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On the boundedness of the mapping f → |f | in Besov spaces

P. Oswald

Abstract. For 1 ≤ p ≤ ∞, precise conditions on the parameters are given under which
the particular superposition operator T : f → |f | is a bounded map in the Besov space
Bs

p,q(R
1). The proofs rely on linear spline approximation theory.
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1. Introduction.

Due to applications in the theory of nonlinear partial differential equations, in-
vestigations on mapping properties of superposition (or Nemytzki) operators

(1) Tg : f → g(f)

where g : R1 → R1 is a given function, attracted some attention. We refer to [AZ],
and to [S1], [S2] for some recent overview concerning mapping properties in Besov-
Sobolev norms. Besides the study of general classes of superposition functions g,
a particular interest has been devoted to model cases such as g(t) = |t|α or g(t) =
t · |t|α−1, see e.g. [CW], [S2].
In this note we study the boundedness of the mapping

(2) T : f → |f |

in the scale of Besov spaces Bs
p,q on R1 where 1 ≤ p, q ≤ ∞, and s > 0. Using the

well-known arguments [MM1], [RS], the results for this one-dimensional situation
can be extended to Besov-Sobolev spaces on more general domains in Rn.
It is known (and simple to prove, see Section 2) that T is bounded if s < 1.

In particular, T is bounded in the Sobolev spaces W 1
p (cf. [MM2], [MM3] for some

further references and related results). More recently, a partial extension to the
parameters s > 1 has been proved in [RS]: if 1 ≤ s ≤ 2/p (1 ≤ p < 2) then T maps
Bs

p,q boundedly into Bs−ǫ
p,q for any ǫ > 0. On the other hand, simple examples show

that for s > 1 + 1/p the mapping (2) cannot be bounded in Besov-Sobolev spaces.
The following main result of our note completes the picture.

Theorem 1. Let the parameters p, q, s be as given above. Then the mapping T
defined by (2) is bounded in Bs

p,q if and only if 0 < s < 1 + 1/p.

Our proof relies on some tools from approximation theory for linear splines. In
Section 2 we give the necessary definitions for the Besov spaces and consider the
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trivial case s < 1. Then, for p = 1, the “if”-assertion of Theorem 1 is reduced to
an inequality for second order moduli of smoothness (Theorem 2). Moreover, the
counterexamples covering the “only if”-part of Theorem 1 are given (Theorem 3). In
the concluding Section 3 the proof of Theorem 1 is completed for the case 1 < p < ∞.
Note that Theorem 1 answers the problem of boundedness of the mapping T

also for the closely related scale of Sobolev-Slobodetski spacesW s
p . Moreover, some

extensions to the quasi-normed case p < 1 can be given as well.

2. The cases s < 1, p = 1, and counterexamples.

Recall some definitions. Let

(3) ωm(t, f)p = sup
0<h≤t

‖∆m
h f‖Lp

, t > 0 ,

be the m-th order modulus of smoothness of f ∈ Lp ≡ Lp(R
1), m = 1, 2, . . . .

These moduli can be used to give one of the numerous equivalent definitions of
the Besov spaces under consideration (cf. [N], [T]): Let 1 ≤ p, q ≤ ∞, s > 0, and
fix some integer m > s. Then f ∈ Lp belongs to Bs

p,q ≡ Bs
p,q(R

1) iff

(4) ‖f‖Bs
p,q

≡ ‖f‖Lp
+ ‖2ls · ωm(2

−l, f)p‖lq < ∞ .

Different m lead to the same space (with equivalent norms), as a rule we take
the smallest possible m. The lq norm is defined for bi-infinite sequences as usual.
Throughout the paper, by c, C, . . . we denote positive constants which are indepen-
dent of the variables in the corresponding formulae but may change from line to
line.
Note that from this definition of the Besov spaces the boundedness of the map-

ping (2) becomes obvious for s < 1: Since

|∆1h(Tf)(x)| ≤ |∆1hf(x)| , x ∈ R1 , h > 0 ,

for any f ∈ Lp, one has

(5) ω1(t, T f)p ≤ ω1(t, f)p , t > 0 .

Together with ‖Tf‖Lp
= ‖f‖Lp

, this yields

(6) ‖Tf‖Bs
p,q

≤ ‖f‖Bs
p,q

, f ∈ Bs
p,q , 0 < s < 1 ,

if we fix m = 1 in (4). Moreover, by the well-known characterization of the Sobolev
space W 1

p , 1 < p < ∞, via first order moduli of smoothness, the boundedness of T
follows for these spaces, too.
In order to deal with the case s ≥ 1, one might try to extend (5) to higher order

moduli of smoothness. We present a particular result in this direction.
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Theorem 2. For any f ∈ L1 we have the inequality

(7) ω2(t, T f)1 ≤ C · ω2(t, f)1 , t > 0.

