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On invariant operations on pseudo-Riemannian manifolds

Jan Slovák

Abstract. Invariant polynomial operators on Riemannian manifolds are well understood
and the knowledge of full lists of them becomes an effective tool in Riemannian geometry,
[Atiyah, Bott, Patodi, 73] is a very good example. The present short paper is in fact
a continuation of [Slovák, 92] where the classification problem is reconsidered under very
mild assumptions and still complete classification results are derived even in some non-
linear situations. Therefore, we neither repeat the detailed exposition of the whole setting
and the technical tools, nor we include all details of the proofs, the interested reader can
find them in the above paper (or in the monograph [Kolář, Michor, Slovák]).
After a short introduction, we study operators homogeneous in weight on oriented

pseudo-Riemannian manifolds. In particular, we are interested in those of weight zero.
The results involve generalizations of some well known theorems by [Gilkey, 75] and [Stred-
der, 75].
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1. Natural bundles and operators on Riemannian manifolds. The suitable
explicit formulation of the classification problem for invariant operators on mani-
folds with some geometric structures is provided by the general theory of bundle
functors and natural operators originated by Nijenhuis, see [Kolář, Michor, Slovák]
for a detailed exposition. Roughly speaking, the bundle functors are direct gen-
eralizations of the usual tensor bundles (possibly non-linear and of higher orders)
while the natural operators are some natural transformations between the infinite
dimensional spaces of sections of the bundles. For our purposes, it suffices to deal
only with tensor bundles of some type (p, q), i.e. p-times contravariant and q-times
covariant, over pseudo-Riemannian manifolds with some fixed dimension m and
fixed signature of the metric. Our operators should intertwine the natural action of
local isometries on these tensor bundles. This setting covers all operators between
natural vector bundles on Riemannian manifolds, which means the associated vec-
tor bundles to the pseudo-Riemannian linear frame bundles corresponding to some
finite dimensional representation of O(m′, n, R) or SO(m′, n, R), m′+ n = m, since
each such representation is completely reducible and the irreducible ones live all
in some tensor spaces. Moreover, we can really restrict ourselves to operators on
the whole tensor bundles, since the invariant subbundles are subjects of both in-
variant projection onto them and invariant injection into the whole tensor bundles.
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But dealing with the whole tensor bundles, we can add the pseudo-metric itself to
the arguments of the operation in question and to solve the classification problem
concerning the invariance with respect to all local diffeomorphisms (the latter are
locally invertible but globally defined mappings).

We shall write T (p,q)f : T (p,q)M → T (p,q)N for the action of a local diffeomor-
phism f : M → N of two m-dimensional manifolds on the p-times contravari-
ant and q-times covariant tensor bundles, T and T ∗ are the tangent and cotan-
gent functors, S2regT

∗M is the bundle of non-degenerate metrics over M (or one

of its connected components corresponding to the individual signatures). The
natural operators which we shall discuss are systems of local smooth operators

DM : C
∞(T (p,q)M) → C∞(T (r,s)M), i.e. their values depend only on the germs

of the sections in the underlying points and smooth families of sections are trans-
formed into smooth families, which commute with the natural actions of the lo-
cal diffeomorphisms and which can depend on the metric on M . The whole sys-
tem of operators DM , i.e. the natural operator D in question, will be denoted by

D : S2regT
∗ × T (p,q) → T (r,s) or briefly D : T (p,q) → T (r,s). In general, if E and

F are two bundle functors, then E × F means the bundle functor with the values
(E × F )M = EM ×M FM and similarly on morphisms. For the sections of tensor
bundles we shall use the usual notation with subscripts and superscripts indicating
the type of the tensor and we also adopt the usual conventions for expressing the
algebraic tensor operations. Since a distinguished non-degenerate (pseudo)-metric
is always available, we can raise and lower the indices and so we consider the con-
traction over each couple of repeated indices.

2. In [Slovák, 92], the classification problems are solved with the help of some
general tools which are proved in [Kolář, Michor, Slovák]. The most important
ones are:

(1) the non-linear Peetre theorem stating that each local operator is “locally”
of finite order

(2) the smooth version of the Schouten’s reduction theorem which asserts that
each operation depending on a connection factors through the curvature and
its covariant derivatives

(3) the application of the latter reduction yields that operations depending on
a pseudo-Riemannian metric factor through the values of the metric (i.e.
no derivatives are explicitly involved), and through the curvature and its
covariant derivatives of the Levi-Cività connection

(4) during the above reduction procedure, the polynomiality of the operations
is preserved

(5) smooth functions with certain homogeneity properties are polynomials.

