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T0- and T1-reflections

Maria Manuel Clementino

Abstract. In an abstract category with suitable notions of subobject, closure and point,
we discuss the separation axioms T0 and T1. Each of the arising subcategories is reflective.
We give an iterative construction of the reflectors and present characteristic examples.
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Introduction.

Given a category X and a fixed ‘well behaved’ class of monomorphisms M, we
distinguish someM-morphisms and we think of them as points. Moreover, if a clo-
sure operator C, with respect to M, is defined on X (in the sense of [6]), there is
a natural way of considering separation axioms T0 and T1.

The objects satisfying each of these separation axioms, as well as the (full) sub-
categories they define, have interesting properties. We are mainly interested in
those concerned with reflections. Actually, under mild conditions on X , these sub-
categories are extremal epireflective. When it is the case, their reflections can be
obtained in a natural way by a transfinite process. The idea comes from an easy
construction of the Top 0-reflection and suggests a more detailed study of the Top 1-
reflection. Indeed, one can see that, with respect to this process, the reflection in
Top 1 is far from being as easily obtained as the Top 0-reflection. Furthermore, in
this general setting, the process of constructing the T0-reflection can be as complex
as in the case of Top 1.

Section 1 presents the basic concepts that are used throughout the paper.

In Section 2 we give the notions of T0- and T1-object and we analyse the immedi-
ate consequences for the subcategories T0 and T1 of T0- and T1-objects, respectively.

The properties of T0 and T1 described in 2.2 lead us to a first attempt of obtaining
the T0- and T1-reflections. Although we only get, at a first stage, prereflections,
which, in general, are not the T0- and T1-reflections, they direct us to a transfinite
process of defining the requested reflections. This is studied in Section 3.
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In Section 4 we study examples that clarify some situations. Example 1 illustrates
the behaviour of the Top 1-reflection in the sense that it shows that the Top 1-
reflection is not obtained at any fixed step of the iteration of the corresponding
prereflection. For an arbitrary T0-reflection, the same conclusion follows from the
remaining examples.

In the last section we briefly discuss connections between the notions of T0- and
T1-objects we introduce and known concepts of separation.

1. Preliminaries.

Throughout we consider a category X and a classM of morphisms of X containing
all isomorphisms and closed under composition. Moreover, we assume that X is
M-complete, that is, pullbacks of M-morphisms along arbitrary morphisms and
multiple pullbacks of (possibly large) families of M-morphisms exist and belong
toM.

Then we have that (cf. [18] in the dual situation):

• M is a class of monomorphisms of X .
• There exists a class E of X -morphisms such that (E ,M) is a factorization
system in X , that is, every X -morphism has an (E ,M)-factorization, and,
for each commutative diagram

where e ∈ E and m ∈ M, there exists a unique morphism d such that
m · d = v and d · e = u.

• Given an X -object X and M-morphisms m and n with codomain X , we
shall say that m ≤ n if there exists a morphism mn such that n · mn = m.
The comma category M/X of M-morphisms with codomain X equipped
with this preorder is a complete class.

• For each morphism f : X → Y , there exist functors f−1(−) :M/Y → M/X

and f(−) : M/X → M/Y given by pullback and (E ,M)-factorization,
respectively, f(−) being left adjoint to f−1(−).

We also consider a closure operator C on X , with respect toM, in the sense of [6].
We recall that, in order to define C, one only needs to give, for each X -object X ,
a functor cX :M/X → M/X such that, for each m, n ∈ M/X and f ∈ X (X, Y ),
m ≤ cX(m) and f(cX(m)) ≤ cY (f(m)).

The closure operator C is said to be idempotent if, for eachm ∈ M/X , cX(m) ∼=
cX (cX(m)) and additive if, for each m, n ∈ M/X , cX (m ∨ n) ∼= cX(m) ∨ cX(n).

We shall denote cX(m) by [m]X , or simply by [m], when its meaning is clear
from the context.

More on closure operators can be found on [6] and [7].
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Throughout all subcategories are assumed to be full and replete (i.e. closed under
isomorphisms).

2. T0- and T1-objects.

From now on we consider a fixed X -object P such that any two parallel E-morphisms
with domain P are equal.
We shall denote by P the class of X -objects which are codomains of E-morphisms

with domain P , that is,

P := {Q ∈ ObX | there exists e : P → Q in E}.

