Existence via partial regularity for degenerate systems of variational inequalities with natural growth

MARTIN FUCHS

Abstract. We prove the existence of a partially regular solution for a system of degenerate variational inequalities with natural growth.

Keywords: variational inequalities, existence, regularity theory

Classification: 49

0. Introduction.

In this note we are concerned with degenerate systems of variational inequalities of the form

$$\begin{cases} \text{find } u \in \mathbb{K} \text{ such that } \int_{\Omega} |Du|^{p-2} Du \cdot D(v-u) \, dx \ge \int_{\Omega} f(\cdot, u, Du) \cdot (v-u) \, dx \\ \text{holds for all } v \in \mathbb{K} \,. \end{cases}$$

Here the right-hand side f is of natural growth with respect to the third argument, i.e.

$$(0.2) |f(x, y, Q)| \le a \cdot |Q|^p,$$

and the class \mathbb{K} is defined by Dirichlet boundary conditions and a constraint of the form $\mathrm{Im}\,(u)\subset K$ for a convex set $K\subset\mathbb{R}^N$. We assume that the standard smallness condition (relating the growth constant a and $\mathrm{diam}\,K$)

$$(0.3) a < (\operatorname{diam} K)^{-1}$$

is satisfied (compare [5]) under which we want to establish the existence of a solution of (0.1). Since we do not impose any variational structure it is not immediately obvious in which way an existence proof should be carried out. In the quadratic case p=2 it is well known (see [5]) that (0.3) implies apriori bounds in Hölder spaces for solutions of (0.1) which in turn can be used to get existence of a function $u \in \mathbb{K}$ solving (0.1). On the other hand the author recently showed (compare [3]) that at least partial regularity is true for arbitrary exponents p > 2. In this note we combine the methods and prove existence via partial regularity: in the first step (0.1) is replaced by a sequence of variational inequalities with corresponding nonlinearity f_k defined as a suitable truncation of f. By Schauder's fixed point theorem we find a solution $u_k \in \mathbb{K}$ and we show uniform (partial) regularity on Ω

apart of a closed set Σ of vanishing \mathcal{H}^{n-p} -measure which in turn implies that the weak $H^{1,p}$ -limit u of the sequence $\{u_k\}$ is a solution of (0.1) on $\Omega - \Sigma$, i.e. (0.1) holds for all $v \in \mathbb{K}$ such that spt $(u-v) \subset\subset \Omega - \Sigma$. Using a capacity argument one finally sees that u is actually a solution of (0.1) on the whole domain Ω being in addition of class $C^{1,\varepsilon}(\Omega - \Sigma)$ for some $0 < \varepsilon < 1$. We conjecture that the singular set Σ is empty but without any further information we could not establish this more general result, a detailed discussion can be found in [3] where it is shown that for example certain monotonicity properties of u imply $\Sigma = \emptyset$.

1. Notations and statement of the result.

Let $\Omega \subset \mathbb{R}^n$, $n \geq 2$, denote a bounded open set and consider a compact convex region $K \subset \mathbb{R}^N$, $N \geq 1$, which is the closure of a C^2 -domain. For exponents $2 \leq p < \infty$ we fix a function u_0 in the Sobolev space $H^{1,p}(\Omega,\mathbb{R}^N)$ with the property $u_0(x) \in K$ a.e. and introduce the convex class

$$\mathbb{K} := \{ w \in H^{1,p}(\Omega, \mathbb{R}^N) : w - u_0 \in \mathring{H}^{1,p}(\Omega, \mathbb{R}^N), \ w(x) \in K \text{ a.e. } \}.$$

Moreover, suppose that we are given a (for simplicity) continuous function

$$f: \Omega \times \mathbb{R}^N \times \mathbb{R}^{nN} \ni (x, y, Q) \to f(x, y, Q) \in \mathbb{R}^N$$

for which the growth estimate

$$(1.1) |f(x,y,Q)| \le a \cdot |Q|^p$$

holds. Here a denotes a positive real number satisfying the smallness condition

$$a < (\text{diam } K)^{-1}$$
.

We then look at the variational inequality

(V)
$$\begin{cases} \text{ find } u \in \mathbb{K} \text{ such that } \int_{\Omega} \{|Du|^{p-2}Du \cdot D(v-u) - f(\cdot, u, Du) \cdot (v-u)\} \, dx \geq 0 \\ \text{ holds for all } v \in \mathbb{K} \end{cases}$$

for which we prove the following

Theorem. Suppose that (1.1), (1.2) hold. Then (V) has at least one solution $u \in \mathbb{K}$. For p < n, there exists a relatively closed subset Σ of Ω such that $\mathcal{H}^{n-p}(\Sigma) = 0$ and with the additional property that u is of class $C^{1,\varepsilon}$ on $\Omega - \Sigma$. In case $p \geq n$ the singular set of u is empty.