For the proof of Theorem 2 we need a Jackson type estimate for best approxima-

tion by linear splines. Let π(k) = {x
(k)
i ≡ i · 2−k : i ∈ Z} be the bi-infinite uniform

partition of R1 with stepsize 2−k, and denote by S(k) the class of all piecewise linear

spline functions s ∈ C(R1) with respect to π(k), k ∈ Z. The following estimate can
be found, e.g., in [Sch], [O1].

Proposition 1. For any f ∈ Lp, 1 ≤ p ≤ ∞, there exist linear spline functions

s(k) ∈ S(k), k ∈ Z, such that

(8) ‖f − s(k)‖Lp
≤ C · ω2(2

−k, f)p .

Proposition 1 allows us to reduce (7) to a simpler inequality for linear spline
functions. Indeed, from (8) we immediately have

ω2(2
−k, T f)p ≤ ω2(2

−k, T s(k))p + 4 · ‖Tf − Ts(k)‖Lp

≤ ω2(2
−k, T s(k))p + 4 · ‖f − s(k)‖Lp

≤ ω2(2
−k, T s(k))p + c · ω2(2

−k, f)p

and
ω2(2

−k, s(k))p ≤ ω2(2
−k, f)p + 4 · ‖f − s(k)‖Lp

≤ c · ω2(2
−k, f)p

for all 1 ≤ p ≤ ∞, especially for p = 1. Thus, if we prove

(9) ω2(2
−k, T s(k))1 ≤ C · ω2(2

−k, s(k))1 , k ∈ Z ,

then (7) holds true.
To prove (9), we derive first a more technical estimate which will be used also

in Section 3. Fix some k ∈ Z, and drop for simplicity the upper indices (k) in
the notations. Let s be any linear spline over π. On each interval ∆i ≡ [xi−1, xi],
i ∈ Z, the spline s vanishes identically or possesses at most one simple zero-crossing.
Introduce the set J ⊂ Z of all those indices i for which ∆i contains exactly one
zero-crossing. If this happens at xi (resp. at xi−1) then s 6≡ 0 on ∆i+1 (resp. on
∆i−1) is assumed. If i1 < i2 are two subsequent indices from J then, as a rule,

(10) ∆si1 ·∆si2 ≤ 0 (∆si ≡ s(xi)− s(xi−1)) .

If (10) is violated, by the above construction of J there should be at least one index

i1 < ĩ < i2 such that s ≡ 0 on ∆ĩ and, therefore, ∆s̃i = 0. Including such indices

ĩ additionally into J , we may assume that (10) holds for all subsequent indices
from J .
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With this notation we will show that

(11) ω2(2
−k−2, T s)pp ≤ C ·

{

ω2(2
−k−2, s)pp + 2

−k ·
∑

i∈J

|∆si|
p

}

, 1 ≤ p < ∞ .

To see this, let 0 < h ≤ 2−k−2 , and denote by E the set of all x ∈ R1 such that
the interval [x, x + 2−k−1] contains a simple zero-crossing of s. Since s ≥ 0 resp.
s ≤ 0 on [x, x + 2h] whenever x ∈ R1\E, we get

‖∆2hTs‖p
Lp
=

∫

R1\E
|∆2hs|p dx +

∫

E
|∆2hTs|p dx .

The internal structure of E is very simple: it splits into small intervals Iν asso-
ciated with simple zeros ξν resp. a pair ξ′ν < ξ′′ν of subsequent zeros of s satisfying

ξ′′ν − ξ′ν < 2−k−1 (Figure 1 shows the typical situations).

Figure 1.

Obviously, for each such interval we have (with a proper choice of Ĩν as indicated
in Figure 1)

∫

Iν

|∆2hTs|p dx ≤ c ·

{∫

Iν

|∆2hs|p dx+

∫

Ĩν

|s|p dx

}

and observing that the Ĩν are chosen disjoint and satisfying the inclusion ∪ν Ĩν ⊆
∪i∈J∆i, we get

∫

E
|∆2hTs|p dx ≤ c ·

{

∫

E
|∆2hs|p dx +

∑

i∈J

∫

∆i

|s|p dx

}

.