Moreover, for each X -object X , the class ofM/X-morphisms with domain in P
will be denoted by PX . In our approach these morphisms are thought of as points
of X . A detailed study of the behaviour of these ‘points’ is presented in [5].

Definition 2.1. (a) An X -object X is said to be a T0-object if, for each pair x, y
of PX -morphisms, x and y are isomorphic whenever x ≤ [y] and y ≤ [x].
(b) An X -objectX is said to be a T1-object if, for each pair x, y of PX -morphisms,

x and y are isomorphic whenever x ≤ [y].

We shall denote by T0 (resp. T1) the subcategory of X whose objects are the
T0-objects (resp. T1-objects).

Proposition 2.2. (a) If f : X → Y is an X -morphism and Y belongs to T0, then,
for each pair x, y of PX -morphisms, x ≤ [y] and y ≤ [x] implies that f(x) ∼= f(y).
(b) If f : X → Y is an X -morphism and Y belongs to T1, then, for each pair x, y

of PX -morphisms, x ≤ [y] implies that f(x) ∼= f(y).

Proof: For f ∈ X (X, Y ) and m, n ∈ M/X , we always have that, if m ≤ [n], then
f(m) ≤ f([n]) ≤ [f(n)], by definition of closure operator. The assertions (a) and (b)
follow easily from this fact and the definitions of T0- and T1-object, respectively.

�

These results lead us to the following

Theorem 2.3. T0 and T1 are closed under monosources.

Proof: Let (fi : X → Xi)I be a monosource, where Xi is a T0-object, for each
i ∈ I, and let x : Q → X and y : R → X be PX -morphisms such that x ≤ [y] and
y ≤ [x]. From 2.2 (a) it follows that fi(x) ∼= fi(y) (i.e. there exists an isomorphism
hi such that fi(y) ·hi = fi(x)), for each i ∈ I. Let e and a be the E-morphisms from
P to Q and R, respectively. If fi(x) · ei and fi(y) · ai are the (E ,M)-factorizations
of fi · x and fi · y, respectively,
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then, since hi · ei · e and ai · a are E-morphisms from P to Ri, hi · ei · e = ai · a,
for each i ∈ I, by our assumption on P . Hence, fi · x · e = fi · y · a, for each i ∈ I,
which implies that x · e = y · a. From this equality it follows that x ∼= y, therefore,
X belongs to T0.
Similarly for T1. �

3. Construction of the T0- and T1-reflection.

A prereflection on A consists of an endofunctor T : A → A and a natural transfor-
mation η : IdA → T such that, for each A-morphism f : X → Y , Tf : TX → TY ,
is the only morphism rendering the diagram

commutative (cf. [2], [18] and [20]).

A prereflection (T, η) is called a reflection whenever ηT is pointwise an isomor-
phism.

We shall denote by Fix(T, η) the subcategory of A whose objects are the A-
objects A such that ηA is an isomorphism.

Proposition 3.1. For a prereflection (T, η), the following assertions are equivalent:

(i) (T, η) is a reflection.
(ii) Fix(T, η) is reflective, with reflections (ηA : A → TA)A∈ObA.

Proof: Cf. [18, Proposition 4.2]. �

From now on we assume that X has coequalizers and multiple pushouts of (pos-
sibly large) families of regular epimorphisms.
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For each X -object X , consider all pairs x : Q → X , y : R → X of PX -morphisms
such that x ≤ [y] and y ≤ [x], the E-morphisms e : P → Q and a : P → R, and
the coequalizer c(x,y) of x · e and y · a, and form the multiple pushout of (c(x,y)),

ζX : X → SX .

Proposition 3.2. (ζX : X → SX)X∈ObX defines a prereflection (S, ζ) such that
Fix(S, ζ) = T0.

Proof: First we shall define the endofunctor S : X → X . Let f : X → Y be an
X -morphism and x : Q → X and y : R → X be PX -morphisms with x ≤ [y] and
y ≤ [x]. Consider the following diagram

with e, a, e′ and a′ in E . Since f(x) ≤ [f(y)] and f(y) ≤ [f(x)], by definition of ζY

we have that ζY · f(x) · e′ · e = ζY · f(y) · a′ · a, that is, ζY · f ·x · e = ζY · f · y · a. By
definition of ζX it follows that there exists a morphism Sf : SX → SY such that
Sf · ζX = ζY · f . This morphism is unique, since ζX is an epimorphism.