Comments. 1) Motivated by the quadratic case p=2 treated in [5] we conjecture that the singular set Σ is empty for all exponents p.

2) Clearly it is possible to replace the *p*-energy $\int_{\Omega} |Du|^p dx$ by a more general splitting functional

$$\int_{\Omega} \left(a_{\alpha\beta}(\cdot, u) B^{ij}(\cdot, u) D_{\alpha} u^{i} D_{\beta} u^{j} \right)^{p/2} dx$$

with smooth elliptic coefficients $a_{\alpha\beta}$, B^{ij} provided we modify (1.2) in an appropriate

- 3) With similar arguments it is possible to include lower order terms in the growth estimate (1.1).
- 4) It should be noted that for smooth boundary functions u_0 we have partial regularity of u up to the boundary.

2. Approximate problems.

For $k \in \mathbb{N}$ we define

$$f_k(x, y, Q) := \begin{cases} f(x, y, Q) & \text{if } |f(x, y, Q)| \le k \\ k \cdot f(x, y, Q) \cdot |f(x, y, Q)|^{-1} & \text{otherwise} \end{cases}$$

and look at the problem

$$\begin{cases} \text{ find } \tilde{u} \in \mathbb{K} \text{ such that } \int_{\Omega} \left(|D\tilde{u}|^{p-1} D\tilde{u} \cdot D(v-\tilde{u}) - f_k(\cdot, \tilde{u}, D\tilde{u}) \cdot (v-\tilde{u}) \right) dx \geq 0 \\ \text{ holds for all } v \in \mathbb{K} \,. \end{cases}$$

In order to solve (2.1) we introduce the operator

$$T: \mathbb{K} \to \mathbb{K}$$
.

 $\mathbb{K} \ni u \mapsto \text{ the unique solution } w \in \mathbb{K} \text{ of }$

$$\int_{\Omega} \left(|Dw|^{p-2} Dw \cdot D(v-w) - f_k(\cdot, u, Du) \cdot (v-w) \right) dx \ge 0$$
 for all $v \in \mathbb{K}$.

and check that the image $T(\mathbb{K})$ is precompact. For this consider a sequence $\{w_i\}$ $\{Tu_i\}$ in $T(\mathbb{K})$. Observing $u_0 \in \mathbb{K}$ we get

$$\int_{\Omega} |Dw_i|^p \, dx \le \int_{\Omega} |f_k(\cdot, u_i, Du_i)| \cdot |u_0 - w_i| \, dx + \int_{\Omega} |Dw_i|^{p-1} \, |Du_0| \, dx,$$

hence

$$\sup_{i\in\mathbb{N}}\|w_i\|_{H^{1,p}(\Omega)}<\infty$$

and we may assume (at least for a subsequence)

$$w_i \to w \in \mathbb{K}$$
 weakly in $H^{1,p}(\Omega)$,
 $w_i \to w$ strongly in $L^p(\Omega)$.

On the other hand we have

$$\int_{\Omega} \left(|Dw_{i}|^{p-2} Dw_{i} \cdot (Dw_{j} - Dw_{i}) - f_{k}(\cdot, u_{i}, Du_{i})(w_{j} - w_{i}) \right) dx \ge 0,$$

$$\int_{\Omega} \left(|Dw_{j}|^{p-2} Dw_{j} \cdot (Dw_{i} - Dw_{j}) - f_{k}(\cdot, u_{j}, Du_{j})(w_{i} - w_{j}) \right) dx \ge 0,$$

so that

$$\int_{\Omega} |Dw_i - Dw_j|^p dx \le c(n, p) \sup |f_k| \cdot \int_{\Omega} |w_i - w_j| dx.$$

This implies $w_i \to w$ strongly in $H^{1,p}(\Omega)$. By Schauder's fixed point theorem [4, Corollary 11.2] there exists at least one solution $\tilde{u} \in \mathbb{K}$ of $\tilde{u} = T\tilde{u}$ which clearly satisfes (2.1).

In the sequel we denote by u_k a solution of (2.1). Since f_k is dominated by f we have the growth condition

$$(2.2) |f_k(x, y, Q)| \le a \cdot |Q|^p$$

which gives (insert u_0 into (2.1)):

$$\left(1 - a \cdot \operatorname{diam}\left(K\right)\right) \int_{\Omega} |Du_k|^p \, dx \le \int_{\Omega} |Du_k|^{p-1} \cdot |Du_0| \, dx$$

and in consequence (after passing to a subsequence)

$$u_k \to : u \in \mathbb{K}$$
 weakly in $H^{1,p}(\Omega)$, $u_k \to : u$ strongly in $L^p(\Omega)$.