These tools apply to pseudo-Riemannian metrics with an arbitrary signature and
the only difference which might effect the proofs from [Slovák, 92, Section 3] is that
the Lie algebra valued curvature forms take their values in different Lie algebras.
However, after lowering the subscript in the curvature and its covariant derivatives,
i.e. considering only the quantities Rijklm1...ms

, we can repeat, step by step, all the
above mentioned proofs. In particular we obtain the next three theorems.
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Let us recall the definition of the operators homogeneous in the weight.

Definition. Let E and F be natural bundles over m-dimensional manifolds. We
say that a natural operator D : S2regT

∗×E → F is conformal, if D(c2g, s) = D(g, s)
for all metrics g, sections s, and all positive c ∈ R. If F is a natural vector bundle
and D satisfies D(c2g, s) = cλD(g, s), then D is said to be homogeneous with
weight λ.

The weight of the metric gij is 2 (we consider the inclusion g : S2regT
∗ → S2T ∗),

that of its inverse gij is −2, while the curvature and all its covariant derivatives are
conformal.

Let us point out that our “conformal operators” are independent of the deforma-
tion of the metric by a (constant) scalar multiplication. The conformally invariant
operators from the conformal geometry are operators depending on the choice of
metric up to the deformation by a scalar function.

3. Theorem. All natural operators D : T (s,r) → T (q,p), s < r, on pseudo-Rieman-
nian manifolds which are homogeneous in weight result from a finite number of the

following steps:

(a) take tensor product of arbitrary covariant derivatives of the curvature tensor
or the covariant derivatives of the tensor fields from the domain of D

(b) tensorize by the metric or by its inverse
(c) apply arbitrary GL(m)-equivariant operation
(d) take linear combinations.

Let us notice that as a consequence of this theorem, the natural operators in
question are polynomial operators involving the metric, the square root of its in-
verse, its derivatives and the derivatives of the tensor fields from the domain. The
operators with the latter polynomiality properties are called the regular operators
in [Atiyah, Bott, Patodi, 73].

The proof is analogous to that one in the positive definite case, see [Slovák, 92,
subsection 3.3].

4. Theorem. There are no non-zero homogeneous natural operators D : S2regT
∗ ×

T (0,r) → ΛT ∗ with a positive weight. The algebra of all conformal natural operators

D : S2regT
∗×T (0,r) → ΛT ∗ is generated by the Pontrjagin forms pq, the alternation

and the exterior differential. The operators which do not depend on the second

argument are generated by the Pontrjagin forms.

The proof is based on Theorem 3 and a discussion of the symmetries of the
curvatures. It goes along lines of the proof of [Slovák, 92, Theorem 3.2] where the
result appears in the positive definite case.

Theorem 4 generalizes the famous Gilkey theorem on the uniqueness of the Pon-
trjagin forms, see [Gilkey, 73], [Atiyah, Bott, Patodi, 73]. The Gilkey theorem
describes the regular conformal natural forms in the Riemannian case, while we use
no assumptions on the order or polynomiality or regularity, only the smoothness. In
[Gilkey, 75], the uniqueness of the Pontrjagin forms is proved on pseudo-Riemannian
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case as well. Let us remark, Gilkey proves his theorems directly discussing the
derivatives of the metric.

5. Theorem. There are no non-zero homogeneous natural operators D : S2regT
∗ ×

T (0,0) → ΛT ∗ with a positive weight. The algebra of all conformal natural operators

D : S2regT
∗×T (0,0) → ΛT ∗ is generated by the Pontrjagin forms pq, the compositions

with arbitrary smooth functions of one real variable and the exterior differential.

The proof of this theorem is also analogous to that in the positive definite case,
see [Slovák, 92, Theorem 3.6].

6. Linear operations on forms. The discussion leading to the above theorems
can be continued for any fixed negative weight, but the number of the natural oper-
ators (and complexity of discussion) increases rapidly. But the simplest situation,
i.e. the weight λ = −2, is extremely interesting.

