Multipliers of Hankel transformable generalized functions

J.J. BETANCOR, I. MARRERO

Abstract. Let \mathcal{H}_{μ} be the Zemanian space of Hankel transformable functions, and let \mathcal{H}'_{μ} be its dual space. In this paper \mathcal{H}_{μ} is shown to be nuclear, hence Schwartz, Montel and reflexive. The space \mathcal{O} , also introduced by Zemanian, is completely characterized as the set of multipliers of \mathcal{H}_{μ} and of \mathcal{H}'_{μ} . Certain topologies are considered on \mathcal{O} , and continuity properties of the multiplication operation with respect to those topologies are discussed.

Keywords: multipliers, generalized functions, Hankel transformation Classification: Primary 46F12

1. Introduction.

Let $\mu \in \mathbb{R}$. The space \mathcal{H}_{μ} , introduced by A.H. Zemanian [7], consists of all those infinitely differentiable functions $\phi = \phi(x)$ defined on $I =]0, \infty[$ such that the quantities

$$\lambda_{m,k}^{\mu}(\phi) = \sup_{x \in I} |x^m (x^{-1}D)^k x^{-\mu - 1/2} \phi(x)| \quad (m, k \in \mathbb{N})$$

are finite. Endowed with the topology generated by the family of seminorms $\{\lambda_{m,k}^{\mu}\}_{(m,k)\in\mathbb{N}\times\mathbb{N}}, \mathcal{H}_{\mu}$ is a Fréchet space.

We note that this topology of \mathcal{H}_{μ} can be also defined by means of the seminorms

$$\tau_{m,k}^{\mu}(\phi) = \sup_{x \in I} |(1+x^2)^m (x^{-1}D)^k x^{-\mu-1/2} \phi(x)| \quad (m,k \in \mathbb{N}, \ \phi \in \mathcal{H}_{\mu}).$$

The vector space \mathcal{O} of all those $\theta \in C^{\infty}(I)$ such that for every $k \in \mathbb{N}$ there exist $n_k \in \mathbb{N}, A_k > 0$ satisfying

$$|(x^{-1}D)^k\theta(x)| \le A_k(1+x^2)^{n_k} \quad (x \in I)$$

was shown in [7] to be a space of multipliers for \mathcal{H}_{μ} . Here we prove that \mathcal{O} is precisely the space of multipliers of \mathcal{H}_{μ} (Section 2) and of \mathcal{H}'_{μ} (Section 4). In characterizing \mathcal{O} as the space of multipliers for \mathcal{H}'_{μ} we use the reflexivity of \mathcal{H}_{μ} , which derives from the fact, previously established in that section, that \mathcal{H}_{μ} is nuclear.

Sections 3 and 5 mainly deal with the problem of topologizing \mathcal{O} . We show that this can be done in such a way that the bilinear maps $(\theta, \vartheta) \mapsto \theta \vartheta$ from $\mathcal{O} \times \mathcal{O}$ into $\mathcal{O}, (\theta, \phi) \mapsto \theta \phi$ from $\mathcal{O} \times \mathcal{H}_{\mu}$ into \mathcal{H}_{μ} , and $(\theta, T) \mapsto \theta T$ from $\mathcal{O} \times \mathcal{H}'_{\mu}$ into \mathcal{H}'_{μ} , are separately continuous (Section 3) or even hypocontinuous with respect to bounded subsets (Section 5). We note that most of the properties established here for \mathcal{H}_{μ} , \mathcal{H}'_{μ} , and \mathcal{O} are similar to the corresponding ones for the Schwartz space \mathcal{G} , its dual \mathcal{G}' (the space of tempered distributions), and their space of multipliers \mathcal{O}_M . A difference between \mathcal{O} and \mathcal{O}_M should be pointed out, however: \mathcal{O} is not a normal space of distributions (see the remark following Proposition 3.5).

2. Multipliers of \mathcal{H}_{μ} .

A function $\theta = \theta(x)$ defined on I is said to be a multiplier for \mathcal{H}_{μ} if the map $\phi \mapsto \theta \phi$ is continuous from \mathcal{H}_{μ} into \mathcal{H}_{μ} . Our purpose in this section is to characterize the space of multipliers of \mathcal{H}_{μ} . This will be done in Theorem 2.3; some preliminary results are needed.

Lemma 2.2 below provides certain useful examples of functions in \mathcal{H}_{μ} . The following particular case of Peetre's Inequality (see, e.g., [1, Lemma 5.2]) is helpful in constructing such functions.

Lemma 2.1. For every $\xi, \eta \in \mathbb{R}$, there holds:

$$\frac{1+\xi^2}{1+\eta^2} \le 2(1+|\xi-\eta|^2).$$

Lemma 2.2. Let $\alpha \in \mathcal{D}(I)$ be such that $0 \leq \alpha \leq 1$, supp $\alpha = [1/2, 3/2]$ and $\alpha(1) = 1$. Also, let $\{x_j\}_{j \in \mathbb{N}}$ be a sequence of real numbers satisfying $x_0 > 1$ and $x_{j+1} > x_j + 1$. Define

(2.1)
$$\phi(x) = x^{\mu+1/2} \sum_{j=0}^{\infty} \frac{\alpha(x-x_j+1)}{(1+x_j^2)^j} \quad (x \in I).$$

Then $\phi \in \mathcal{H}_{\mu}$.

