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A note on the Runge–Kutta method

for stochastic differential equations
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Abstract. In the paper the convergence of a mixed Runge–Kutta method of the first and

second orders to a strong solution of the Ito stochastic differential equation is studied under
a monotonicity condition.
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1. Introduction.

We consider the Ito stochastic differential equation (SDE)

dXt = f(t, Xt) dt+ g(t, Xt) dWt

with initial condition X0 = 0, where {Wt} is a standard Wiener process, t ∈ [0, T ],
the random functions f , g are continuous functions of x, predictable with respect
to (ω, t) and satisfying the linear growth condition, the function g satisfies the
Lipschitz condition and f the monotonicity condition.

The convergence of Runge–Kutta (RK) approximation methods in the case when
the function f is subjected to the stronger Lipschitz condition instead of the mono-
tonicity condition is well known [1]. In [2] the convergence of the Euler scheme is
proved provided f satisfies the monotonicity condition. The question is whether the
RK approximation methods of higher orders can be applied under this condition.
Our aim is to show a convergence of a generalized RK iterative scheme. In contra-
diction to the cited papers we use a second order RK approximation instead of the
Euler scheme for the function g(t, x). This result can be apparently generalized to
the RK methods of any order n.

2. Results.

Let us have a sampling from [0, T ] : h = T/n, t0 = 0,

ti+1 = ti + h, i = 0, 1, . . . , n − 1, and let ∆Wi =Wti+1 − Wti .
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Lemma. Let (Ω,F ,P) be a complete probability space and {Ft, t ∈ R+} a stan-
dard filtration. Assume that the functions f : Ω×R+×R → R and g : Ω×R+×R →
R are continuous functions of x ∈ R, predictable with respect to (ω, t), that
g(ω, . , . ) ∈ C2 for any ω, and that for every ω ∈ Ω, t ≥ 0, x, y ∈ R, they fulfil
the conditions

(i) f2(t, x) + g2(t, x) ≤ k1(1 + x2) — the linear growth condition,
(ii) 2(x − y)(f(t, x)− f(t, y)) ≤ k2(x − y)2 — the monotonicity condition,
(iii) (g(t, x)− g(t, y))2 ≤ k3(x − y)2 — the Lipschitz condition.

Assume further that for every ω ∈ Ω, t ≥ 0, x, y ∈ R,

(iv) ∂
∂xg(t, x) satisfies the linear growth condition

( ∂

∂x
g(t, x)

)2
≤ k4(1 + x2),

(v) g(t, x) ∂
∂xg(t, x) satisfies the Lipschitz condition

∣∣∣g(t, x)
∂

∂x
g(t, x)− g(t, y)

∂

∂x
g(t, y)

∣∣∣
2
≤ k5(x − y)2,

(vi) ∂2

∂x2
g(t, x) and ∂2

∂t2
g(t, x) are bounded.

Then the iterative scheme

(1)
X̂i+1 = X̂i + f(ti, X̂i)h+

1

2
(g(ti, X̂i) + g(ti+1, X̃i+1))∆Wi,

X̃i+1 = X̂i + f(ti, X̂i)h+ g(ti, X̂i)∆Wi, X̂0 = 0, i = 0, 1, . . . , n − 1,

converges in quadratic mean to the solution of the Stratonovich SDE

(2) dYt = f(t, Yt) dt+ g(t, Yt) ◦ dWt, Y0 = 0,

that is
max
0≤i≤n

E
∣∣Yti − X̂i

∣∣2 = O(h1/2)

as h tends to 0.

Proof: The Stratonovich SDE (2) is equivalent to the Ito SDE

dYt = f(t, Yt) dt+
1

2
g(t, Yt)

∂

∂x
g(t, Yt) dt+ g(t, Yt) dWt, Y0 = 0.