Proposition. All linear operators ΛpT ∗ → ΛpT ∗ on pseudo-Riemannian mani-

folds which are homogeneous with weight −2 are linearly generated by the follow-
ing generators: the multiplication by scalar curvature, the contraction with the

Ricci curvature, the contraction with the full pseudo-Riemannian curvature , the

compositions δ ◦ d and d ◦ δ.

Up to scalar multiples, the formulas for these generators are:

vi1...ip 7→































Rababvi1...ip

Raba[i1vi2...ip]b

Rab[i1i2vi3...ip]ab

vi1...ipaa

v[i1...ip−1aaip].

The codifferential δ is a homogeneous operator with weight −2, δ : Λp → Λp−1,

δ = (−1)(p+1)(m+1)(m − p + 1)vi1...ip−1aa. The well known Laplace operator is
involved as the linear combination δ ◦ d + d ◦ δ. On scalar functions, only δ ◦ d
is non-zero and we get the usual formula f 7→ faa = gabfab, the usual Laplace
operator for the Euclidean metric gab = δab, and the wave (Klein-Gordon) operator
for the pseudo-Euclidean metric.

This result was originally proved by [Stredder, 75] under the stronger assumptions
of regularity and only for the Riemannian manifolds. The proof of our proposition
is rather easy, once we become familiar with the discussion on monomials in the
curvature and its covariant derivatives used in the proofs of the above theorems,
see also Section 8 below. We leave the details to the reader.

7. Operations on oriented pseudo-Riemannian manifolds. In the descrip-
tion of natural operators S2regT

∗ × E → F we have to use the O(m′, n)-invariance
only at the very end of the proof of Theorem 3 and then only the symmetries of the
ingredients from the list in 3 are to be exploited. Therefore, we can prove easily:
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Theorem. All natural operators D : T (s,r) → T (q,p), s < r, on oriented pseudo-
Riemannian manifolds which are homogeneous in weight result from a finite number

of the following steps:

(a) take tensor product of arbitrary covariant derivatives of the curvature tensor
or the covariant derivatives of the tensor fields from the domain

(b) tensorize by the metric or by its inverse
(c) tensorize by the (pseudo)-Riemannian volume form ν
(d) apply arbitrary GL(m)-equivariant operation
(e) take linear combinations.

Proof: Since the SO(m′, n, R) invariant tensors are generated by the O(m′, n, R)
invariant ones and the (pseudo)-Riemannian volume form ν (this is the classical
Weyl theory, see [Weyl, 39] or [Stredder, 75] in the positive definite case), we have
only to prove that the covariant derivatives of the volume form ν cannot be involved.
But the latter are obviously zero. �

Let us remark that the latter theorem, as well as Theorem 3 are valid also without
the requirement s < r if we add the polynomiality assumption.

8. Conformal operators on forms. The volume form ν is defined by the ex-

pression νi1...im = ((−1)n det(gij))
1/2εi1...im (the signature of the pseudo-metric is

(m′, n)) and so it is evidently homogeneous with weight m. Thus, the homogeneous
weight of ∗ : Ωp → Ωm−p is m − 2p. In general, there exist more conformal nat-
ural operators in the oriented case. First of all, if the dimension m = 2p is even,
then ∗∗ : Ωp → Ωp is identity up to sign and we can split the space of p-forms,
Ωp = Ω

p
+ ⊕ Ωp

−
, where Ω± are the eigen spaces for ∗ (the eigen values are ±1 or

±
√
−1). If we compose the exterior differential d with the projections, we get the

operators d = d+ + d− and the compositions d ◦ d± are no more zero. Further,
it might happen that composing enough d’s and ∗’s together, we get a conformal
operator. Let us write δq = ∗d ∗ . . . d∗ : Ωq+1 → Ωm−q−1, q < p, with m − 2q − 1
stars involved, and Dq = d ◦ δq ◦ d : Ωq → Ωm−q.

Proposition. If the dimension m = 2p is even, then each operator D defined by
D = Dq = d ◦ δq ◦ d or D = δq ◦ d or D = δq is a conformal natural operator on

oriented pseudo-Riemannian manifolds. In particular, Dp−1 : Ω
p−1 → Ωp+1 equals

d ∗ d = d ◦ d+ − d ◦ d−.
Up to the constant multiples, these operators D are the only non-zero conformal

linear natural operators on exterior forms on flat pseudo-Riemannian manifolds

beside the identities and the exterior differentials d, d±.
If the dimension m is odd, then the only non-zero conformal linear natural op-

erators on forms on flat pseudo-Riemannian manifolds are the exterior differentials

and the identities and their constant multiples.