PROOF: It should be noted that the sum on the right-hand side of (2.1) is finite, because the functions $\alpha(x - x_j + 1)$ have pairwise disjoint supports. In fact, if $m, k \in \mathbb{N}$ and $x_j - 1/2 \le x \le x_j + 1/2$, we may write:

$$(1+x^2)^m (x^{-1}D)^k x^{-\mu-1/2} \phi(x) = \left(\frac{1+x^2}{1+x_j^2}\right)^m \frac{(x^{-1}D)^k \alpha(x-x_j+1)}{(1+x_j^2)^{j-m}} \,.$$

Lemma 2.1 guarantees that $\tau^{\mu}_{m,k}(\phi) < +\infty$, thus showing that $\phi \in \mathcal{H}_{\mu}$, as asserted.

We are now in a position to characterize the multipliers of \mathcal{H}_{μ} .

Theorem 2.3. Any one of the following statements is equivalent to the other two:

(i) The function $\theta = \theta(x)$ belongs to $C^{\infty}(I)$, and for every $k \in \mathbb{N}$ there exists $n_k \in \mathbb{N}$ such that

$$(1+x^2)^{-n_k}(x^{-1}D)^k\theta(x)$$

is bounded on I.

- (ii) The product $\theta\phi$ lies in \mathcal{H}_{μ} whenever $\phi \in \mathcal{H}_{\mu}$, and the map $\phi \mapsto \theta\phi$ is a continuous endomorphism of \mathcal{H}_{μ} .
- (iii) The function θ is infinitely differentiable on I, for every $k \in \mathbb{N}$ and every $\phi \in \mathcal{H}_{\mu}$ the function $\phi(x)(x^{-1}D)^k\theta(x)$ belongs to \mathcal{H}_{μ} , and the map $\phi(x) \mapsto \phi(x)(x^{-1}D)^k\theta(x)$ is a continuous endomorphism of \mathcal{H}_{μ} .

PROOF: That (i) implies (ii) has already been proved by Zemanian ([7, p. 134]). To show that (ii) implies (iii), let us consider the function $\phi \in \mathcal{H}_{\mu}$ defined by

(2.2)
$$\phi(x) = x^{\mu+1/2} e^{-x^2}.$$

According to (ii),

(2.3)
$$\psi(x) = x^{\mu+1/2}\theta(x)e^{-x^2}$$

lies in \mathcal{H}_{μ} , so that

(2.4)
$$\theta(x) = x^{\mu+1/2}\psi(x)e^{-x^2}$$

is infinitely differentiable on I. At this point, it suffices to show that $(x^{-1}D)^k\theta(x)$ is a multiplier of \mathcal{H}_{μ} whenever θ is. But this can be easily established by induction on k, taking into account the formula

$$\phi(x)(x^{-1}D)\theta(x) =$$

= $x^{\mu+1/2}(x^{-1}D)x^{-\mu-1/2}\theta(x)\phi(x) - \theta(x)x^{\mu+1/2}(x^{-1}D)x^{-\mu-1/2}\phi(x)$

along with the fact that if ϕ is in \mathcal{H}_{μ} then so is

$$x^{\mu+1/2}(x^{-1}D)^k x^{-\mu-1/2}\phi(x).$$

Finally, let $\theta(x)$ satisfy (iii). Since (2.2) belongs to \mathcal{H}_{μ} , so does (2.3). Then $\theta(x)$ can be represented by (2.4), and, in particular, the limit $\lim_{x\to 0+} \theta(x)$ exists. According to (iii), each $(x^{-1}D)^k\theta(x)$ is a multiplier of \mathcal{H}_{μ} , and we conclude that $\lim_{x\to 0+} (x^{-1}D)^k\theta(x)$ exists for all $k \in \mathbb{N}$.

Arguing by contradiction, let us assume that (i) is false. Then there exist $k \in \mathbb{N}$ and a sequence $\{x_j\}_{j\in\mathbb{N}}$ of real numbers, which, by what has been just proved, may be chosen so that $x_0 > 1$ and $x_{j+1} > x_j + 1$, such that:

$$|(x^{-1}D)^k\theta(x)|_{|x=x_j|} > (1+x_j^2)^j$$

The function $\phi \in \mathcal{H}_{\mu}$ constructed by means of $\{x_j\}_{j \in \mathbb{N}}$ as in Lemma 2.2 plainly satisfies

$$|x_j^{-\mu-1/2}\phi(x_j)(x^{-1}D)^k\theta(x)|_{x=x_j}| > \alpha(1) = 1 \quad (j \in \mathbb{N}),$$

contradicting (iii).

3. Topology and properties of the space of multipliers.

Following [7], we denote by \mathcal{O} the linear space of all those $\theta \in C^{\infty}(I)$ such that for every $k \in \mathbb{N}$ there exist $n_k \in \mathbb{N}$, $A_k > 0$ satisfying

$$|(x^{-1}D)^k\theta(x)| \le A_k(1+x^2)^{n_k} \quad (x \in I).$$

The equivalence between the conditions (i) and (ii) in Theorem 2.3 above characterizes \mathcal{O} as the space of multipliers of \mathcal{H}_{μ} , with independence of the value of the real parameter μ . However, once μ has been fixed, the condition (iii) suggests to introduce on \mathcal{O} the (separating) family of seminorms

$$\Gamma_{\mu} = \{\gamma^{\mu}_{\phi,k} : \phi \in \mathcal{H}_{\mu}, \ k \in \mathbb{N}\},\$$

where

$$\gamma^{\mu}_{\phi,k}(\theta) = \sup_{x \in I} |x^{-\mu - 1/2} \phi(x) (x^{-1}D)^k \theta(x)|.$$

Since the map $\phi(x) \mapsto x^{\nu-\mu}\phi(x) = \varphi(x)$ establishes an isomorphism between \mathcal{H}_{μ} and \mathcal{H}_{ν} for any $\mu, \nu \in \mathbb{R}$, the equality $\gamma^{\mu}_{\phi,k}(\theta) = \gamma^{\nu}_{\varphi,k}(\theta)$ holds whenever $k \in \mathbb{N}$ and $\theta \in \mathcal{O}$. Therefore, all families Γ_{μ} ($\mu \in \mathbb{R}$) define one and the same topology on \mathcal{O} . In the sequel, unless otherwise stated, it will always be assumed that \mathcal{O} is endowed with this topology, and μ will be any real number.