But for i ∈ J we have
∫

∆i

|s|p dx ≤ c · 2−k · |∆si|
p .
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Putting things together and taking the infimum with respect to h, we arrive at (11).

With (11) at hand, we can now finish the proof of (9). Let p = 1, put s = s(k),
and use the notation

∆s
(k)
i = s(k)(xk

i )− s(k)(xk
i−1) , ∆2s

(k)
i = ∆s

(k)
i+1 −∆s

(k)
i , i, k ∈ Z .

If J = ∅ then (9) is straightforward. If J contains only one index i then from

s(k) ∈ L1 we get limj→∞∆s
(k)
j = 0, and by the identity

∆s
(k)
i = ∆s

(k)
j −

j−1
∑

r=i

∆2s
(k)
r

we obtain

2−k ·
∑

i∈J

|∆s
(k)
i | = 2−k · |∆s

(k)
i | ≤

∞
∑

r=i

2−k · |∆2s
(k)
r |

≤ c · ω2(2
−k, s(k))1 .

The latter inequality follows from the particular case p = 1 of the elementary
relation

(12) ω2(2
−k−1, s(k))pp ≈ 2−k ·

∑

r∈Z

|∆2s
(k)
r |p , s(k) ∈ S(k) ∩ Lp , 1 ≤ p < ∞ .

If card(J) > 1 then, for any pair of subsequent indices i1 < i2 from J , we have
according to (10)

|∆s
(k)
i1

|+ |∆s
(k)
i2

| = |∆s
(k)
i2

−∆s
(k)
i1

| =

∣

∣

∣

∣

∣

∣

i2−1
∑

r=i1

∆2s
(k)
r

∣

∣

∣

∣

∣

∣

≤
i2−1
∑

r=i1

|∆2s
(k)
r | .

This gives once again

2−k ·
∑

i∈J

|∆s
(k)
i | ≤ 2−k ·

∑

r∈Z

|∆2s
(k)
r | ≤ c · ω2(2

−k, s(k))1 .

Substituting into (11) (for p = 1) we arrive at (9), and Theorem 2 is completely
proved. �

Remark 1. The proof of Theorem 2 carries over to the case p < 1 without sub-
stantial changes, i.e. we have

(13) ω2(t, T f)p ≤ C · ω2(t, f)p , t > 0 , f ∈ Lp , 0 < p ≤ 1 .

This considerably improves the results of Section 1.2 in [RS]. Simple examples show
that an inequality analogous to (7) resp. (13) can hold neither for m = 2 and p > 1
nor for m > 2 (and arbitrary p).
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Theorem 3. (a) There exists a function f0 ∈ C∞
0 such that

Tf0 /∈ B
1+1/p
p,q , 1 ≤ p ≤ ∞ , q < ∞ .

(b) There exists a function f1 ∈ B
1+1/p
p,∞ such that

Tf1 /∈ B
1+1/p
p,∞ , 1 ≤ p ≤ ∞ .

Proof: The first example is quite obvious: Fix any f0 ∈ C∞
0 such that f0(x) ≡ x

on [−1, 1]. Then the result in (a) follows from

ωm(t, T f0)p ≈ t1+1/p , t → 0 , m = 2, 3, . . . , 1 ≤ p ≤ ∞ .

For the part (b), put

f1(x) = −x · ln(x) , x ∈ [0, 1/e] ,

and extend this function to [0,∞) such that f1 vanishes for x > 1 and is at least in
C3 on (0,∞). On (−∞, 0), we define f1 by a Hestenes type procedure

f1(x) =
5

2
· f1(−x)− 15 · f1(

−x

3
) +
27

2
· f1(

−x

9
) , x < 0 ,

which is designed to preserve the smoothness of functions up to the differentiabil-
ity order 3. It is easy to see that f1 is continuous and vanishes outside (−9, 1).
Moreover, checking the third order modulus of smoothness of f1 first with respect
to [0, 1/e] and then using the properties of the extension procedure, we get

ω3(t, f1)p ≈ t1+1/p , t → 0 , 1 ≤ p ≤ ∞ ,

which shows that f1 ∈ B
1+1/p
p,∞ . The details are left to the reader. Note that

functions analogous to f1 have often been used as counterexamples for Zygmund-
Lipschitz classes.
Now, observe that f1(x) < 0 in some interval [−x0, 0) where x0 > 0. This

follows from the extension procedure as described above. Thus, for p < ∞ and
0 < t < x0/3, we get

ω3(t, T f1)
p
p ≥

∫ t

0
|Tf1(x)− 3Tf1(x − t) + 3Tf1(x − 2t)− Tf1(x − 3t)|p dx

=

∫ t

0
|2f1(x) − (f1(x) − 3f1(x − t) + 3f1(x − 2t)− f1(x − 3t))|p dx

≥ c ·

∫ t

0
|f1(x)|

p dx − C · ω3(t, f1)
p
p .

