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Harnack’s properties of biharmonic functions

Emmanuel P. Smyrnelis

Abstract. Study of the equicontinuity of biharmonic functions, of the Harnack’s principle
and inequalities, and of their relations.
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The harmonic system of Brelot was based originally on three axioms: (1) axiom
of sheaf; (2) axiom of the existence of a basis of regular open sets, and; (3) axiom
of convergence. Further developments, as the integral representation, required the
introduction of a new axiom, called axiom 3′, which seemed to be stronger than
axiom 3. In fact it was proved that axioms 1, 2, 3 imply axiom 3′.
In an elliptic biharmonic space, we shall prove first the equicontinuity of bihar-

monic positive pairs with values less or equal to given numbers at a fixed point; next,
the equivalence of Harnack’s principle, Harnack’s inequalities and other properties
will be established.
Our framework will be an elliptic biharmonic space (Ω,H) with Ω connected.

For the notions and notations used in this work we refer to [3].

Theorem 1.1. The biharmonic pairs (u1, u2) ≥ (0, 0) defined in a domain U ⊂ Ω
with values at x0 ∈ U less or equal to given real numbers are equicontinuous at x0.

Proof: The only interesting case is: u1 > 0, u2 > 0; see [3, Proposition 2.2].
The second components u2 being H2-harmonic functions, they are therefore

equicontinuous at x0; see [1]. It remains to show the equicontinuity of the first
components u1.
Let us consider our family of biharmonic pairs (u1, u2). In any open H-regular

set ω ⊂ ω̄ ⊂ U with x0 ∈ ω, we know that u1(x) =
∫

u1 dµω
x +

∫

u2 dνω
x . The

functions x 7→
∫

u1(y) dµω
x (y) are H1-harmonic in ω; as λ1 ≥ u1(x0) ≥

∫

u1 dµω
x0

where λ1 is the given number of the theorem, the equicontinuity of these functions
is known; see [1]. Then, for every ε > 0, there is a neighborhood δ of x0 such that,
independently of u1,
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∫

u1 dµω
x −

∫

u1 dµω
x0

∣

∣

∣

∣

< ε .

On the other hand, we have
∫

u2 dνω
x −

∫

u2 dνω
x0

≤ supu2(∂ω)

∫

dνω
x − inf u2(∂ω)

∫

dνω
x0
=

= (supu2(∂ω)− inf u2(∂ω))‖νω
x0
‖+ θ(x) sup u2(∂ω)
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where θ(x) =
∫

dνω
x −

∫

dνω
x0
; because of the continuity of the function x 7→

∫

dνω
x ,

the first component of the biharmonic pair (
∫

dνω
x ,

∫

dλω
x ), θ is arbitrarily small in

a neighborhood δ′ of x0, that is |θ(x)| ≤ ε. Since the family of u2 is equicontinuous
at the point x0, we choose ω such that supu2(∂ω) − inf u2(∂ω) < ε; also, the
Harnack’s inequality in the harmonic space (Ω,H2) gives us supu2(∂ω) ≤ ku2(x0)
for a suitable k > 0; see [1]. Consequently, if x ∈ ω ∩ δ ∩ δ′ we have

u1(x) − u1(x0) =
(

∫

u1 dµω
x −

∫

u1 dµω
x0

)

+
(

∫

u2 dνω
x −

∫

u2 dνω
x0

)

< ε′

where ε′ = ε+ε‖νω
x0
‖+εkλ2, λ2 being the fixed number of the theorem with respect

to the second components u2; see also [3, Proposition 1.5]. Likewise,

∫

u2 dνω
x −

∫

u2 dνω
x0

≥ inf u2(∂ω)

∫

dνω
x − supu2(∂ω)

∫

dνω
x0
=

= (inf u2(∂ω)− supu2(∂ω))

∫

dνω
x0
+ θ(x) inf u2(∂ω);

as previously, we see that, if x ∈ ω ∩ δ ∩ δ′, u1(x) − u1(x0) ≥ −ε′. Therefore,
in a neighborhood of x0, we obtain for every pair (u1, u2) the inequality |u1(x) −
u1(x0)| < ε′. �

Remark 1.2. Let us consider the family of pairs Φx0 = {(u1, u2) ∈ H+(U);
u1(x0) = 1}. By Harnack’s inequalities (see [3, Théorème 2.13] and [4, p. 109])
if K is any compact set of U , there exists a real constant α = α(x0, K) such that
u1(x) ≤ α, u2(x) ≤ α for every pair of Φx0 and every x ∈ K; therefore, these pairs
are locally uniformly bounded.

Corollary 1.3. The functions sup{u1; (u1, u2) ∈ Φx0} and inf{u1; (u1, u2) ∈ Φx0}
are finite, continuous and > 0 in U .

Proof: We denote the first function by U1 and the second by U 1. Let x1 ∈ U and
ε > 0; there exists a neighborhood δ of x1 in U where 1−ε ≤ u1(x)/u1(x1) ≤ 1+ε;
hence (1 − ε)U1(x1) ≤ U1(x) ≤ (1 + ε)U1(x1) (resp. (1 − ε)U 1(x1) ≤ U 1(x) ≤
(1 + ε)U 1(x1)). Let us consider the open sets A = {x ∈ U ;U1(x) < +∞} and
B = {x ∈ U ;U1(x) = +∞}. By the above inequality and the connectedness of U ,
we find that U = A. The continuity of U1 is proved as follows: by the previous
inequality, we obtain |U1(x) − U1(x1)| ≤ εU1(x1); we note also that x1 ∈ A. (We
apply the same arguments for the finiteness and the continuity of U 1.)
It remains to show that U1 > 0 and U 1 > 0 in U . The first assertion is obvious;

for the second one, we see that (inf{u1; (u1, u2) ∈ Φx0})
ˆ = U 1. As the pair

((inf{u1; (u1, u2) ∈ Φx0})
ˆ, (inf{u2; (u1, u2) ∈ Φx0})