Remarks. (i) If $\theta \in C^{\infty}(I)$ is such that $\gamma_{\phi,k}^{\mu}(\theta) < +\infty$ for every $\phi \in \mathcal{H}_{\mu}$ and $k \in \mathbb{N}$, then $\theta \in \mathcal{O}$. In fact, fix $\phi \in \mathcal{H}_{\mu}$, $m, k \in \mathbb{N}$ and for $0 \leq p \leq k$ define $\phi_p \in \mathcal{H}_{\mu}$ by

$$\phi_p(x) = (1+x^2)^m x^{\mu+1/2} (x^{-1}D)^{k-p} x^{-\mu-1/2} \phi(x) \quad (x \in I).$$

Since

$$(1+x^2)^m (x^{-1}D)^k x^{-\mu-1/2} (\theta\phi)(x) = \sum_{p=0}^k \binom{k}{p} x^{-\mu-1/2} \phi_p(x) (x^{-1}D)^p \theta(x) \quad (x \in I),$$

necessarily

(3.1)
$$\tau^{\mu}_{m,k}(\theta\phi) \leq \sum_{p=0}^{k} \binom{k}{p} \gamma^{\mu}_{\phi_{p},p}(\theta).$$

In general

$$\tau_{m,k}^{\mu}(\phi(x)(\frac{1}{x}D)^{k}\theta(x)) \leq \sum_{p=0}^{k} \binom{k}{p} \gamma_{\phi_{p},p+n}^{\mu}(\theta), \quad (n \in \mathbb{N}).$$

Our assertion now follows as in the proof that (iii) implies (i) in Theorem 2.3. (ii) The topology of \mathcal{O} may be also generated by means of the family of seminorms $\{\gamma_{m,k;\phi}^{\mu}: (m,k) \in \mathbb{N} \times \mathbb{N}, \phi \in \mathcal{H}_{\mu}\}$, where

$$\gamma^{\mu}_{m,k;\phi}(\theta) = \tau^{\mu}_{m,k}(\theta\phi) \quad (m,k \in \mathbb{N}, \ \phi \in \mathcal{H}_{\mu}).$$

Certainly, let $k \in \mathbb{N}$ and, for every $\phi \in \mathcal{H}_{\mu}$ and every $p \in \mathbb{N}$ with $0 \leq p \leq k$, define $\phi_p \in \mathcal{H}_{\mu}$ by

$$\phi_p(x) = x^{\mu+1/2} (x^{-1}D)^p x^{-\mu-1/2} \phi(x) \quad (x \in I).$$

If $\phi \in \mathcal{H}_{\mu}$ and $\theta \in \mathcal{O}$, the equality

$$x^{-\mu-1/2}\phi(x)(x^{-1}D)^k\theta(x) = \sum_{p=0}^k (-1)^p \binom{k}{p} (x^{-1}D)^{k-p} x^{-\mu-1/2} (\theta\phi_p)(x) \quad (x \in I)$$

then shows that

$$\gamma^{\mu}_{\phi,k}(\theta) \leq \sum_{p=0}^{k} \binom{k}{p} \gamma^{\mu}_{0,k-p;\phi_p}(\theta).$$

Along with (3.1), this estimate proves our assertion.

Proposition 3.1. The identity map $\mathcal{O} \hookrightarrow \mathcal{E}(I)$ is continuous.

PROOF: It is enough to observe that

$$D^{k}\theta(x) = \frac{1}{x^{-\mu-1/2}\phi(x)} \sum_{p=0}^{k} C_{p} x^{\alpha(p)} x^{-\mu-1/2} \phi(x) (x^{-1}D)^{\beta(p)} \theta(x) \quad (x \in I)$$

for every $k \in \mathbb{N}$ and every $\theta \in \mathcal{O}$, where $\phi(x) = x^{\mu+1/2}e^{-x^2}$ $(x \in I)$ belongs to \mathcal{H}_{μ} , $C_p > 0$ $(0 \le p \le k)$ are suitable constants, and $\alpha(p) \le k$, $\beta(p) \le k$ $(0 \le p \le k)$ denote nonnegative integers, with $C_k = 1$ and $\alpha(k) = \beta(k) = k$.

Proposition 3.2. The linear topological space \mathcal{O} is locally convex, Hausdorff, nonmetrizable, and complete.

PROOF: The only property that needs to be checked out is completeness.

Let $\{\theta_{\iota}\}_{\iota \in J}$ be a Cauchy net in \mathcal{O} . Since \mathcal{O} injects continuously into $\mathcal{E}(I)$ (Proposition 3.1), $\{\theta_{\iota}\}_{\iota \in J}$ is also a Cauchy net in $\mathcal{E}(I)$. $\mathcal{E}(I)$ being complete, $\{\theta_{\iota}\}_{\iota \in J}$ converges to some $\theta \in \mathcal{E}(I)$ in $\mathcal{E}(I)$. We must show that $\theta \in \mathcal{O}$ and that $\{\theta_{\iota}\}_{\iota \in J}$ converges to θ in the topology of \mathcal{O} .