But
∫ t

0
|f1(x)|

p dx =

∫ t

0
(x · |ln(x)|)p dx ≥ c · tp+1 · |ln(t)|p , 0 < t < 1/e .

This shows that f1 does not belong to B
1+1/p
p,∞ , 1 ≤ p < ∞. The case p = ∞ can

be dealt with analogously. Theorem 3 is established. �
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Remark 2. Theorem 3 covers the “only if” part of Theorem 1 while the “if” part
is proved till now for p = 1 (Theorem 2) and p = ∞ (see (6)). The remaining
case 1 < p < ∞ is contained in the next section. It is interesting to note that the
mapping T preserves the Lipschitz class

Lip 1 = {f ∈ C : ω1(t, f)∞ = O(t) , t → ∞}

(cf. (5)) but does not preserve the Zygmund class B1∞,∞.

3. The case 1 < p < ∞.

Throughout this section, let 1 < p < ∞, 1/p < s < 1 + 1/p, and m = 2 in
the definition of the Besov spaces be fixed. Under these assumptions one has the

continuous embedding of Bs
p,q into C, and the linear splines I(k)f ∈ S(k), k ∈ Z,

interpolating f ∈ Bs
p,q at the knots of π(k) (i.e. I(k)f(x

(k
i )) = f(x

(k)
i ), i ∈ Z) are

well-defined.
From Theorem 2 and Corollary 1 of [O2] (cf. also [O1]), we have

Proposition 2. If 1 < p < ∞ , 1 ≤ q ≤ ∞, 1/p < s < 1 + 1/p, then the sequence

of interpolating splines {I(k)f} determines an equivalent norm on Bs
p,q as follows:

(14) ‖f‖Bs
p,q

≈ ‖f‖Lp
+ ‖2ks · ‖f − I(k)f‖Lp

‖lq , f ∈ Bs
p,q .

With the special choice s(k) = I(k)f , k ∈ Z, we can repeat a part of the argu-
mentation in the proof of Theorem 2. Doing so we get

ω2(2
−k, T f)p ≤ ω2(2

−k, T s(k))p + 4 · ‖f − s(k)‖Lp
,

ω2(2
−k, s(k))p ≤ ω2(2

−k, f)p + 4 · ‖f − s(k)‖Lp

and by (11),

ω2(2
−k, T s(k))pp ≤ c · {ω2(2

−k, s(k))pp + 2
−k ·

∑

i∈J(k)

|∆s
(k)
i |p}

where J(k) denotes the index set J corresponding to s = s(k).
Thus, by Proposition 2,

(15)

‖Tf‖Bs
p,q

≤ c · {‖Tf‖Lp
+ ‖2ks · ω2(2

−k, T f)p‖lq}

≤ c · {‖f‖Lp
+ ‖2ks · ω2(2

−k, f)p‖lq + ‖2ks · ‖f − s(k)‖Lp
‖lq

+ ‖2ks · (2−k ·
∑

i∈J(k)

|∆s
(k)
i |p)1/p‖lq}

≤ c · {‖f‖Bs
p,q
+ ‖2k(s−1/p) · (

∑

i∈J(k)

|∆s
(k)
i |p)1/p‖lq} .
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For estimating the terms

ak ≡
∑

i∈J(k)

|∆s
(k)
i |p ,

we use this time a more sophisticated representation of the first order differences

∆s
(k)
i by second order differences ∆2s

(l)
r , l ≤ k. Fix some k ∈ Z, and introduce for

each i ∈ J(k) the hierarchy of dyadic intervals from the coarser partitions containing

∆
(k)
i :

∆
(k)
i ≡ ∆

(k)
i0

⊂ ∆
(k−1)
i1

⊂ ∆
(k−2)
i1

⊂ . . .

where the index sequence {i0, i1, i2, . . . } depends on i.

