A note on the Runge–Kutta method for stochastic differential equations

CSABA TÖRÖK

Abstract. In the paper the convergence of a mixed Runge–Kutta method of the first and second orders to a strong solution of the Ito stochastic differential equation is studied under a monotonicity condition.

Keywords: stochastic differential equation, Runge–Kutta method, monotonicity and Lipschitz condition

Classification: 60H10, 65L05

1. Introduction.

We consider the Ito stochastic differential equation (SDE)

$$dX_t = f(t, X_t) dt + g(t, X_t) dW_t$$

with initial condition $X_0 = 0$, where $\{W_t\}$ is a standard Wiener process, $t \in [0, T]$, the random functions f, g are continuous functions of x, predictable with respect to (ω, t) and satisfying the linear growth condition, the function g satisfies the Lipschitz condition and f the monotonicity condition.

The convergence of Runge–Kutta (RK) approximation methods in the case when the function f is subjected to the stronger Lipschitz condition instead of the monotonicity condition is well known [1]. In [2] the convergence of the Euler scheme is proved provided f satisfies the monotonicity condition. The question is whether the RK approximation methods of higher orders can be applied under this condition. Our aim is to show a convergence of a generalized RK iterative scheme. In contradiction to the cited papers we use a second order RK approximation instead of the Euler scheme for the function g(t, x). This result can be apparently generalized to the RK methods of any order n.

2. Results.

Let us have a sampling from [0, T]: h = T/n, $t_0 = 0$,

$$t_{i+1} = t_i + h$$
, $i = 0, 1, \dots, n-1$, and let $\Delta W_i = W_{t_{i+1}} - W_{t_i}$.

Lemma. Let $(\Omega, \mathcal{F}, \mathbf{P})$ be a complete probability space and $\{\mathcal{F}_t, t \in \mathcal{R}_+\}$ a standard filtration. Assume that the functions $f: \Omega \times \mathcal{R}_+ \times \mathcal{R} \to \mathcal{R}$ and $g: \Omega \times \mathcal{R}_+ \times \mathcal{R} \to \mathcal{R}$ \mathcal{R} are continuous functions of $x \in \mathcal{R}$, predictable with respect to (ω, t) , that $q(\omega,...) \in \mathcal{C}^2$ for any ω , and that for every $\omega \in \Omega$, $t \geq 0$, $x, y \in \mathcal{R}$, they fulfil the conditions

- (i) $f^2(t,x) + g^2(t,x) \le k_1(1+x^2)$ the linear growth condition,
- (ii) $2(x-y)(f(t,x) f(t,y)) \le k_2(x-y)^2$ the monotonicity condition, (iii) $(g(t,x) g(t,y))^2 \le k_3(x-y)^2$ the Lipschitz condition.

Assume further that for every $\omega \in \Omega$, $t \ge 0$, $x, y \in \mathcal{R}$, (iv) $\frac{\partial}{\partial x}g(t,x)$ satisfies the linear growth condition

$$\left(\frac{\partial}{\partial x}g(t,x)\right)^2 \le k_4(1+x^2),$$

(v) $g(t,x)\frac{\partial}{\partial x}g(t,x)$ satisfies the Lipschitz condition

$$\left|g(t,x)\frac{\partial}{\partial x}g(t,x) - g(t,y)\frac{\partial}{\partial x}g(t,y)\right|^2 \le k_5(x-y)^2,$$

(vi) $\frac{\partial^2}{\partial x^2}g(t,x)$ and $\frac{\partial^2}{\partial t^2}g(t,x)$ are bounded. Then the iterative scheme

(1)
$$\widehat{X}_{i+1} = \widehat{X}_i + f(t_i, \widehat{X}_i)h + \frac{1}{2}(g(t_i, \widehat{X}_i) + g(t_{i+1}, \widetilde{X}_{i+1}))\Delta W_i, \\ \widetilde{X}_{i+1} = \widehat{X}_i + f(t_i, \widehat{X}_i)h + g(t_i, \widehat{X}_i)\Delta W_i, \quad \widehat{X}_0 = 0, \quad i = 0, 1, \dots, n-1,$$

converges in quadratic mean to the solution of the Stratonovich SDE

(2)
$$dY_t = f(t, Y_t) dt + g(t, Y_t) \circ dW_t, \quad Y_0 = 0,$$

that is

$$\max_{0 \le i \le n} \mathbf{E} |Y_{t_i} - \widehat{X}_i|^2 = \mathbf{O}(h^{1/2})$$

as h tends to 0.