Fix $\phi \in \mathcal{H}_{\mu}$, $k \in \mathbb{N}$, $\varepsilon > 0$. By hypothesis, there exists $\iota_0 = \iota_0(\phi, k, \varepsilon) \in J$ such that

(3.2)
$$\gamma^{\mu}_{\phi,k}(\theta_{\iota} - \theta_{\iota'}) < \varepsilon \quad (\iota, \iota' \ge \iota_0).$$

Let us consider $x \in I$, $\eta > 0$. Since $\{\theta_i\}_{i \in J}$ converges to θ in $\mathcal{E}(I)$, there holds

(3.3)
$$|x^{-\mu-1/2}\phi(x)(x^{-1}D)^k(\theta-\theta_{\iota'})(x)| < \eta$$

for some $\iota' = \iota'(\phi, x, \eta) \ge \iota_0$. The combination of (3.2) and (3.3) yields

$$\left|x^{-\mu-1/2}\phi(x)(x^{-1}D)^k(\theta-\theta_\iota)(x)\right| < \varepsilon + \eta \quad (\iota \ge \iota_0),$$

and from the arbitrariness of x and η , we infer that

$$\gamma^{\mu}_{\phi,k}(\theta - \theta_{\iota}) \le \varepsilon \quad (\iota \ge \iota_0).$$

With the inequality

$$\gamma^{\mu}_{\phi,k}(\theta) \le \gamma^{\mu}_{\phi,k}(\theta - \theta_{\iota}) + \gamma^{\mu}_{\phi,k}(\theta_{\iota}) \quad (\iota \ge \iota_0)$$

we finally prove that $\theta \in \mathcal{O}$ and $\{\theta_i\}_{i \in J}$ converges to θ in \mathcal{O} .

The next Proposition 3.3 collects several continuity properties of certain operators on \mathcal{O} .

Proposition 3.3. The following holds:

(i) The bilinear map

$$\mathcal{O} imes \mathcal{O} o \mathcal{O}$$

 $(heta, artheta) \mapsto heta artheta$

is separately continuous.

- (ii) If R(x) = P(x)/Q(x), where P(x) and Q(x) are polynomials and Q does not vanish in $[0, \infty[$, then the map $\theta(x) \mapsto R(x^2)\theta(x)$ is continuous from \mathcal{O} to \mathcal{O} .
- (iii) For every $k \in \mathbb{N}$, the map $\theta(x) \mapsto (x^{-1}D)^k \theta(x)$ is continuous from \mathcal{O} to \mathcal{O} .

PROOF: Let $\theta \in \mathcal{O}$, $k \in \mathbb{N}$, and for $0 \le p \le k$ let $n_p \in \mathbb{N}$, $A_p > 0$ be such that

$$|(x^{-1}D)^p\theta(x)| \le A_p(1+x^2)^{n_p} \quad (x \in I).$$

If $\phi \in \mathcal{H}_{\mu}$, set

$$\phi_p(x) = (1 + x^2)^{n_p} \phi(x) \quad (x \in I).$$

Note that $\phi_p \in \mathcal{H}_{\mu}$. The formula

$$\begin{aligned} x^{-\mu-1/2}\phi(x)(x^{-1}D)^{k}(\theta\vartheta)(x) &= \\ &= \sum_{p=0}^{k} \binom{k}{p} x^{-\mu-1/2} \phi_{p}(x) \frac{(x^{-1}D)^{p}\theta(x)}{(1+x^{2})^{n_{p}}} (x^{-1}D)^{k-p}\vartheta(x), \end{aligned}$$

valid for all $x \in I$, leads to the inequality

$$\gamma^{\mu}_{\phi,k}(\theta\vartheta) \leq \sum_{p=0}^{\kappa} \binom{k}{p} A_p \gamma^{\mu}_{\phi_p,k-p}(\vartheta),$$

which proves (i).

Assertion (ii) may be immediately deduced from (i) and from Lemma 5.3.1 in [7], whereas (iii) derives from the relationship

$$\gamma^{\mu}_{\phi,p}\big((x^{-1}D)^k\theta(x)\big) = \gamma^{\mu}_{\phi,k+p}(\theta).$$

394

Proposition 3.4. The bilinear map

$$\mathcal{O} imes \mathcal{H}_{\mu} o \mathcal{H}_{\mu}$$

 $(heta, \phi) \mapsto heta \phi$

is separately continuous.

PROOF: See Theorem 2.3 and part (i) of the remark preceding Proposition 3.1. \Box **Proposition 3.5.** The map $\varphi(x) \mapsto x^{-\mu-1/2}\varphi(x)$ is continuous from \mathcal{H}_{μ} into \mathcal{O} . PROOF: There holds:

$$\gamma_{\phi,k}^{\mu}(x^{-\mu-1/2}\varphi(x)) \leq \sup_{x \in I} |x^{-\mu-1/2}\phi(x)|\lambda_{0,k}^{\mu}(\varphi) \quad (\varphi, \phi \in \mathcal{H}_{\mu}, \ k \in \mathbb{N}).$$

Remark. We claim that the test space $\mathcal{D}(I)$ is not dense in $x^{-\mu-1/2}\mathcal{H}_{\mu}$ with respect to the topology of \mathcal{O} . Admitting for the moment the veracity of this assertion, it follows from Proposition 3.5 that $\mathcal{D}(I)$ is not dense in \mathcal{O} , which prevents \mathcal{O} from being a normal space of distributions. This differs from the case of Schwartz multipliers (cf. [1, Theorem 4.7]).