By the definition of the spline interpolants we have

∆s
(k)
i = f(x

(k)
i0
)− f(x

(k)
i0−1
)

=







1
2 (f(x

(k−1)
i1

)− f(x
(k−1)
i1−1

)) + 12 (f(x
(k)
i0
)− 2f(x

(k)
i0−1
) + (f(x

(k)
i0−2
))

1
2 (f(x

(k−1)
i1

)− f(x
(k−1)
i1−1

))− 12 (f(x
(k)
i0+1
)− 2f(x

(k)
i0
) + (f(x

(k)
i0
))

=
1

2
· (∆s

(k−1)
i1

±∆2s
(k)
r0 )

in dependence on whether ∆
(k)
i0
is the right or the left subinterval of ∆

(k−1)
i1

. Re-
peating this consideration, we obtain

∆s
(k)
i = 2−l ·∆s

(k−l)
il

+
l−1
∑

j=0

±2−j−1 ·∆2s
(k−j)
rj

, l = 1, 2, . . . .

Once again, we have three subcases. If J(k) = ∅ then nothing remains to be

estimated. If card(J(k)) = 1 then according to 2−l ·∆s
(k−l)
il

→ 0 for l → ∞ (which

follows from the boundedness of f), we have (cf. also (12))

(16)

ak = |∆s
(k)
i |p ≤





∞
∑

j=0

2−j−1 · |∆2s
(k−j)
rj

|





p

≤ c ·
∞
∑

j=0

2−j(p−ǫ) · |∆2s
(k−j)
rj

|p

≤ c · 2−k(p−ǫ) ·
k

∑

ν=−∞

2−ν(1+p−ǫ) · ω2(2
−ν , s(ν))pp , ǫ > 0 .

For card(J(k)) > 1, consider any pair of subsequent indices i < i′ from J(k).

According to (10), we have ∆s
(k)
i · ∆s

(k)
i′ ≤ 0. Obviously, there exists a smallest

l ≥ 1 such that il = i′l (the only exception occurs in the case i ≤ 0 < i′ which will
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be dealt with seperately). With this l we can estimate as follows :

|∆s
(k)
i |p + |∆s

(k)
i′ |p ≤ |∆s

(k)
i −∆s

(k)
i′ |p ≤

≤

∣

∣

∣

∣

∣

∣





l−1
∑

j=0

±2−j−1 · |∆2s
(k−j)
rj

|



 −





l−1
∑

j=0

±2−j−1 · |∆2s
(k−j)
r′j

|





∣

∣

∣

∣

∣

∣

p

≤ c ·
l−1
∑

j=0

2−j(p−ǫ) ·

(

|∆2s
(k−j)
rj

|p + |∆2s
(k−j)
r′j

|p
)

.

In the exceptional case i ≤ 0 < i′ there exists a smallest l such that il = 0 and

i′l = 1. Running the same estimations, we have to add only one more term 2
−l(p−ǫ) ·

|∆2s
(k−l)
0 |p to the above sum.

A simple monotonicity argument shows that rj ≤ r′j for any pair of subsequent

indices and any j = 0, . . . , l−1, with equality only for j = l−1 in the nonexceptional

case. From this fact and the construction of the hierarchies {∆
(k−j)
ij

}, one easily

observes that if we take the sum of the above estimates with respect to all pairs of

subsequent indices i < i′ from J(k), any index rj will not be repeated more than
four times. Thus, we arrive once again at (16).

It remains to substitute (16) into (15). Then, fixing some ǫ < p(1 + 1/p− s), we
obtain

‖Tf‖Bs
p,q

≤

≤ c · {‖f‖Bs
p,q
+ ‖2k(ǫ−p(1+1/p−s))/p · (

k
∑

ν=−∞

2ν(1+p−ǫ) · ω2(2
−ν , s(ν))pp)

1/p‖lq}

≤ c · {‖f‖Bs
p,q
+ ‖2k(ǫ−p(1+1/p−s))/p ·

k
∑

ν=−∞

2ν(1+p−ǫ)/p · ω2(2
−ν , s(ν))p‖lq}

≤ c · {‖f‖Bs
p,q
+ ‖2νs · ω2(2

−ν , s(ν))p‖lq} ≤ c · ‖f‖Bs
p,q

,

where in the last step the same inequalities have been used that already led to (15).
This completes the proof of Theorem 1. �

Remark 3. Though the methods used for the proof of our Theorem 1 do not
automatically generalize to other superposition functions g, the result itself indicates
that one can expect some assertions for smoothness parameters s > 1 for larger
classes of g (cf. [MM2], [MM3], [S1], [S2] for more information and references).

Note added in proof. After submitting the paper, we have been informed that the
same result has been obtained by G. Bourdaud, Y. Meyer in [BM] using a completely
different method.
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