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Uniqueness of a martingale—coboundary
decomposition of stationary processes

PAVEL SAMEK, DALIBOR VOLNY

Abstract. In the limit theory for strictly stationary processes f o T% i € 7Z, the decompo-
sition f = m + g — g o T proved to be very useful; here T is a bimeasurable and measure
preserving transformation an (m o T?) is a martingale difference sequence. We shall study
the uniqueness of the decomposition when the filtration of (m o T?%) is fixed. The case
when the filtration varies is solved in [13]. The necessary and sufficient condition of the
existence of the decomposition were given in [12] (for earlier and weaker versions of the
results see [7]).
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1. Introduction and results.

Let (22, A, P) be a probability space and T' an automorphism on €, i.e. T is
a bijective, bimeasurable and measure preserving mapping of {2 onto itself. Let

1) f=m+g—goT

where (m o Ti) is a martingale difference sequence, g is a measurable function.
Throughout this paper, up to exactly specified cases, the equalities are to be under-
stood to hold almost surely w.r. to P. The martingale generated by the sequence
of m o T is sometimes called the approximating martingale, see [7]. We have

?:_01 (9g—goT)o T? = g — g o T™, hence the limit behavior of the partial sums
of the process (f o T%) can be well approximated by those of the martingale differ-
ence sequence (m o T*%). This fact made decomposition (1) highly useful in proving
limit theorems for stationary processes (see e.g. [6], [7], [9]). For f integrable or
square integrable, necessary and sufficient conditions for the existence of the de-
composition are given in [12]. Here we shall be concerned with the question of the
uniqueness of the decomposition (1). In this paper we shall suppose that the fil-
tration with respect to which (m o T%) is a martingale difference sequence, is fixed.
The other problem, i.e. the uniqueness of (1) when the filtration can be changed, is
solved in [13]. Recall that a filtration of a strictly stationary martingale difference
sequence (m o T?) is given by an invariant o-algebra M where M C T~'M and
m = E(m|T~'M) — E(m|M) (see [7]).
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Theorem 1. Let f be a measurable function and M C A an invariant c—algebra,
ie. M C T-IM. Suppose there exist functions my, mo € L' and measurable
functions g1, g2 such that

(2) f=mi+g1—giocT=ma+gs—gaoT

and (mq o T%), (mg o T%) are two sequences of martingale differences, each with
the filtration T~*M. Then mj; = mgo and g1 — g2 is an invariant function (i.e.

g1—92=1(91—g2)oT).

As we can easily see, (2) is equivalent to
mi—mz=g2—g1— (92 —g1)oT.

By the assumptions ((mm1 —mg)oT"?) is a martingale difference sequence. Theorem 1
can thus be expressed in the following way:

There does not exist a nontrivial martingale difference sequence (m o T?) with
(3) m=g—goT

for some measurable function g.

When considering a martingale difference sequence we have assumed that it is
integrable. Without the integrability of m the decomposition need not be unique:

Theorem 2. There is a (nonintegrable) stationary and ergodic Markov chain
(X;)icz which satisfies
E(Xpt1|Xp, bk <n) =Xy, n €z,
ie. for
Yn=Xn1-Xn
(3) is fulfilled (notice that (Yy,) is a non integrable martingale difference sequence).

We assume that the conditional expectation of nonintegrable random variables
is defined as in [10].

2. Proofs.
For —oo < a < b < o0, Hp(a,b;Y1,...,Yy) denotes the number of upcrossings
of the interval (a,b) by a finite sequence of random variables Y7,...,Y,. We will

need the following lemma which estimates the number of upcrossings of the sums
-1 ;

Ezﬂ:o (g—goT)oT"

Lemma. Let the measure P be ergodic. Let g be a measurable function and F

the distribution function of g, i.e. F(z) = P(g < z), x € R. If there exists an x € R
such that

(4) Fx+a)—F(z)>0 and F(x—a—5b)>0
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for some real numbers 0 < a < b < oo, then for Hy, = Hp(a,b;g —goT,g—go
T27"'ag_QOTn)

1
limsup —FH,, > 0.

n—oo "N
PRrROOF: Let us denote
A={z<g<z+al, B={g<z—a-"b}.

By (4), P(A) > 0 and P(B) > 0. From Birkhofl’s ergodic theorem we get

1 :
= Zx{B} oT" —— P(B) a. s.,
n n—oo

=1

where
1, w € B,

B} w) = { S

By the theorem of Jegorov, the convergence is uniform on a set the measure of
which is arbitrarily close to 1. We can thus take C' € A and N € N such that

P(C)>1-P(A)/2,
(5) - -
Z)({B}OTZ >1 onC.
i=1

Therefore,

Cc{3i,1<i<N:goT'<uz—a—b}
AnC c{z<g<z+a, Hi,lgigN:gOTi<x—a—b}
cl{r<g<z+4a, F,1<i<N:g—goT'>a+b}

and consequently for n > 1

ANT~"N(ANC) c
cl{e<g<z+a, z<goT™N <z+a,
i, 1<i<N:goT™W —goT™W+is ¢ 1p)
c{-a<g—goT™W<a, Fi,1<i<N:goT™W —goT™™ ¥ > q+b}
c{g—goT™W <a, Fi,1<i<N:g—goT™N+i>p}.
TN