We set Ŷ0 = 0 and

Ŷi+1 = Ŷi + f(ti, Ŷi)h+
1

2
g(ti, Ŷi)

∂

∂x
g(ti, Ŷi)h+ g(ti, Ŷi)∆Wi.
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The results of [2] imply that Emax0≤i≤n

∣∣Yti − Ŷi

∣∣2 = O(h1/2). Since |Yti − X̂i| ≤

|Yti − Ŷi| + |Ŷi − X̂i|, it is sufficient to show that E|Ŷi − X̂i|
2 = O(h) for every

i = 0, 1, . . . , n. Using the Taylor expansion of g(t, x) we get

g(ti+1, X̃i+1) = g(ti, X̂i) +
∂

∂x
g(ti, X̂i)(f(ti, X̂i)h+ g(ti, X̂i)∆Wi)+

+
1

2

∂2

∂x2
g(ti + αih, θi) (f(ti, X̂i)h+ g(ti, X̂i)∆Wi)

2+

+
∂

∂t
g(ti, X̂i)h+

1

2

∂2

∂t2
g(ti + αih, θi)h

2,

where θi = X̂i + αi(X̃i+1 − X̂i), 0 < αi < 1.

We write the difference X̂i+1 − Ŷi+1 in the form

X̂i+1 − Ŷi+1 = X̂i − Ŷi + h(f(ti, X̂i)− f(ti, Ŷi)) + ∆Wi(g(ti, X̂i)− g(ti, Ŷi))+

+
1

2
h(g(ti, X̂i)

∂

∂x
g(ti, X̂i)− g(ti, Ŷi)

∂

∂x
g(ti, Ŷi))+

+
1

2
g(ti, X̂i)

∂

∂x
g(ti, X̂i)(∆W 2

i − h) +
1

2
f(ti, X̂i)

∂

∂x
g(ti, X̂i)h∆Wi+

+
1

4

∂2

∂x2
g(ti+1 + αih, θi)(f(ti, X̂i)h+ g(ti, X̂i)∆Wi)

2∆Wi+

+
1

2

∂

∂t
g(ti, X̂i)h∆Wi +

1

4

∂2

∂t2
g(ti + αih, θi)h

2∆Wi.

We square both sides of the equation and take the expectation. After estimating
the members on the right-hand side, as e.g.

E{2(X̂i − Ŷi)h(f(ti, X̂i)− f(ti, Ŷi))} ≤ hk2E(X̂i − Ŷi)
2

and

E{2∆Wi(g(ti, X̂i)− g(ti, Ŷi))
1

2
g(ti, X̂i)

∂

∂x
g(ti, X̂i)(∆W 2

i − h)} ≤

≤ k
1

2

3 E{|X̂i − Ŷi|(k1(1 + X̂2i ))
1

2 (k4(1 + X̂2i ))
1

2∆Wi(∆W 2
i − h)} ≤

≤ kE{E{|X̂i − Ŷi|(1 + X̂2i )∆Wi(∆W 2
i − h)|Fi}} ≤

≤ kE{|X̂i − Ŷi|(1 + X̂2i )E{∆Wi(∆W 2
i − h)|Fi}} ≤

≤ kE{|X̂i − Ŷi|(1 + X̂2i )}E{∆Wi(∆W 2
i − h)} ≤

≤ c(E|X̂i − Ŷi|
2)
1

2E{∆Wi(∆W 2
i − h)} = 0

we obtain

E|Ŷi+1 − X̂i+1|
2 ≤ E|Ŷi − X̂i|

2 + C1hE|Ŷi − X̂i|
2 + C2h

2.

Hence we conclude (see e.g. [2]) that E|Ŷi+1 − X̂i+1|
2 = O(h). This completes the

proof of the lemma. �

From the lemma one easily deduces the following
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Theorem. If f(t, x) and g(t, x) fulfil the conditions of Lemma then

sup
0≤t≤T

E|Yt − X̂t|
2 = O(h

1

2 ),

where we set

X̂t = X̂i +
t − ti

ti+1 − ti
(X̂i+1 − X̂i),

ti ≤ t ≤ ti+1, i = 0, 1, . . . , n − 1,

and X̂i, Yt are defined by (1), (2), respectively.

We note that the conclusions of Lemma and Theorem remain valid, if (iv), (v)

are replaced by the assumption that f(x, t), g(x, t) and ∂
∂xg(t, x) are bounded.
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