It is easily verified that we have defined an endofunctor S : X → X . From the
way we defined S it follows immediately that (S, ζ) is a prereflection.

So, it remains to prove that Fix(S, ζ) = T0. If ζX is an isomorphism, then, for
each x, y ∈ PX with x ≤ [y] and y ≤ [x], we have that c(x,y) is an isomorphism,

hence, x · e = y · a, with e and a the E-morphisms from P to the domains of x and
y, respectively. Hence, x ∼= y, and then it follows that X is a T0-object. Conversely,
if X belongs to T0, then, for each pair x, y of PX -morphisms such that x ≤ [y] and
y ≤ [x], we have that x ∼= y, and this implies that x · e = y · a (e and a as above).
Therefore c(x,y) is an isomorphism, and then ζX is an isomorphism too, that is, X

belongs to Fix(S, ζ). �

As we shall see in Section 4, (S, ζ) is not always a reflection. However, under
mild conditions on X , (S, ζ) enables us to construct the T0-reflection, using a natural
transfinite construction given in [19], and which we describe below.
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By a transfinite construction over the class Ord of ordinals, we can define prere-
flections (Sα, ζα)α∈Ord as follows:

(i) S0 = IdX and ζ0 = Id;

(ii) if β = α+ 1, then Sβ = S · Sα and ζβ = ζSα · ζα;

(iii) if β is a limit ordinal, then Sβ is the colimit of (Sα)α<β and ζβ is the natural
transformation induced by (ζα)α<β .

If X is weakly cowellpowered (i.e. cowellpowered with respect to strong epimor-
phisms), then, for each X -object X , there exists a least ordinal αX such that ζSαX X

is an isomorphism, that is, SαX X is a T0-object.

Theorem 3.3. Let X be weakly cowellpowered. The reflection (S∞, ζ∞) defined
by

S∞X := SαX X and ζ∞X := ζαX

X ,

for each X -object X , is the T0-reflection.

Proof: Fix(S∞, ζ∞) = T0 follows from 3.2. Using 2.2 (a) and the definition of
(S∞, ζ∞), it is easily seen that, for each X -object X , ζ∞X : X → T∞X is its
T0-reflection. �

In an analogous way we can also construct the T1-reflection. In order to do that,
for each X -object X , we consider all pairs x : Q → X , y : R → X of PX -morphisms
such that x ≤ [y], the E-morphisms e : P → Q and a : P → R, the coequalizer of
x · e and y · a, c(x,y), and the multiple pushout of (c(x,y)), ηX : X → TX .

Proposition 3.4. (ηX : X → TX)X∈ObX defines a prereflection (T, η) such that
Fix(T, η) = T1.

Proof: It is analogous to the proof of 3.2. �

By transfinite construction over the class of ordinals, we get prereflections
(T α, ηα)α∈Ord.
Furthermore, if X is weakly cowellpowered, then, for each X -object X , there

exists a least ordinal λX such that ηT λX X is an isomorphism.

Theorem 3.5. Let X be weakly cowellpowered. The reflection (T∞, η∞) defined
by

T∞X := T λX X and η∞X := ηλX

X ,

for each X -object X , is the T1-reflection.

Proof: It is proved analogously to 3.3. �

4. Examples.

In all the categories considered in the following examples, the way we define M
and P allows us to identify theM/X -morphisms and the PX -morphisms with the
subsets and the elements of the underlying set, respectively. In order to simplify
notations, we will sometimes identify them, as well as the X -objects and their
underlying sets.
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Example 1. Let X be the category Top of topological spaces, M the class of
embeddings, C the usual closure operator in Top and P the terminal object (i.e.
the one-element topological space).

It is easily seen that, in this case, the prereflection (S, ζ) defined in the last
section is already a reflection, that is, the Top 0-reflection is obtained at the first
step of our iteration of ζ.

With the Top 1-reflection, the situation is completely different. Indeed, next
we define, for each ordinal α, a topological space for which the Top 1-reflection is
reached exactly at the α-step of the iteration of η. Previously we present a sketch
of such a space in the case of α being the first limit ordinal, ω.

