but the techniques used do not extend to the present case.

Specifically we suppose that v € Wl’l(Q), for some open set 2 € R™, satisfies
the inequality

(1) /Qexp(|Dv|2)d:17§/Qexp(|Dw|2)d:1:

for all w € WH(Q) with w — v € Wol’l(Q). (Obviously it suffices to consider
only those w’s making the right hand side of (1) finite.) Our main result is that
v is a classical solution of the Euler-Lagrange equation corresponding to the func-
tional 1.

Theorem. If v € WH1(Q) satisfies (1) for all w € W1 with w — v € Wol’l then
v Is a classical solution of the equation

(2) {0Y + 2DwDjv}Djju =0 in Q.

Since v is a classical solution of (2), it follows that v € C?(Q) and then the usual
linear theory shows that v is locally analytic.

The question of the smoothness of v was posed to the author by Prof. Mariano
Giaquinta at the Banach Center for Mathematics. The author is grateful to Prof. Gi-
aquinta for posing the question and to the Center for providing the opportunity to
meet Prof. Giaquinta.
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In fact, a slightly different question was posed, one originally asked by J. Eells,
who wanted to know if v is a weak solution of the Euler-Lagrange equation

2) div(exp(|Dv[?)Dv) =0 in Q.

Because classical solutions are weak solutions, our theorem gives an affirmative
answer to Eells’s question. Further details on this question, including alternative
methods for showing that v is a weak solution, can be found in [1].

1. Proof of the Theorem.

To prove our theorem, we show that, for all balls B = B(xg, R) C Q, v agrees
with the classical solution of

3) {69 + 2DjuDju}D;ju=0 in B, w=v on JB.

The existence of u can be inferred from the remarks in [2, Section 15.6] and [2,
Theorem 15.14]; its existence is also an easy consequence of our approximate scheme.

To begin, we set ¢g = dist(B,09Q), and we fix a nonnegative C°° function ¢
supported in the unit ball of R™ with [ ¢(z)dz = 1. For ¢ € (0,eq), we define ve
by

ve(x) = /n v(x + e2)p(2) dz.

(Note that 0 < & < gg guarantees that z + ez € Q for z € supp ¢.) Then for any
convex nonnegative, increasing function G we have

/BG(|DUe|)dx§/7L/BG(|Dv(x+£z)|)dxgo(z) dz

< sup/G(|Dv(:z:+az)|)dz
|z|<1/B

< / G(|Dv]) de
B(:Co,R-i—E)

by using Jensen’s inequality and Tonelli’s theorem.
Now, let us be the C?(B) solution of

(4) {6Y + DjueDjuc}Dijue =0 in B, ue=v: on 9B

given by [2, Theorem 11.5]. Because supp |vs| < supgq |v|, the maximum principle
gives a bound on wu. which is independent of . It then follows from [7] (see [4,
pp. 62—63] for details) or from Example 2 on p.585 of [6] that for any compact
subset K of B there is a uniform bound on supg |Duc| independent of €. Classical
elliptic theory then gives uniform local bounds on all higher derivatives of us. Now
we use the weak form of (4), namely

(4) /exp(|Du5|2)Du€ -Dipdx =0
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for all ¢ € C} ().
The convexity of exp(t) implies that

exp(|Du5|2) < exp(|DUE|2) + 2exp(|DuE|2)DuE - D(ug — vg);

integrating this inequality over B and using (4)" with ¢ = ue — ve yields

/exp(|Du5|2)d:v§/ exp(|Dva|2)dx§/ exp(|Dve|?) d.
B B B(zo,R+¢)

Therefore [5 | Due |1 dz is uniformly bounded, so the Sobolev—Morrey imbedding
theorem and the Arzela—Ascoli theorem give a sequence (£(m)) with €(m) — 0 and
a function u € C%(B) such that Ug(m) — w uniformly in B. The uniform local

bounds on derivatives of the wug’s imply that (D2u€(m)) converges uniformly on

compact subsets of B, and hence u € C%(B) and u solves (3). Fatou’s lemma gives
/ exp(|Dul?) da §/ exp(|Dv|?) dx:
B B

and the uniform convexity of the map F, defined by E(p) = exp(|p|?), implies that
Du = Dwv a.e. Since u and v are continuous with u = v on 9B, it follows that u = v,
which proves the theorem.