To prove the claim, take $\varphi \in \mathcal{H}_{\mu}$ and assume (to reach a contradiction) that $\{x^{-\mu-1/2}\alpha_{\iota}(x)\}_{\iota\in J}$ is a net in $\mathcal{D}(I)$, converging to $x^{-\mu-1/2}\varphi(x)$ in the topology of \mathcal{O} . Given $k \in \mathbb{N}, \varepsilon > 0$, there exists $\iota_0 = \iota_0(k, \varepsilon) \in J$, with

$$|e^{-x^2}(x^{-1}D)^k x^{-\mu-1/2}(\alpha_{\iota_0}-\varphi)(x)| < \varepsilon/e \quad (x \in I).$$

For $x \in [0, 1[$, we may write:

$$|(x^{-1}D)^k x^{-\mu-1/2} (\alpha_{\iota_0} - \varphi)(x)| \le e|e^{-x^2} (x^{-1}D)^k x^{-\mu-1/2} (\alpha_{\iota_0} - \varphi)(x)| < \varepsilon.$$

Therefore, to every $k \in \mathbb{N}$ and every $n = 1, 2, 3, \ldots$ there corresponds $\iota_n \in J$, $x_n \in]0, 1/n[$, such that

$$|(x^{-1}D)^{k}x^{-\mu-1/2}\varphi(x)|_{x=x_{n}}| \leq |(x^{-1}D)^{k}x^{-\mu-1/2}(\alpha_{\iota_{n}}-\varphi)(x)|_{x=x_{n}}| + |(x^{-1}D)^{k}x^{-\mu-1/2}\alpha_{\iota_{n}}(x)|_{x=x_{n}}| < 1/n,$$

whence

$$\lim_{n \to \infty} (x^{-1}D)^k x^{-\mu - 1/2} \varphi(x)_{|x=x_n} = 0.$$

However, the particularizations $\varphi(x) = x^{\mu+1/2}e^{-x^2}$ and k = 0 lead to

$$\lim_{x \to 0^+} (x^{-1}D)^k x^{-\mu - 1/2} \varphi(x) = 1,$$

thus yielding a contradiction, as expected.

Proposition 3.6. Set $\mu \geq -1/2$. Given $\theta \in \mathcal{O}$, the function $x^{\mu+1/2}\theta(x)$ defines an element in \mathcal{H}'_{μ} by the formula

(3.4)
$$\langle x^{\mu+1/2}\theta(x),\phi(x)\rangle = \int_0^\infty x^{\mu+1/2}\theta(x)\phi(x)\,dx \quad (\phi\in\mathcal{H}_\mu),$$

and the map $\theta(x) \mapsto x^{\mu+1/2}\theta(x)$ is continuous from \mathcal{O} into \mathcal{H}'_{μ} .

PROOF: Take $\theta \in \mathcal{O}, \phi \in \mathcal{H}_{\mu}$, and choose $r \in \mathbb{N}, A_r > 0$ satisfying

 $|\theta(x)| \le A_r (1+x^2)^r \quad (x \in I).$

Also, let $s \in \mathbb{N}$, $s > \mu + 1$, be such that

$$C_s^{\mu} = \int_0^\infty \frac{x^{2\mu+1}}{(1+x^2)^s} \, dx < +\infty.$$

Upon multiplying and dividing the integrand in (3.4) by $x^{-\mu-1/2}(1+x^2)^s$ we find that:

$$\langle x^{\mu+1/2}\theta(x),\phi(x)\rangle| \le A_r C_s^{\mu}\tau_{r+s,0}^{\mu}(\phi),$$

and that:

 $|\langle x^{\mu+1/2}\theta(x),\phi(x)\rangle| \le C_s^{\mu}\gamma_{\psi,0}^{\mu}(\theta),$

where $\psi(x) = (1 + x^2)^s \phi(x) \in \mathcal{H}_{\mu}$.

4. Multipliers of \mathcal{H}'_{μ} .

Next we aim to characterize \mathcal{O} as the space of multipliers of \mathcal{H}'_{μ} ($\mu \in \mathbb{R}$). The reflexivity of \mathcal{H}_{μ} will be needed for that purpose. In Proposition 4.2 we prove that \mathcal{H}_{μ} is nuclear ([4, Definition III.50.1]), a property stronger than reflexivity; to this end, the following is useful.

Lemma 4.1. Let $m, k \in \mathbb{N}$, and let $\phi \in \mathcal{H}_{\mu}$. There holds:

$$\begin{split} \sum_{k=0}^{m} \sup_{x \in I} |(1+x^2)^m (x^{-1}D)^k x^{-\mu-1/2} \phi(x)| &\leq \\ &\leq (m+1) \sum_{k=0}^{m+1} \int_0^\infty |(1+t^2)^{m+1} (t^{-1}D)^k t^{-\mu-1/2} \phi(t)| \, dt. \end{split}$$

PROOF: In fact, we have:

$$(1+x^2)^m (x^{-1}D)^k x^{-\mu-1/2} \phi(x) = -\int_x^\infty D((1+t^2)^m (t^{-1}D)^k t^{-\mu-1/2} \phi(t)) dt$$
$$= -\int_x^\infty 2mt(1+t^2)^{m-1} (t^{-1}D)^k t^{-\mu-1/2} \phi(t) dt$$
$$-\int_x^\infty t(1+t^2)^m (t^{-1}D)^{k+1} t^{-\mu-1/2} \phi(t) dt \quad (x \in I).$$

Since $2t \leq 1 + t^2$ $(t \in I)$, it follows that

$$\begin{split} |(1+x^2)^m (x^{-1}D)^k x^{-\mu-1/2} \phi(x)| &\leq m \int_0^\infty |(1+t^2)^m (t^{-1}D)^k t^{-\mu-1/2} \phi(t)| \, dt \\ &+ \int_0^\infty |(1+t^2)^{m+1} (t^{-1}D)^{k+1} t^{-\mu-1/2} \phi(t)| \, dt \quad (x \in I), \end{split}$$
 ence the lemma.

whence the lemma.