PROOF: The Stratonovich SDE (2) is equivalent to the Ito SDE

$$dY_t = f(t, Y_t) dt + \frac{1}{2}g(t, Y_t) \frac{\partial}{\partial x}g(t, Y_t) dt + g(t, Y_t) dW_t, \quad Y_0 = 0.$$

We set $\hat{Y}_0 = 0$ and

$$\widehat{Y}_{i+1} = \widehat{Y}_i + f(t_i, \widehat{Y}_i)h + \frac{1}{2}g(t_i, \widehat{Y}_i)\frac{\partial}{\partial x}g(t_i, \widehat{Y}_i)h + g(t_i, \widehat{Y}_i)\Delta W_i.$$

The results of [2] imply that $\mathbf{E} \max_{0 \leq i \leq n} |Y_{t_i} - \hat{Y}_i|^2 = \mathbf{O}(h^{1/2})$. Since $|Y_{t_i} - \hat{X}_i| \leq |Y_{t_i} - \hat{Y}_i| + |\hat{Y}_i - \hat{X}_i|$, it is sufficient to show that $\mathbf{E}|\hat{Y}_i - \hat{X}_i|^2 = \mathbf{O}(h)$ for every $i = 0, 1, \ldots, n$. Using the Taylor expansion of g(t, x) we get

$$g(t_{i+1}, \tilde{X}_{i+1}) = g(t_i, \hat{X}_i) + \frac{\partial}{\partial x} g(t_i, \hat{X}_i) (f(t_i, \hat{X}_i)h + g(t_i, \hat{X}_i) \Delta W_i) + \frac{1}{2} \frac{\partial^2}{\partial x^2} g(t_i + \alpha_i h, \theta_i) (f(t_i, \hat{X}_i)h + g(t_i, \hat{X}_i) \Delta W_i)^2 + \frac{\partial}{\partial t} g(t_i, \hat{X}_i)h + \frac{1}{2} \frac{\partial^2}{\partial t^2} g(t_i + \alpha_i h, \theta_i)h^2,$$

where $\theta_i = \hat{X}_i + \alpha_i (\tilde{X}_{i+1} - \hat{X}_i), 0 < \alpha_i < 1.$ We write the difference $\hat{X}_{i+1} - \hat{Y}_{i+1}$ in the form

$$\begin{split} \widehat{X}_{i+1} - \widehat{Y}_{i+1} &= \widehat{X}_i - \widehat{Y}_i + h(f(t_i, \widehat{X}_i) - f(t_i, \widehat{Y}_i)) + \Delta W_i(g(t_i, \widehat{X}_i) - g(t_i, \widehat{Y}_i)) + \\ &+ \frac{1}{2}h(g(t_i, \widehat{X}_i)\frac{\partial}{\partial x}g(t_i, \widehat{X}_i) - g(t_i, \widehat{Y}_i)\frac{\partial}{\partial x}g(t_i, \widehat{Y}_i)) + \\ &+ \frac{1}{2}g(t_i, \widehat{X}_i)\frac{\partial}{\partial x}g(t_i, \widehat{X}_i)(\Delta W_i^2 - h) + \frac{1}{2}f(t_i, \widehat{X}_i)\frac{\partial}{\partial x}g(t_i, \widehat{X}_i)h\Delta W_i + \\ &+ \frac{1}{4}\frac{\partial^2}{\partial x^2}g(t_{i+1} + \alpha_i h, \theta_i)(f(t_i, \widehat{X}_i)h + g(t_i, \widehat{X}_i)\Delta W_i)^2\Delta W_i + \\ &+ \frac{1}{2}\frac{\partial}{\partial t}g(t_i, \widehat{X}_i)h\Delta W_i + \frac{1}{4}\frac{\partial^2}{\partial t^2}g(t_i + \alpha_i h, \theta_i)h^2\Delta W_i. \end{split}$$

We square both sides of the equation and take the expectation. After estimating the members on the right-hand side, as e.g.

