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On superpositionally measurable

semi–Carathéodory multifunctions
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Abstract. For multifunctions F : T × X → 2Y , measurable in the first variable and semi-
continuous in the second one, a relation is established between being product measurable
and being superpositionally measurable.
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Introduction.

In various problems, one encounters a superposition of the type F
(

t, G(t)
)

,
where F and G are, in general, multifunctions and where it is often required that
the mentioned superposition is measurable for every measurable multifunction G.
A multifunction of such a property is called superpositionally measurable. It is
known that under suitable assumptions on the spaces T , X and Y , Carathéodory
multifunction F : T × X → 2Y , i.e. measurable in t and continuous in x, is su-
perpositionally measurable (see [1], [6], [8], [11], [12]). Unfortunately, when F is
semicontinuous (in some sense) in x, such a multifunction, henceforth called semi-
Carathéodory, may not be already superpositionally measurable. In this note we
discuss the connection between superpositional measurability and product measur-
ability of semi-Carathéodory multifunctions.

Preliminaries.

Thus, given two arbitrary nonempty sets X , Y and denoting by 2Y the family of
all subsets of Y, by a multifunction Φ : X → 2Y we mean a mapping Φ of a domain X
and a range contained in 2Y . Let Σ be a σ-field of subsets of X and let Y be
a topological space. A multifunction Φ : X → 2Y is said to be Σ-measurable (resp.
weakly Σ-measurable) if the set Φ−(A) = {x ∈ X : Φ(x) ∩ A 6= ∅} belongs to Σ for
every closed (resp. open) set A ⊂ Y. It is known (see [2], [3], [13]) that when (X ,Σ) is
a complete measurable space (i.e. there is a complete σ-finite measure defined on Σ)
and Y is a Polish space (i.e. Y is separable and metrisable by a complete metric),
then these two measurability concepts coincide for a closed values multifunction.
Let X be a topological space, too. A multifunction Φ : X → 2Y is said to be lower
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(resp. upper) semicontinuous if the set Φ−(A) is open (resp. closed) in X for every
open (resp. closed) set A ⊂ Y.
Henceforth we use the following notations:

(T,A) - is a complete measurable space;
X - is Polish space;
B(X) - is a σ-field of Borel subsets of X ;
A⊗ B(X) - is a product σ-field on T × X (i.e. the minimal

σ-field containing all products A × B, with A ∈ A, B ∈ B(X));
Y - is a topological space.
Let us consider a multifunction F : T × X → 2Y . F is called product measur-

able if it is A ⊗ B(X)-measurable and it is called superpositionally measurable if,
for every A-measurable multifunction G : T → 2X with nonempty closed values,
a multifunction FG : T → 2Y defined by the superposition FG(t) = F (t, G(t)) is
A-measurable, where F (t, G(t)) denotes the sum of sets F (t, x) when x ∈ G(t).
Further, we say that F is a lower (resp. upper) semi-Carathéodory multifunction
if F (·, x) is A measurable for each fixed x ∈ X and F (t, ·) is lower (resp. upper)
semicontinuous for each fixed t ∈ T .

Main results.

Theorem 1. Every product measurable multifunction F : T × X → 2Y is super-
positionally measurable.

Proof: Let a closed set A ⊂ Y and an A-measurable multifunction G : T → 2X

with nonempty closed values be given. In view of A ⊗ B(X)-measurability of F ,
the set F−(A) =

{

(t, x) ∈ T × X : F (t, x) ∩ A 6= ∅
}

belongs to A ⊗ B(X). On the
other hand, the assumptions on multifunction G imply A⊗ B(X)-measurability of
its graph, i.e. grG =

{

(t, x) ∈ T ×X : x ∈ G(t)
}

∈ A⊗B(X) (see [3, Theorem 3.5]).
Thus,

{

(t, x) ∈ T × X : F (t, x) ∩ A 6= ∅, x ∈ G(t)
}

= F−(A) ∩ grG ∈ A⊗ B(X).

Hence, using the Projection Theorem, see [2, Theorem III. 23], [10, Theorem 4]),
we obtain

F−
G
(A) =

{

t ∈ T : FG(t) ∩ A 6= ∅
}

=
{

t ∈ T : F
(

t, G(t)
)

∩ A 6= ∅
}

=

= projT
(

F−(A) ∩ grG
)

∈ A

which, in view of the optionality of A and G, means that the multifunction F is
superpositionally measurable (here projT denotes the projection of T ×X onto T ).
In particular, we can see from Theorem 1 that both an upper and a lower semi-

Carathéodory product measurable multifunction is superpositionally measurable.
The converse implication holds only for the upper semi-Carathéodorymultifunction.
Namely, we have

Theorem 2. Every upper semi-Carathéodory superpositionally measurable multi-

function is product measurable.

Proof: Let us first notice that superpositional measurability implies A-measurabil-
ity of sets

{

t ∈ T : F (t, B) ∩ A 6= ∅
}

for each closed A ⊂ Y and B ⊂ X . Now, for
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every t ∈ T and each closed A ⊂ Y , let us put ΦA(t) =
{

x ∈ X : F (t, x) ∩ A 6= ∅
}

.
In virtue of the upper semicontinuity of F (t, ·), the set ΦA(t) is closed in X . We

claim that thus defined closed valued multifunction ΦA : T → 2X is A-measurable.
Indeed, for every closed B ⊂ X , we have:

Φ−
A
(B) =

{

t ∈ T : ΦA(t) ∩ B 6= ∅
}

=
{

t ∈ T :
∨

x∈B

x ∈ ΦA(t)
}

=

=
{

t ∈ T :
∨

x∈B

F (t, x) ∩ A 6= ∅
}

=
{

t ∈ T : F (t, B) ∩ A 6= ∅
}

∈ A.