Proposition 4.2. The space \mathcal{H}_{μ} is nuclear.

PROOF: Let $m, k \in \mathbb{N}$, and let $\phi \in \mathcal{H}_{\mu}$. For $t \in I$ and $0 \leq k \leq m+2$, define $u_{t,k} \in \mathcal{H}'_{\mu}$ by the formula:

$$\langle u_{t,k}, \phi \rangle = (1+t^2)^{m+2} (t^{-1}D)^k t^{-\mu-1/2} \phi(t) \quad (\phi \in \mathcal{H}_{\mu}),$$

and consider

$$V = \{\phi \in \mathcal{H}_{\mu} : \sum_{k=0}^{m+2} \sup_{t \in I} |(1+t^2)^{m+2} (t^{-1}D)^k t^{-\mu-1/2} \phi(t)| < 1\}.$$

Note that V is a neighborhood of the origin in \mathcal{H}_{μ} , and that each $u_{t,k}$ $(t \in I, 0 \leq$ $k \leq m+2$) belongs to V°, the polar set of V. Thus, a positive Radon measure μ may be defined on V° by the equation:

$$\langle \mu, \varphi \rangle = \int_{V^{\circ}} \varphi \, d\mu = (m+1) \sum_{k=0}^{m+2} \int_{0}^{\infty} \varphi(u_{t,k}) (1+t^2)^{-1} \, dt \quad (\varphi \in C(V^{\circ})).$$

Lemma 4.1 now implies:

m

$$\sum_{k=0}^{m} \sup_{x \in I} |(1+x^2)^m (x^{-1}D)^k x^{-\mu-1/2} \phi(x)| \le \\ \le (m+1) \sum_{k=0}^{m+2} \int_0^\infty |(1+t^2)^{m+1} (t^{-1}D)^k t^{-\mu-1/2} \phi(t)| dt \\ = (m+1) \sum_{k=0}^{m+2} |\langle u_{t,k}, \phi \rangle| (1+t^2)^{-1} dt \\ = \int_{V^\circ} |\langle u, \phi \rangle| d\mu(u) \quad (\phi \in \mathcal{H}_\mu).$$

Since the sets

$$V(m,\varepsilon) = = \{\phi \in \mathcal{H}_{\mu} : \sum_{k=0}^{m} \sup_{x \in I} |(1+x^2)^m (x^{-1}D)^k x^{-\mu-1/2} \phi(x)| < \varepsilon\} \quad (m \in \mathbb{N}, \ \varepsilon > 0)$$

form a basis of neighborhoods of the origin in \mathcal{H}'_{μ} , the nuclearity of this space follows from [3, Proposition 4.1.5].

Once that Proposition 4.2 has been established, a number of consequences may be deduced by applying general properties of nuclear spaces.

Corollary 4.3. The space \mathcal{H}'_{μ} is nuclear with respect to its strong topology.

PROOF: See [4, Proposition III.50.6].

Corollary 4.4. \mathcal{H}_{μ} (with its usual topology) and \mathcal{H}'_{μ} (with the strong topology) are Schwartz spaces.

PROOF: This is derived from [5, Proposition 3.2.5].

Corollary 4.5. The space \mathcal{H}_{μ} is Montel, hence reflexive.

PROOF: Fréchet-Schwartz spaces are Montel ([2, Corollary to Proposition 3.15.4]), and Montel spaces are reflexive ([2, Corollary to Proposition 3.9.1]). \Box

We turn to the study of the multipliers of \mathcal{H}'_{μ} .

Definition 4.6. For $\theta \in \mathcal{O}$ and $T \in \mathcal{H}'_{\mu}$, θT is defined by transposition:

$$\langle \theta T, \phi \rangle = \langle T, \theta \phi \rangle \quad (\phi \in \mathcal{H}_{\mu}).$$

Proposition 3.4 implies that $\theta T \in \mathcal{H}'_{\mu}$ and that each map $T \mapsto \theta T$ is continuous from \mathcal{H}'_{μ} to \mathcal{H}'_{μ} . By applying the universal property of initial topologies, we also find that the map $\theta \mapsto \theta T$ is continuous from \mathcal{O} into \mathcal{H}'_{μ} if the latter is equipped with its weak^{*} topology. We are thus led to the following.

Proposition 4.7. The bilinear map

$$\mathcal{O} \times \mathcal{H}'_{\mu} \to \mathcal{H}'_{\mu}$$
$$(\theta, T) \mapsto \theta T$$

is separately continuous when \mathcal{H}'_{μ} is endowed with its weak^{*} topology.

Given a > 0 and $\mu \in \mathbb{R}$, $\mathcal{B}_{\mu,a}$ (see [6]) is the subspace of \mathcal{H}_{μ} formed by all those functions $\psi = \psi(x)$ infinitely differentiable on I such that $\psi(x) = 0$ ($x \ge a$), for which the quantities

$$\lambda_k^{\mu}(\psi) = \sup_{x \in I} |(x^{-1}D)^k x^{-\mu - 1/2} \psi(x)| \quad (k \in \mathbb{N})$$

are finite. When equipped with the topology generated by the family of seminorms $\{\lambda_k^{\mu}\}_{k\in\mathbb{N}}, \mathcal{B}_{\mu,a}$ becomes a Fréchet space. It is easy to see that $\mathcal{B}_{\mu,a} \subset \mathcal{B}_{\mu,b}$ if 0 < a < b, and that $\mathcal{B}_{\mu,a}$ inherits from $\mathcal{B}_{\mu,b}$ its own topology. These facts allow us to define $\mathcal{B}_{\mu} = \bigcup_{a>0} \mathcal{B}_{\mu,a}$ as the inductive limit of the family $\{\mathcal{B}_{\mu,a}\}_{a>0}$. The space \mathcal{B}_{μ} turns out to be dense in \mathcal{H}_{μ} .

