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Harnack’s properties of biharmonic functions
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Abstract. Study of the equicontinuity of biharmonic functions, of the Harnack’s principle
and inequalities, and of their relations.
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The harmonic system of Brelot was based originally on three axioms: (1) axiom
of sheaf; (2) axiom of the existence of a basis of regular open sets, and; (3) axiom
of convergence. Further developments, as the integral representation, required the
introduction of a new axiom, called axiom 3’, which seemed to be stronger than
axiom 3. In fact it was proved that axioms 1, 2, 3 imply axiom 3'.

In an elliptic biharmonic space, we shall prove first the equicontinuity of bihar-
monic positive pairs with values less or equal to given numbers at a fixed point; next,
the equivalence of Harnack’s principle, Harnack’s inequalities and other properties
will be established.

Our framework will be an elliptic biharmonic space (£2,H) with  connected.
For the notions and notations used in this work we refer to [3].

Theorem 1.1. The biharmonic pairs (u1,u2) > (0,0) defined in a domain U C 2
with values at g € U less or equal to given real numbers are equicontinuous at xq.

PROOF: The ouly interesting case is: u3 > 0, ug > 0; see [3, Proposition 2.2].

The second components ug being Ha-harmonic functions, they are therefore
equicontinuous at xg; see [1]. It remains to show the equicontinuity of the first
components ui.

Let us consider our family of biharmonic pairs (u1,u2). In any open H-regular
set w C @ C U with 29 € w, we know that uj(z) = [u1dus + [ugdv. The
functions = — [ u1(y)duy (y) are Hi-harmonic in w; as A1 > wu1(zo) > [ u1 dug,
where Aj is the given number of the theorem, the equicontinuity of these functions
is known; see [1]. Then, for every € > 0, there is a neighborhood ¢ of g such that,

independently of u1,
/u1 dus — /ul dp,

On the other hand, we have

/u2 vy — /ug dvg, < sup uz(aw)/ v — infuz(aw)/ dvg, =
= (sup ug(0w) — inf uz(0w))|vg, || + 6(z) sup ug(0w)

<e.
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where 0(x) = [ dvy — [ dvj; because of the continuity of the function z — [ dvy,
the first component of the biharmonic pair ([ dv¥, [ d\%), 0 is arbitrarily small in
a neighborhood ¢’ of g, that is |§(z)| < . Since the family of uy is equicontinuous
at the point zg, we choose w such that supug(Ow) — inf uz(dw) < e; also, the
Harnack’s inequality in the harmonic space (92, Ha) gives us sup ug(dw) < kua(zg)
for a suitable k > 0; see [1]. Consequently, if z € w Nd N’ we have

u1(x) — ui(zo) = (/ uy dp —/Ul dugy) + (/ ug dvy —/U2 dvg)) <€

where &’ = e+¢||vg || +ekX2, A2 being the fixed number of the theorem with respect
to the second components ug; see also [3, Proposition 1.5]. Likewise,

/u2 vy — /ug dvg, > infuz(aw)/ dv¥ — sup uz(aw)/ dvg, =

= (inf ug(Ow) — sup ug(dw)) / dvg, + 0(z) inf uz (Ow);

as previously, we see that, if x € w NN, up(xr) — ur(xg) > —€’. Therefore,
in a neighborhood of z(, we obtain for every pair (uj,ug) the inequality |ui(x) —
uy(wo)| < €. O

Remark 1.2. Let us consider the family of pairs &, = {(u1,u2) € H4+(U);
ui(zg) = 1}. By Harnack’s inequalities (see [3, Théoréme 2.13] and [4, p. 109])
if K is any compact set of U, there exists a real constant « = a(zg, K) such that
ui(z) < o, ug(x) < « for every pair of &4, and every x € K; therefore, these pairs
are locally uniformly bounded.

Corollary 1.3. The functions sup{ui; (u1,u2) € Oz} and inf{uy; (ug,u2) € Oz}
are finite, continuous and > 0 in U.

PRrOOF: We denote the first function by U7 and the second by U 1. Let 21 € U and
e > 0; there exists a neighborhood § of 21 in U where 1 —e < uy(z)/u1(z1) < 1+¢;
hence (1 — €)U1(z1) < U1(z) < (1 +&)U1(w1) (vesp. (1 —e)U1(z1) < Ui(z) <
(1 +¢)U 1(x1)). Let us consider the open sets A = {x € U;Uy(x) < +oo} and
B = {2z € U;Uy(x) = +oc}. By the above inequality and the connectedness of U,
we find that U = A. The continuity of U; is proved as follows: by the previous
inequality, we obtain |U1(x) — U1 (21)| < eU1(z1); we note also that x1 € A. (We
apply the same arguments for the finiteness and the continuity of U 1.)