Let W be the set of the knots of the ‘tree’ below.
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It is possible to define a topology on W such that, in the resulting topological
space, η identifies, in each step, the extreme knots with their closest neighbours,
until we obtain, at the ω-iteration, the Top 1-reflection ofW : the one-element space.
This is what we present below for any fixed ordinal α.
In order to define such a space we first introduce some auxiliary definitions and

notations.
We consider α+1 with the order topology, i.e. for each β ∈ α+1, a subset U of

α + 1 is a neighbourhood of β if there exists β1 ≤ β such that (β1, β] ⊆ U , or, in
the case of β being 0, if β ∈ U .
For each β ∈ α+ 1 we consider

V0β := {V ⊆ α+ 1 | V = U \ {β}, U being a neighbourhood of β}.

Let E be an infinite countable set and ∗ a fixed element of E. Let F be the set of
all maps f with codomain E and domain a final section of α, that is, dom(f) = α\β,
with β ∈ α + 1. This ordinal β will be denoted by Lf . Given f, g ∈ F , we shall
say that f � g if Lf ≤ Lg and the restriction of f to the domain of g coincides

with g. Moreover, we shall denote by f ′ the element of F that ‘follows’ f , that is,
f ′ = f|α\(Lf+1).

Let G := {f ∈ F | for each γ ∈ dom(f) there exists V ∈ V0γ such that f|V ≡ ∗}

(by f|V ≡ ∗ we mean that, for each γ ∈ dom(f), f(γ) = ∗).

Now, let X be the topological space whose underlying set is {f ∈ G | Lf is not

a limit ordinal}, and, for each M ⊆ X , the closure of M , M , is the least subset of
X containing M and satisfying the following conditions, for f ∈ X :

(i) if Lf = 0 and f ∈ M , then f ′ ∈ M ;

(ii) if Lf = γ + 1 (γ > 0) and there exists h : α \ γ → E such that h′ = f and,

for each β < γ, {g ∈ M | g � h and Lg ≥ β} is infinite, then f ∈ M , and

h ∈ M whenever h ∈ X (i.e. Lh is not a limit ordinal).

Hence, given f ∈ X , {f} is closed if Lf 6= 0 and {f} = {f, f ′} if Lf = 0. Further-
more, it is easy to see that

ηX : X → TX

f 7→ ηX (f) =

{

f ′ if Lf = 0

f otherwise

where {f ∈ X | Lf 6= 0} is the underlying set of TX and, for each subset M of

TX , its closure on TX, M , is the least subset of TX containing M and such that,
for f ∈ TX :

(i1) if Lf = 1 and f ∈ M , then f ′ ∈ M ;

(ii1) if Lf = γ + 1 (γ > 1) and there exists h : α \ γ → E such that h′ = f and,

for each β < γ, {g ∈ M | g � h and Lg ≥ β} is infinite, then f ∈ M , and

h ∈ M whenever h ∈ TX .
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As it is easily verified from its description, TX does not belong to Top 1 whenever
α is greater than 1, and so, the iteration of η goes on. Indeed, the process does not
stop until the α-step, and, for each δ < α,

ηδ
X : X → T δX

f 7→ ηδ
X (f) =

{

f|α\δ if Lf < δ

f otherwise

where T δX has as underlying set {f ∈ X | Lf ≥ δ} ∪ {f ∈ G | Lf = δ} and,

for each M ⊆ T δX , its closure, M , is the least subset of T δX containing M and
satisfying the following conditions, for f ∈ T δX :

(iδ) if Lf = δ and f ∈ M , then f ′ ∈ M ;

(iiδ) if Lf = γ + 1 (γ > δ) and there exists h : α \ γ → E such that h′ = f and,

for each β < γ, {g ∈ M | g � h and Lg ≥ β} is infinite, then f ∈ M , and

h ∈ M whenever h ∈ T δX .

Finally, the Top 1-reflection of X is given by ηα
X : X → T αX ∼= P , that is, the

Top 1-reflection of X is the one-element topological space.