Definition 4.8. Let $\theta \in C^{\infty}(I)$ be such that $(x^{-1}D)^k\theta(x)$ is bounded in a neighborhood of zero for every $k \in \mathbb{N}$. If $T \in \mathcal{H}'_{\mu}$ then T lies in \mathcal{B}'_{μ} , the dual space of \mathcal{B}_{μ} , and $\theta T \in \mathcal{B}'_{\mu}$ may be consistently defined by the formula

$$\langle \theta T, \psi \rangle = \langle T, \theta \psi \rangle \quad (\psi \in \mathcal{B}_{\mu}).$$

We are now ready to prove that the space of multipliers of \mathcal{H}'_{μ} is precisely \mathcal{O} :

Theorem 4.9. Assume that $\theta \in C^{\infty}(I)$ is such that each $(x^{-1}D)^k\theta(x)$ $(k \in \mathbb{N})$ is bounded in a neighborhood of zero. If, for every $T \in \mathcal{H}'_{\mu}$, the functional $\theta T \in \mathcal{B}'_{\mu}$ (given by Definition 4.8) can be (a fortiori uniquely) extended up to \mathcal{H}_{μ} as a member of \mathcal{H}'_{μ} in such a way that the map $\theta \mapsto \theta T$ is continuous from \mathcal{H}'_{μ} into itself, then $\theta \in \mathcal{O}$.

PROOF: Let $\phi \in \mathcal{H}_{\mu}$. Our hypotheses imply that the linear functional $T \mapsto \langle \theta T, \phi \rangle$ is continuous on \mathcal{H}'_{μ} . By the reflexivity of \mathcal{H}_{μ} (Corollary 4.5), there exists $\varphi \in \mathcal{H}_{\mu}$ satisfying

$$\langle \theta T, \phi \rangle = \langle T, \varphi \rangle \quad (T \in \mathcal{H}'_{\mu}).$$

In particular:

$$\theta\phi,\psi\rangle = \langle\theta\psi,\phi\rangle = \langle\psi,\varphi\rangle = \langle\varphi,\psi\rangle \quad (\psi\in\mathcal{B}_{\mu}).$$

Thus, $\theta \phi = \varphi \in \mathcal{H}_{\mu}$. Since the space of multipliers of \mathcal{H}_{μ} is \mathcal{O} (Theorem 2.3), we conclude that $\theta \in \mathcal{O}$.

5. Another topology on \mathcal{O} .

Let μ be any real number, and let \mathfrak{B}_{μ} denote the family of all bounded subsets of \mathcal{H}_{μ} . Throughout this section we shall assume that \mathcal{O} is endowed with the topology generated by the family of seminorms

(5.1)
$$\gamma_{B,k}^{\mu} = \sup\{\gamma_{\phi,k}^{\mu} : \phi \in B\} \quad (B \in \mathfrak{B}_{\mu}, \ k \in \mathbb{N}).$$

Remark. Clearly, the topology just defined on \mathcal{O} is finer than that introduced in Section 3. As before, any two spaces \mathcal{H}_{μ} and \mathcal{H}_{ν} being isomorphic, this topology does not depend on the parameter μ .

Proposition 5.1. The topological vector space \mathcal{O} is locally convex, Hausdorff, nonmetrizable, and complete.

PROOF: Again, the only property to be checked out is completeness.

Let $\{\theta_{\iota}\}_{\iota \in J}$ be a Cauchy net in \mathcal{O} . Since $\{\theta_{\iota}\}_{\iota \in J}$ is also Cauchy with respect to the topology considered on \mathcal{O} in Section 3 above (see the preceding remark), there exists $\theta \in \mathcal{O}$ such that $\{\theta_{\iota}\}_{\iota \in J}$ converges to θ in that topology.

Take $B \in \mathfrak{B}_{\mu}, k \in \mathbb{N}, \varepsilon > 0$. By hypothesis, there exists $\iota_0 = \iota_0(B, k, \varepsilon) \in J$ such that

$$\gamma_{B,k}^{\mu}(\theta_{\iota} - \theta_{\iota'}) < \varepsilon/2 \quad (\iota, \iota' \ge \iota_0).$$

Moreover, as just observed, to every $\phi \in B$ there corresponds $\iota' = \iota'(\phi, k, \varepsilon) \ge \iota_0$ satisfying

$$\gamma^{\mu}_{\phi,k}(\theta_{\iota'} - \theta) < \varepsilon/2.$$

A combination of the last two inequalities shows that

$$\gamma^{\mu}_{B,k}(\theta_{\iota} - \theta) < \varepsilon \quad (\iota \ge \iota_0).$$

Therefore, $\{\theta_{\iota}\}_{\iota \in J}$ converges to θ in \mathcal{O} .

Proposition 5.2. The bilinear map

(5.2)
$$\begin{array}{c} \mathcal{O} \times \mathcal{H}_{\mu} \to \mathcal{H}_{\mu} \\ (\theta, \phi) \mapsto \theta \phi \end{array}$$

is hypocontinuous.

PROOF: That (5.2) is separately continuous follows from Proposition 3.4 and from the remark preceding Proposition 5.1 above.