It remains to show that Uy > 0 and U 1 > 0 in U. The first assertion is obvious;

for the second one, we see that (inf{wui;(u1,u2) € <I>x0})A = U1. As the pair
((inf{uy; (u1,u2) € Bgo}) , (inf{ug; (u1,uz) € ®z}) ) is superharmonic in U and
U1(zg) =1, then U1 > 0 in U; see [3, Proposition 2.2]. O

Corollary 1.4. Let 2/,2"” € K compact set C U and (u1,us) € H4(U) with
up > 0. Then there exist two real numbers a« > 0, 8 > 0 such that o <
u1(z')/ui(2’) < B independently of uy and of the points x’, z".
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PRrROOF: We apply the previous corollary on the first components of the biharmonic
pairs (u1/u1(xo), ua/u1(zg)), where xg is a fixed point of U. Next, we use analogous
arguments as in the harmonic case [1]. O

Remark 1.5. By Harnack’s inequalities, we see that, for a point z¢ € U, U1 (xg)
=0 (resp. U1(z0) = 0) imply Usz(zg) = 0 (resp. U 2(x¢) = 0) where U; = supu;,
U =infu; (j =1,2) with (u1,uz2) € Hy(U).

Let us now recall some results:

Proposition 1.6 ([3, Théoreme 2.9]). Let (2,H) be an elliptic biharmonic space,
(AT, h5)nen an increasing sequence of biharmonic pairs in a domain U C Q and
(h1,h2) = (sup,, h,sup,, hy). Then we have three possibilities:

(1) (h1,he) € H(U);
(2) (h1,h2) = (+00, +00);
(3) h1 = +o0, ho € Ha(U).

Proposition 1.7 ([3, Proposition 2.11]). Let (2, H) be an elliptic biharmonic
space, w an H-regular domain and (f1, f2) be a couple of extended real-valued
functions on Ow such that [ fidu% + [* fadv¥, [, fidu% + [, fo dv¥ are well de-
fined for x € w. If fy is p§, -summable and fo is v -summable (x¢ is a fixed point
of w), then f1 is p¥-summable and fo is V¥ and A\Y-summable for every © € w;
moreover, in this case, the pair ([ fidps + [ fadv¥, [ f2dA\Y) is biharmonic in w.

Proposition 1.8. Let (2, H) be an elliptic biharmonic space, U a domain of €,
K a compact set C U, xg € U. Then, for every pair (u1,u2) € H4(U) we have the
(Harnack’s) inequalities:

(1) supui(K) < aui(xg),

(2) supup(K) < auj(zo) (j =1,2)

where o = (K, xq) is a positive constant.

This result improves Théoréme 2.13 of [3] (see also [4, p. 109]); its proof follows
from the same arguments.

Theorem 1.9. The following results are equivalent.

(i) Proposition 2.2 from [3] and Theorem 1.1.
(ii) Proposition 1.6.
(iii) Proposition 1.7.
(iv) Proposition 1.8.

PRrROOF: (i) = (ii): Let (h}, h§),en be an increasing sequence of biharmonic pairs
with the upper envelope (h1, h2) in a domain U C €2; we can suppose that (A7, hf) >
(0,0). By Corollary 1.4, we have h(z') < ShY(2") with n € N and hy(a2’) <
Bhi(z"); therefore, if hi(z') = 400 then hy = +oo and if hi(2”) < +oo then
h1 < 400 in U and the continuity of hj follows from the local uniform convergence.
The corresponding harmonic result applied to the second components of pairs gives
us either ho = 400 or hg < +00 and ho continuous in U. The possibility h; < +oo,
ha = +o00 in U does not occur. Indeed, in any H-regular open set w C @ C U, we
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have, for x € w, hi(z) = [ hy dp& + [ hg dv¥; the fact that Tv% # 0 [3, Lemma 2.4,
Proposition 2.5], leads to a contradiction.

(if) = (iv): This implication follows from the proof of Proposition 1.8.

(iv) = (ii): We may assume that (h7, h5),en is an increasing sequence of positive
biharmonic pairs. Then, if K is any compact subset of the domain U and if xg is
a fixed point of U, we have:

sup b (K) < ahf(xo),
sup hiy (K) < ahj(zo)
where n € N and j = 1,2. Now we proceed as in the implication (i) = (ii).

(ii) < (iii): The elliptic version of Théoreme 1.33 of [3] (see also [3, Proposi-
tion 2.11]) gives us the proof.

(iv) = (i): Having first shown the equicontinuity of pairs of type (h1,0) and
of the second components of the pairs (u1,ug) (see [1, p. 14-24], we use the same
arguments as in the proof of Theorem 1.1 to prove the part “(iv) = Theorem 1.17;
the part “(iv) = Proposition 2.2 of [3]” follows from Harnack’s inequalities (1)

and (2) of Proposition 1.8.
O
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