2. A generalization.

In fact, the special form of the functional I is not important to the underlying
argument. This form is only used to obtain appropriate uniform estimates. Let us
suppose that I is given by

I(u):/ﬂf(a:,u,Du)d:c

and that F satisfies the following conditions
(F1) F(z,z,p) is convex in (z,p) and strictly convex in p,
(F2) F(x,z,p) >0, F € C3(Q xR xR")
for all (x,z,p) € @ x R x R™. Also write @ for the Euler-Lagrange operator
associated with I : Qu = div Fp(z, u, Du) — F>(x,u, Du) and suppose that
(Q1) The Dirichlet problem Qu = 0 in B(R), © = w on dB(R) is solvable in
o3 (W) for any w € C3(0B(R)),

(note that u is unique because of (F1) and the maximum principle),

(Q2) the C%(K) norm of u can be estimated in terms of |w|ze for any compact
subset K of B(R),

(Q3) a modulus of continuity for u can be estimated in terms of the modulus of
continuity of w.
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Structure conditions on F' which guarantee (Q1), (Q2), (Q3) can be found in [2],
[3], [5], [6]. Suppose also that there is a sequence (wy,) in C3(B), which converges
uniformly to v, such that I(wp,) — I(v). If uy, is the C3(B) solution of Quy, = 0
in B, wm = wm on 0B, convexity gives

(5) / F(z,um, Dup) dz < / F(z, wm, Dwy,) dz.

B B
The uniform estimates in (Q2) and (Q3) allow us to extract a convergent subse-
quence which converges to a classical solution of Qu = 0 in B, u = v on 0B. Finally
(5), and Fatou’s lemma imply that

/ F(z,u,Du)dx < / F(z,v,Dv)dz,
B B
so strict convexity again gives u = v.

The considerations of this section apply also to minimization problems on man-
ifolds, in particular the problem dealt with in [1]. In a coordinate neighborhood,
the functional F' can be written as

n

F(z,2,p) = eXp( > 4" (I)pipj) g(@)

i,j=1

for smooth functions ¢/ and ¢ such that (gij ) is a positive definite matrix and g is
a positive scalar, and x € ), some open subset of R™. If B is a ball whose closure
lies in £, the conditions (F1) and (F2) are clear. Moreover the only nonstandard
element in (Q1), (Q2), (Q3) is the gradient estimate, which is proved by rewriting
the Euler-Lagrange equation as

Z D; (exp(

1,j=1

m(ac)Dkquu) g (w)Dju) +
1
n

Zn_i x)DijuDjg(x )(eXp( > gkm(a?)Dkquu)) -0

k,m=1

“\H “ﬁM:

and applying the results of [5].
Ouly a small effort is needed to construct the sequence (wy, ). For each integer m,
choose g(m) > 0 so that B(R + ¢(m)) C Q,

9(2) —9(y)l < —g(x
(6)

27.]

),
max |g¥ (z) — g% (y)| i415n: Z (2)&;

for all z,y in B(R+¢(m)) such that |z —y[ < e(m). (The positivity and smoothness
of (¢"7) and g guarantee such an £(m).) Choosing wy, = (1 — %)vg(m), we infer
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from the vector version of Jensen’s inequality, along with Tonelli’s theorem and (6),

that

/ F(z, wm, Dwp,) dz < <1—|—l> / F(z,v, Dv)dz.
B m B(R+e(m))

The general properties of mollification imply that wy, € C3(B) and that the mod-
ulus of continuity of wy, can be estimated uniformly in m.

(1]
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