Example 2. Let X be the category of PrTop of Čech (= pretopological) spaces,
i.e. the category whose objects are sets equipped with an additive closure operation
and whose morphisms are maps which are continuous with respect to the closure
operations (cf. [4]). LetM be the class of extremal monomorphisms, C the usual
closure operator on PrTop and P the terminal object. In this situation, the T0-
reflection behaves like the Top 1-reflection. In fact, for each ordinal α, consider the
pretopological space A = (A, cA) where A is the underlying set of the topological
space defined in Example 1, and, for each M ⊆ A, cA(M) is the least subset of A
satisfying the following conditions, for f ∈ A:

(i′) if Lf = 0 and f ∈ M , then f ′ ∈ cA(M);

(ii′) if Lf = γ + 1 (γ > 0) and there exists h : α \ γ → E such that h′ = f and,
for each β < γ, {g ∈ M | g � h and Lg ≥ β} is infinite, then f ∈ cA(M),
and h ∈ cA(M) whenever h ∈ A (i.e. Lh is not a limit ordinal);

(iii′) if there exists g ∈ M such that f � g, then f ∈ cA(M).

The T0-reflection of A is also reached at the α-step and it is given by ζα
A : A →

SαA ∼= P (for each δ ≤ α, the construction of ζα
A is similar to the construction of

ηδ
X in Example 1).

Example 3. The closure operator of the example above is additive but it is not
idempotent. Next we will show that, even when C is additive and idempotent, the
prereflection (S, ζ) is not always the T0-reflection.
Let X be the category Grph of oriented graphs, that is, its objects are pairs

(X, K), whereX is a set andK a subset ofX×X , and f ∈ Grph((X, K), (X ′, K ′)) if
and only if it is a map fromX toX ′ such that, for each (x, y) ∈ K, (f(x), f(y)) ∈ K ′.
LetM be the class of extremal monomorphisms and C the closure operator on Grph
defined as follows: for each G = (XG, KG) in Grph and M ⊆ XG, an element x
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of XG belongs to cG(M) if and only if x ∈ M or there exists x1, x2, . . . , xn in XG

such that xn ∈ M and, for x0 = x, (xi−1, xi) and (xi, xi−1) belong to KG, for each
i ∈ {1, 2, . . . , n}. It is easy to verify that C is an idempotent and additive closure
operator.
Let P = ({a}, ∅). We thus have that P = {G ∈ Grph | G ∼= P or G ∼= T }, with

T the terminal object of Grph.
Consider G = (XG, KG), with XG = N, and, for each (n, m) ∈ N × N, (n, m) ∈

KG if and only if m = 1 or m = n or m = n+ 1.

It is easily seen that, for each m < ω,

ζm
G : G → SmG = G

n 7→ ζm
G (n) =

{

1 if n ≤ m

n − m otherwise

and that

ζω
G : G → T = ({a}, {(a, a)})

n 7→ a.

In conclusion, the T0-reflection of G is obtained at the ω-iteration of ζ.

5. Connections with other notions of separation.

Several authors have investigated concepts of T0-objects, mainly in the context
of topological categories. They were studied, for instance, by Brümmer [3], Har-
vey [9], Hoffmann [10], Marny [15], Weck-Schwarz [22] and [23], and Hušek and
Pumplün [12].
This is essentially due to the fact that in Top the T0-objects have nice characte-

rizations, namely: a topological space X is T0 if and only if

(1) X is not a cogenerator,
(2) every initial source with domain X is a monosource,
(3) X does not contain a non-trivial indiscrete subspace,

which can be easily thought in more general settings.
Moreover, condition (3) relates the study of separation with another interesting

subject: disconnectednesses. These were introduced by Arhangel’skĭı and Wie-
gandt [1], and then studied by various authors (see [16], [17], [21], [2], [19], [14]
and [11]).
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In general one cannot expect to establish connections between these notions and
the notions of T0- and T1-object we introduced in Section 2. Indeed, in our approach
T0- and T1-objects depend on the choice of a closure operator and a class P which
determines ‘points’, and the others do not.
The following result illustrates this assertion.

Proposition 5.1 ([5]). If X is a topological category, then any extremal epire-
flective subcategory of X is the subcategory of T0-objects (resp. T1-objects) for
a suitable choice of closure operator and points.

However, under additional assumptions, one can establish some connections,
namely:

Proposition 5.2 ([5]). If in X monosources separate points, then any T0-object is
non-cogenerator if and only if T0 is a proper subcategory of X .

Proposition 5.3 ([5]). If X is a topological category and P = {X ∈ X | X is
a terminal object}, then T0 (resp. T1) is a disconnectedness whenever the closure
operator C is hereditary (resp. weakly hereditary).

Additional results on this subject can be found in [5].
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seldorf, 1974.
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