TTLN+1 TTLN+N
)

The last event implies that the sequence g—go , §g—go
upcrosses the interval (a, b) at least once. Therefore

.1 g—go

AmT_nN(Am C)C {HnN-l-N > Hyn + 1}, n =1,
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which together with

n
> x{H( w2 Hiy +1} < Hipyyy
j=1

gives
1 ¢ : 1
- > xfAnTINANC)} < ~Hu 1)
J=1
By integration we get

n

S PANTIN(ANC) < LBH . > 1
n

j=1

(6)

It is a corollary of Birkhoff’s ergodic theorem that the left-hand side of (6) converges
to E(x{A}YE(x{AN C}ZIy)) as n — oo where Iy = {A' € AT NA = A"}
(see [2]). From (5) we get P(ANC) > 0, hence

EQ{ATEO{ANCHIN)) > 0.

From this and from (6) we get

1 1 1
limsup —FH, > N limsup —EH, 1)y > 0.

n—oo M n—oo M

PrOOF OF THEOREM 1: For a function hA and n > 1 we denote
n—1 '
Sp(h) = hoT".
=0

Let
m=mi—ma2, g=92—91.
Then m € L1,
m=g—goT

and (mo Ti) is a stationary sequence of martingale differences with the filtration
T7*M. We are to prove m = 0.
Sp(m) is a martingale, therefore by the Doob’s upcrossing inequality (see [1])

E(Sn(m) —a)* _ ElSn(m)| _lal

b—a - b—-a b—a

EHp(a,b; S1(m),...,Sp(m)) <

foralln>1, —co <a <b< 0.
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First, let us suppose that the measure P is ergodic. By the (L') ergodic theorem
1
—FE|Sn(m)| — 0, n — oo.
n

We have Sy, (m) = g — g oT"™, hence by the Lemma
Flz+a)—F(x)=0 or Flx—a—5)=0

for all z € R, a,b € R, 0 < a < b. This, however, is possible if and only if g is
constant (and hence m = 0).

The nonergodic case can be easily derived using the ergodic one. Let us suppose
that the family (P“;w € Q) of regular conditional probabilities w.r. to P and the o-
algebra 7 of invariant sets from A exists (otherwise we can translate the problem to
a suitable factor, see [11]). Following [11], [4], almost every (P) of the measures P¥
is ergodic and (moT?) is an integrable martingale difference sequence in (Q, A, P*).
Therefore m = 0 a.s. (P¥) for almost all (P) P, hence m = 0 a.s. (P). O

PROOF OF THEOREM 2: Let A = {0,420 £21 ...}, @ = A% and X,, : Q — A be
the n-th coordinate projection, n € Z. We define functions® i, p on A, A x A:

1 1
MOZ—, /ij:_ fOI’jEA, .77&0
p0.0)=0,  p0.£1) =

1
p(2,0) = p(i, 2i) = 3 forie A, i#0,
p(i,j) = 0 for other (7,7) € A x A.

Following [3], i and p generate a stationary Markov measure P if and only if

(i) doulil=1,

€A

(ii) > pli,j)=1 forallic A,
JEA

(i) > ulilp(i, §) = plj]  for all j € A.
€A

By [8], 9.11., Theorem 1, Lemma 2 this Markov measure P is ergodic if and only
if any bounded sequence v[j], j € A, satisfying

(iv) > vlilpli,§) = vlil, i€A,

JEA

IThe construction is inspired by [5], Example 1.
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is constant.
(i), (ii) and (iii) follow immediately from the definition.
Let for some bounded sequence (v[i]);ca (iv) hold, i.e.

SON 1) = [0

and
SO0l +vRi) =i, €A, %0

Suppose first #[0] = 0. Then

v[2i| =2v[i], i€A, i#£0,
which means v[i] =0, i € A, since (v[i]) is bounded. In the general case we write
(7) v[i] = (v[i] — v[0]) + v[0] = A[i] + v[0].

Sequence (A[i]) is bounded, A[0] = 0 and this solves (iv). Indeed, the constant
sequences solve (iv) and the solutions of (iv) form linear space. Thus from the
situation considered above we deduce A\[i] =0, i € A, and hence v[i] = v[0],i € A,
by (7).

The distribution of (X,,n € Z) is P and therefore (X,,) is a stationary ergodic
Markov chain. It follows from the Markov property that

(8) E(Xn+1|Xka k< n) = E(Xn+1|Xn)-

By the definition of p we have

E(Xp41|Xn =14) =Y jp(i,j) =i
JEA

for all i € A. Hence E(X,+1|Xn) = Xp, which together with (8) proves the
Theorem. 0
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