Proof: Clearly each operator D is natural. If we start in Ωq+1 and apply ∗d∗,
then the mappings go: Ωq+1 7→ Ωm−q−1 7→ Ωm−q 7→ Ωq while the weights which
are added are: 0 7→ m − 2q − 2 7→ m − 2q − 2 7→ −2 (the total is obvious — the
weight of δ). Hence if m = 2p, q < p and if we start at Ωq+1 we reach weight zero
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exactly after composing (m − 2q − 2)-times d∗ and applying ∗ at the very end. In
all other cases we never get weight zero, for each turn around decreases the weight
by 2 and once we get back to the initial position with a negative weight in all three
last positions the hope is lost.

Let us now perform the general discussion in our special situation and let us
restrict ourselves to the natural operators on the whole category of (not oriented)

pseudo-Riemannian manifolds. If we want to get a linear operator D : Ωq → Ωq′

which is non-zero on flat manifolds, then the only monomials which make sense are
of the form vi1...iql1...ls . Since we are in the flat case, the covariant derivatives lk
are symmetric. Thus at most one index among the l’s may remain uncontracted
and at most one can be contracted with some of the i’s, for the alternation of the
remaining uncontracted indices would kill the expression otherwise. Hence what we
only can do is to involve 2s or 2s + 1 or 2s + 2 derivatives, to choose s pairs, to
contract them and to contract one of the remaining indices (if any) with some of
the i’s. Hence, up to constant multiples and linear combinations, D = d ◦ δ · · · ◦ d
or D = δ ◦ d · · · ◦ d or D = d ◦ δ · · · ◦ δ or D = δ ◦ d · · · ◦ δ, and we get q′ − q = 1 or
0 or 0 or −1, respectively.

On the space of all natural operators D : Ωq → Ωq′ , there is the canonical action
of O(m′, n)/SO(m′, n) = Z2 and so each such operator is a sum D = D+ + D−

where D+ is invariant with respect to the change of orientation while D− changes
the sign. If D is natural and conformal, then also both D+ and D− are natural and
possibly conformal. Now, notice that ∗D− is invariant with respect to the change

of orientation and D− = ± ∗ ∗D−. Thus, ∗D− : Ω
q → Ωm−q′ and, up to constant

multiples and linear combinations, either m−q′−q = 1 and ∗∗D− = ∗d◦δ · · ·◦d, or
m−q′−q = 0 and ∗∗D− = ∗δ ◦d · · · ◦d or ∗∗D− = ∗d◦δ · · · ◦δ, or m−q′−q = −1
and ∗ ∗ D− = ∗δ ◦ d · · · ◦ δ, respectively. The last Hodge star in these operators

acts on Ωm−q′ and so its weight is 2q′ − m. If m is odd then this can never kill
the even negative weight appearing through δ’s. Thus, there is no codifferential
involved in the expression, D− = 0 and D is either exterior differential or identity
(up to constant multiples). This proves the last statement of the proposition.

If m = 2p is even and 2q′−m < 0, then the weight of ∗ is negative and we get the
same result as in the odd-dimensional case. If 2q′−m ≥ 0, then a simple discussion
shows that the only possible operators are those listed in the proposition. �

While the operators in the odd dimensional case form the well known de Rham
resolvent

0 −−−−→ Ω0
d−−−−→ Ω1

d−−−−→ · · · d−−−−→ Ωm−1 d−−−−→ Ωm −−−−→ 0,

the most interesting operators in the even dimensionm are described in the diagram
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The diagram is not commutative! The horizontal line is exact, but not the arrows
in the central diamond. The diagram does not exhaust all operators from the
proposition, but notice that the operators indicated on the arrows are unique, up
to multiples.

It is interesting that the latter operators are exactly the conformally invariant
operators on forms on conformally flat manifolds, but they do not commute with
conformal local isomorphisms of general conformal manifolds. On the other hand,
they all admit extensions to all conformal manifolds beside D0, cf. [Baston, East-
wood, 90].

9. Remark. Analogous results to Theorems 4 and 5 can be also formulated for ori-
ented pseudo-Riemannian manifolds. The only new ingredient is the distinguished
volume form, but since this has a positive weight, we get much more natural oper-
ators with positive weights.
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