$$\mathbf{E}\{2(\widehat{X}_i - \widehat{Y}_i)h(f(t_i, \widehat{X}_i) - f(t_i, \widehat{Y}_i))\} \le hk_2 \mathbf{E}(\widehat{X}_i - \widehat{Y}_i)^2$$

and

$$\begin{split} & \mathbf{E}\{2\Delta W_{i}(g(t_{i},\widehat{X}_{i})-g(t_{i},\widehat{Y}_{i}))\frac{1}{2}g(t_{i},\widehat{X}_{i})\frac{\partial}{\partial x}g(t_{i},\widehat{X}_{i})(\Delta W_{i}^{2}-h)\} \leq \\ & \leq k_{3}^{\frac{1}{2}}\mathbf{E}\{|\widehat{X}_{i}-\widehat{Y}_{i}|(k_{1}(1+\widehat{X}_{i}^{2}))^{\frac{1}{2}}(k_{4}(1+\widehat{X}_{i}^{2}))^{\frac{1}{2}}\Delta W_{i}(\Delta W_{i}^{2}-h)\} \leq \\ & \leq k\mathbf{E}\{\mathbf{E}\{|\widehat{X}_{i}-\widehat{Y}_{i}|(1+\widehat{X}_{i}^{2})\Delta W_{i}(\Delta W_{i}^{2}-h)|\mathcal{F}_{i}\}\} \leq \\ & \leq k\mathbf{E}\{|\widehat{X}_{i}-\widehat{Y}_{i}|(1+\widehat{X}_{i}^{2})\mathbf{E}\{\Delta W_{i}(\Delta W_{i}^{2}-h)|\mathcal{F}_{i}\}\} \leq \\ & \leq k\mathbf{E}\{|\widehat{X}_{i}-\widehat{Y}_{i}|(1+\widehat{X}_{i}^{2})\mathbf{E}\{\Delta W_{i}(\Delta W_{i}^{2}-h)|\mathcal{F}_{i}\}\} \leq \\ & \leq c(\mathbf{E}|\widehat{X}_{i}-\widehat{Y}_{i}|^{2})^{\frac{1}{2}}\mathbf{E}\{\Delta W_{i}(\Delta W_{i}^{2}-h)\} = 0 \end{split}$$

we obtain

$$\mathbf{E}|\widehat{Y}_{i+1} - \widehat{X}_{i+1}|^2 \le \mathbf{E}|\widehat{Y}_i - \widehat{X}_i|^2 + C_1 h \mathbf{E}|\widehat{Y}_i - \widehat{X}_i|^2 + C_2 h^2.$$

Hence we conclude (see e.g. [2]) that $\mathbf{E}|\hat{Y}_{i+1} - \hat{X}_{i+1}|^2 = \mathbf{O}(h)$. This completes the proof of the lemma.

From the lemma one easily deduces the following

C. Török

Theorem. If f(t, x) and g(t, x) fulfil the conditions of Lemma then

$$\sup_{0 \le t \le T} \mathbf{E} |Y_t - \widehat{X}_t|^2 = \mathbf{O}(h^{\frac{1}{2}}),$$

where we set

$$\widehat{X}_{t} = \widehat{X}_{i} + \frac{t - t_{i}}{t_{i+1} - t_{i}} (\widehat{X}_{i+1} - \widehat{X}_{i}),$$

$$t_{i} \le t \le t_{i+1}, \quad i = 0, 1, \dots, n - 1,$$

and \hat{X}_i, Y_t are defined by (1), (2), respectively.

We note that the conclusions of Lemma and Theorem remain valid, if (iv), (v) are replaced by the assumption that f(x,t), g(x,t) and $\frac{\partial}{\partial x}g(t,x)$ are bounded.

References

- Rümelin W., Numerical treatment of stochastic differential equations, SIAM J. Numer. Anal. 19 (1982), 604–613.
- [2] Aljushina L.A., Lomanyje Eulera dlja uravnenij Ito s monotonnymi koefficientami, Teor. Veroyatnost. i Primenen. 33 (1987), 367–373.

DEPARTMENT OF MATHEMATICS, VŠT, ŠVERMOVA 9, 040 01 KOŠICE, CZECHOSLOVAKIA

(Received October 26, 1990, revised October 10, 1991)