ˆ) is superharmonic in U and
U 1(x0) = 1, then U 1 > 0 in U ; see [3, Proposition 2.2]. �

Corollary 1.4. Let x′, x′′ ∈ K compact set ⊂ U and (u1, u2) ∈ H+(U) with
u1 > 0. Then there exist two real numbers α > 0, β > 0 such that α ≤
u1(x

′)/u1(x
′′) ≤ β independently of u1 and of the points x′, x′′.
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Proof: We apply the previous corollary on the first components of the biharmonic
pairs (u1/u1(x0), u2/u1(x0)), where x0 is a fixed point of U . Next, we use analogous
arguments as in the harmonic case [1]. �

Remark 1.5. By Harnack’s inequalities, we see that, for a point x0 ∈ U , U1(x0)
= 0 (resp. U 1(x0) = 0) imply U2(x0) = 0 (resp. U 2(x0) = 0) where Uj = supuj ,
U j = inf uj (j = 1, 2) with (u1, u2) ∈ H+(U).

Let us now recall some results:

Proposition 1.6 ([3, Théorème 2.9]). Let (Ω,H) be an elliptic biharmonic space,
(hn
1 , h

n
2 )n∈N an increasing sequence of biharmonic pairs in a domain U ⊂ Ω and

(h1, h2) = (supn hn
1 , supn hn

2 ). Then we have three possibilities:

(1) (h1, h2) ∈ H(U);
(2) (h1, h2) ≡ (+∞,+∞);
(3) h1 ≡ +∞, h2 ∈ H2(U).

Proposition 1.7 ([3, Proposition 2.11]). Let (Ω,H) be an elliptic biharmonic
space, ω an H-regular domain and (f1, f2) be a couple of extended real-valued
functions on ∂ω such that

∫

∗ f1 dµω
x +

∫

∗ f2 dνω
x ,

∫

∗
f1 dµω

x +
∫

∗
f2 dνω

x are well de-
fined for x ∈ ω. If f1 is µω

x0
-summable and f2 is νω

x0
-summable (x0 is a fixed point

of ω), then f1 is µω
x -summable and f2 is νω

x and λω
x -summable for every x ∈ ω;

moreover, in this case, the pair (
∫

f1 dµω
x +

∫

f2 dνω
x ,

∫

f2 dλω
x ) is biharmonic in ω.

Proposition 1.8. Let (Ω,H) be an elliptic biharmonic space, U a domain of Ω,
K a compact set ⊂ U , x0 ∈ U . Then, for every pair (u1, u2) ∈ H+(U) we have the
(Harnack’s) inequalities:

(1) supu1(K) ≤ αu1(x0),
(2) supu2(K) ≤ αuj(x0) (j = 1, 2)

where α = α(K, x0) is a positive constant.

This result improves Théorème 2.13 of [3] (see also [4, p. 109]); its proof follows
from the same arguments.

Theorem 1.9. The following results are equivalent.

(i) Proposition 2.2 from [3] and Theorem 1.1.
(ii) Proposition 1.6.
(iii) Proposition 1.7.
(iv) Proposition 1.8.

Proof: (i) ⇒ (ii): Let (hn
1 , h

n
2 )n∈N be an increasing sequence of biharmonic pairs

with the upper envelope (h1, h2) in a domain U ⊂ Ω; we can suppose that (hn
1 , h

n
2 ) ≥

(0, 0). By Corollary 1.4, we have hn
1 (x

′) ≤ βhn
1 (x

′′) with n ∈ N and h1(x
′) ≤

βh1(x
′′); therefore, if h1(x

′) = +∞ then h1 ≡ +∞ and if h1(x
′′) < +∞ then

h1 < +∞ in U and the continuity of h1 follows from the local uniform convergence.
The corresponding harmonic result applied to the second components of pairs gives
us either h2 ≡ +∞ or h2 < +∞ and h2 continuous in U . The possibility h1 < +∞,
h2 ≡ +∞ in U does not occur. Indeed, in any H-regular open set ω ⊂ ω̄ ⊂ U , we
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have, for x ∈ ω, h1(x) =
∫

h1 dµω
x +

∫

h2 dνω
x ; the fact that Tνω

x 6= ∅ [3, Lemma 2.4,
Proposition 2.5], leads to a contradiction.

(ii) ⇒ (iv): This implication follows from the proof of Proposition 1.8.

(iv)⇒ (ii): We may assume that (hn
1 , h

n
2 )n∈N is an increasing sequence of positive

biharmonic pairs. Then, if K is any compact subset of the domain U and if x0 is
a fixed point of U , we have:

suphn
1 (K) ≤ αhn

1 (x0),
suphn

2 (K) ≤ αhj(x0)

where n ∈ N and j = 1, 2. Now we proceed as in the implication (i) ⇒ (ii).

(ii) ⇔ (iii): The elliptic version of Théorème 1.33 of [3] (see also [3, Proposi-
tion 2.11]) gives us the proof.

(iv) ⇒ (i): Having first shown the equicontinuity of pairs of type (h1, 0) and
of the second components of the pairs (u1, u2) (see [1, p. 14–24], we use the same
arguments as in the proof of Theorem 1.1 to prove the part “(iv) ⇒ Theorem 1.1”;
the part “(iv) ⇒ Proposition 2.2 of [3]” follows from Harnack’s inequalities (1)
and (2) of Proposition 1.8.
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