Since \mathcal{H}_{μ} is a Fréchet space, the uniform boundedness principle guarantees the hypocontinuity with respect to the bounded subsets of \mathcal{O} . On the other hand, take $m, k \in \mathbb{N}$, and for every $\phi \in \mathcal{H}_{\mu}$ and every $p \in \mathbb{N}$, $0 \leq p \leq k$, define $\phi_p \in \mathcal{H}_{\mu}$ by

$$\phi_p(x) = (1+x^2)^m x^{\mu+1/2} (x^{-1}D)^{k-p} x^{-\mu-1/2} \phi(x) \quad (x \in I).$$

Leibniz's rule shows that the map $\phi \mapsto \phi_p$ is continuous from \mathcal{H}_{μ} into \mathcal{H}_{μ} . Denoting by $B_p \in \mathfrak{B}_{\mu}$ the image of $B \in \mathfrak{B}_{\mu}$ through this map, it can be proved, as in the part (i) of the remark preceding Proposition 3.1 that

(5.3)
$$\tau_{m,k}^{\mu}(\theta\phi) \leq \sum_{p=0}^{k} {k \choose p} \gamma_{B_{p},p}^{\mu}(\theta) \quad (\theta \in \mathcal{O}, \ \phi \in B).$$

Thus, (5.2) is \mathfrak{B}_{μ} -hypocontinuous.

It should be observed that the topology generated on \mathcal{O} by the seminorms (5.1) is compatible with the family

$$\gamma_{m,k;B}^{\mu}(\theta) = \sup\{\tau_{m,k}^{\mu}(\theta\phi) : \phi \in B\} \quad (m,k \in \mathbb{N}, \ B \in \mathfrak{B}_{\mu}).$$

In fact, let $k \in \mathbb{N}$. For every $p \in \mathbb{N}$ with $0 \leq p \leq k$, the map $\phi \mapsto \phi_p$, defined from \mathcal{H}_{μ} into \mathcal{H}_{μ} by the formula

$$\phi_p(x) = x^{\mu+1/2} (x^{-1}D)^p x^{-\mu-1/2} \phi(x) \quad (x \in I),$$

is continuous; as before, we denote by $B_p \in \mathfrak{B}_{\mu}$ the image of $B \in \mathfrak{B}_{\mu}$ through this map. Now, the argument in the part (ii) of the remark preceding Proposition 3.1 shows that

$$\gamma_{B,k}^{\mu}(\theta) \leq \sum_{p=0}^{k} {k \choose p} \gamma_{0,k-p;B_p}^{\mu}(\theta) \quad (B \in \mathfrak{B}_{\mu}, \ k \in \mathbb{N}, \ \theta \in \mathcal{O}).$$

Along with (5.3), this estimate proves our assertion.

Proposition 5.3. The bilinear map

$$\mathcal{O} \times \mathcal{H}'_{\mu} \to \mathcal{H}'_{\mu} (\theta, T) \mapsto \theta T$$

is separately continuous when \mathcal{H}'_{μ} is endowed either with its weak^{*} or with its strong topology.

PROOF: The continuity in the second variable follows from [4, Propositions II.19.5 and II.35.8]. On the other hand, let $T \in \mathcal{H}'_{\mu}$, $\theta \in \mathcal{O}$, $B \in \mathfrak{B}_{\mu}$. There exist $r \in \mathbb{N}$ and a constant C > 0 such that

$$|\langle T, \varphi \rangle| \le C \max_{0 \le m, \ k \le r} \tau^{\mu}_{m,k}(\varphi) \quad (\varphi \in \mathcal{H}_{\mu}),$$

Hence

$$|\langle \theta T, \phi \rangle| = |\langle T, \theta \phi \rangle| \le C \max_{0 \le m, \ k \le r} \tau^{\mu}_{m,k}(\theta \phi) \quad (\phi \in B),$$

which leads to the inequality

$$\sup\{|\langle \theta T, \phi \rangle| : \phi \in B\} \le C \max_{0 \le m, \ k \le r} \gamma^{\mu}_{m,k;B}(\theta).$$

Proposition 5.4. The bilinear map

$$egin{aligned} \mathcal{O} imes \mathcal{O} &
ightarrow \mathcal{O} \ (heta, artheta) &\mapsto heta artheta \end{aligned}$$

is hypocontinuous.

PROOF: Let \mathfrak{B} denote the family of all bounded subsets of \mathcal{O} . If $A \in \mathcal{B}$ and $B \in \mathcal{B}_{\mu}$, a fortiori $AB \in \mathfrak{B}_{\mu}$ (Proposition 5.2 and [2, Proposition 4.7.2]). Fix $m, k \in \mathbb{N}, \theta \in A, \vartheta \in \mathcal{O}, \phi \in B$; then

$$\gamma^{\mu}_{m,k;B}(hetaartheta) \leq \gamma^{\mu}_{m,k;AB}(artheta).$$

References

- Barros-Neto J., An Introduction to the Theory of Distributions, R.E. Krieger Publishing Company, Malabar, Florida, 1981.
- [2] Horvath J., Topological Vector Spaces and Distributions, Vol. 1, Addison-Wesley, Reading, Massachusetts, 1966.
- [3] Pietsch A., Nuclear Locally Convex Spaces, Springer-Verlag, Berlin, 1972.
- [4] Treves F., Topological Vector Spaces, Distributions, and Kernels, Academic Press, New York, 1967.
- [5] Wong Y.-Ch., Schwartz Spaces, Nuclear Spaces, and Tensor Products, Lecture Notes in Math. 726, Springer-Verlag, Berlin, 1979.
- [6] Zemanian A.H., The Hankel transformation of certain distributions of rapid growth, SIAM J. Appl. Math. 14 (1966), 678–690.
- [7] _____, Generalized Integral Transformations, Interscience, New York, 1968.

Departamento de Análisis Matemático, Universidad de La Laguna, 38271 La Laguna (Tenerife), Canary Islands, Spain

 \square