Thus, by [3, Theorem 3.5] its graph grΦA belongs to the σ-field A⊗B(X). But

F−(A) =
{

(t, x) ∈ T × X : F (t, x) ∩ A 6= ∅
}

=
{

(t, x) ∈ T × X : x ∈ ΦA(t)
}

=

= grΦA ∈ A⊗ B(X)

which completes the proof of product measurability of F . �

Example. In the case of the lower semi-Carathéodory multifunction the superpo-
sitional measurability does not generally imply the product measurability. In order
to show it, we shall use the multifunction Φ : T × I → 2R constructed by A. Kucia
in her paper [4, Example]. Let I be the interval [0, 1], A — the σ-field on I gener-
ated by one-point sets, let (T,A) = (I,A). It is easy to see that (T,A) is complete
measurable space and that a real-valued function ϕ : T → R is measurable if and
only if ϕ is eventually constant, i.e. there exists a countable set N ⊂ I such that ϕ

is constant on I \ N . Hence it follows, by “Castaing representation” theorem (see

[2, Theorem III. 8]), that a multifunction G : T → 2R with nonempty closed values
is A-measurable if and only if G is eventually constant. The multifunction Φ is
defined as follows:

Φ(t, x) =

{

{t} if |t − x| = 1
n
for some positive integer n, or t = x,

I in the other case.

A. Kucia showed that such a multifunction Φ is lower semi-Carathéodory and
is not A ⊗ B(I) measurable (see [4, p. 240]). Here we shall prove that Φ is super-
positionally measurable. To this end, let us first consider an arbitrary but fixed
nonempty closed set B ⊂ I. Two cases are possible: 1◦ B is countable, or 2◦ B is
uncountable. In the second case the following condition holds:

(∗) ∀t∈I ∃x∈B x 6= t and x 6= t ± 1
n
for n = 1, 2, . . .

Indeed, otherwise there exists t̄ ∈ I such that for any x ∈ B we have x = t̄ or
x = t̄ + 1

n
or x = t̄ − 1

n
for some n ∈ N. But then the set B must be countable,

which is impossible.
Now let an A-measurable multifunction G : T → 2I with nonempty closed values

be given. There exist a nonempty closed set B ⊂ I and a countable set N ⊂ I such
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that G(t) = B for t ∈ I \ N . For every closed A ⊂ R let us denote NA = {t ∈ N :
ΦG(t) ∩ A 6= ∅} = {t ∈ N : Φ(t, G(t)) ∩ A 6= ∅}. It is obvious that NA ∈ A .
Now, if B = {b1, b2, . . . } then for every closed A ⊂ R we have

Φ−
G
(A) = {t ∈ T : ΦG(t) ∩ A 6= ∅} = {t ∈ I \ N : ΦG(t) ∩ A 6= ∅} ∪ NA =

= {t ∈ I \ N : Φ(t, B) ∩ A 6= ∅} ∪ NA =

=

∞
⋃

n=1

{t ∈ I \ N : Φ(t, bn) ∩ A 6= ∅} ∪ NA ∈ A .

If B is uncountable then from (∗) and the definition of Φ we get Φ(t, B) = I for
every t ∈ I \ N . Hence for every closed A ⊂ R we have

Φ−
G
(A) = {t ∈ T : ΦG(t) ∩ A 6= ∅} = {t ∈ I \ N : ΦG(t) ∩ A 6= ∅} ∪ NA =

= {t ∈ I \ N : Φ(t, B) ∩ A 6= ∅} ∪ NA = {t ∈ I \ N : I ∩ A 6= ∅} ∪ NA ∈ A

because

{t ∈ I \ N : I ∩ A 6= ∅} =

{

∅ if I ∩ A = ∅,

T \ N if I ∩ A 6= ∅.

Finally we can see that Φ−
G
(A) belongs toA for everyA-measurable multifunction

G : T → 2I with nonempty closed values and each closed set A ⊂ R, what completes
the proof of the superpositional measurability of the multifunction Φ : T ×X → 2R.

Conclusion.

It is known that many multifunctions F : T × X → 2Y which describe the
right hand of differential inclusions are exactly semi-Carathéodory multifunctions.
Hence, it would also be useful to know if such multifunctions are superpositionally
measurable. From Theorem 1 it follows that a multifunction F : T × X → 2Y

is superpositionally measurable, provided it is product measurable. However, in
general, the semi-Carathéodory multifunction is not product measurable (see, for
instance, [9, p. 31]). Below we give three most often recurring cases when the semi-
Carathéodory multifunction is product measurable.

1. ([8, Theorem 3.3], [7, Proposition 2.3])
(T,A) is a measurable space, X is a separable metric space, Y is a metric
space, F : T × X → 2Y is an upper semi-Carathéodory multifunction with
nonempty closed values and such that F (t, ·) is lower semi-continuous with
respect to a Hausdorff topology.

2. ([8, Theorem 3.4])
(T,A) is a complete measurable space, X = Y is a separable reflexive Ba-

nach space, F : T × X → 2X is a lower semi-Carathéodory multifunction
with nonempty closed convex values and such that F (t, ·) is upper semi-
continuous from X to Xω , where Xω denotes space X with weak topology.

3. ([14, Theorems 3 and 4])
(T,A, µ) is a measure space with a Hausdorff compact metric space T and
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a Borel σ-finite, regular and complete measure µ defined on A , X is a Polish
space, Y — a separable metric space, F : T × X → 2Y is a lower (resp.
upper) semi-Carathéodory multifunction with nonempty closed values and
such that the following condition — due to Scorza–Dragoni — is satisfied:
“for every ε > 0 there exists a closed subset Tε of T , with µ(T \Tε) < ε,
such that F

∣

∣

Tε × X is lower (resp. upper) semi-continuous.”
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