Lemma 2.1. There exist constants $\varepsilon > 0$, $\alpha \in (0,1)$ and C > 0 independent of k with the following properties: If for some ball $B_R(x) \subset \Omega$ we have

$$(2.3) \qquad \qquad \int_{B_R(x)} |u - (u)_R|^p \, dz < \varepsilon$$

then

a)
$$u, u_k \in C^{1,\alpha}\Big(B_{R/2}(x)\Big)$$

and

$$|Du_k(x_1) - Du_k(x_2)| + |Du(x_1) - Du(x_2)| \le C \cdot |x_1 - x_2|^{\alpha}$$

for all $x_1, x_2 \in B_{R/2}(x)$,

b)
$$u_k \to u \text{ in } C^{1,\alpha}\left(B_{R/2}(x)\right).$$

PROOF OF LEMMA 2.1: We follow [1, Chapter 3] and assume that (2.3) holds for some $\varepsilon > 0$ being determined later. For k sufficiently large we also have

$$\oint_{B_R(x)} |u_k - (u_k)_R|^p \, dz < \varepsilon.$$

Recalling (2.2) and the smallness condition $a < (\text{diam } K)^{-1}$ it is easy to check that a Caccioppoli type inequality

$$R^{p-n} \cdot \int_{B_{3/4R}(x)} |Du_k|^p \, dz \le c \cdot \int_{B_R(x)} |u_k - (u_k)|^p \, dz$$

holds. Going through the proof of [1, Theorem 3.1] we see

$$u_k \in C^{0,\alpha}(B_{R/2}(x)), \quad [u_k]_{C^{0,\alpha}(B_{R/2}(x))} \le C$$

provided ε is small enough (depending on absolute data). From this uniform Hölder bounds for the first derivatives can be deduced along the lines of [1, Theorem 3.2] with obvious simplifications. Part b) of the lemma follows from Arcela's theorem.

3. Solution of the variational inequality (V).

As in Chapter 2 we let u_k denote a solution of (2.1), and we want to show that the limit function u solves our problem (V).

Let

$$\begin{split} \Sigma := \{x \in \Omega: & \liminf_{\rho \downarrow 0} \ \int_{B_{\rho}(x)} |u - (u)_{\rho}|^p \, dz > 0 \} \\ \subset \{x \in \Omega: & \liminf_{\rho \downarrow 0} \ \rho^{p-n} \int_{B_{\rho}(x)} |Du|^p \, dz > 0 \}. \end{split}$$

By Lemma 2.1 Σ is a relatively closed subset of Ω with $\mathcal{H}^{n-p}(\Sigma) = 0$, especially $\operatorname{cap}_p(\Sigma) = 0$, and we already know $u_k \to u$ in $C^{1,\alpha}$ for compact subsets of $\Omega - \Sigma$. Fix a small ball $B_r(x_0)$ in $\Omega - \Sigma$ and consider a function $w \in \mathbb{K}$ such that $\operatorname{spt}(w-u) \subset B_r(x_0)$. For $\eta \in C_0^1(B_r(x_0), [0,1])$, $\eta = 1$ on $B_{r-\delta}(x_0)$, the function $v := (1-\eta) \cdot u_k + \eta w$ is admissible in (2.1) and by first letting k tend to infinity and then choosing $\delta > 0$ small we arrive at (V) at least for functions w as above. A covering argument then implies

(3.1)
$$\int_{\Omega} \left(|Du|^{p-2} Du \cdot D(w-u) - f(\cdot, u, Du) \cdot (w-u) \right) dx \ge 0,$$

$$w \in \mathbb{K}, \quad \operatorname{spt}(w-u) \subset \Omega - \Sigma.$$

In order to proceed further we linearize the variational inequality (3.1) where we make use of the smoothness of ∂K : as in [1, Theorem 2.1, 2.2] we get for all $\psi \in C_0^1(\Omega, \mathbb{R}^N)$, spt $(\psi) \cap \Sigma = \emptyset$,

(3.2)
$$\int_{\Omega} \left(|Du|^{p-2} Du \cdot D\psi - f(\cdot, u, Du) \cdot \psi \right) dx$$
$$= \int_{\Omega \cap [u \in \partial K]} \psi \cdot N(u) \, b(\cdot, u, Du) \, dx$$

where N(y) is the interior unit normal vector field of ∂K and $b(\cdot, u, Du)$ denotes a function with the properties

$$\left\{ \begin{array}{l} b(\cdot,u,Du) \geq 0 \quad \text{a.e. on } [u \in \partial K] := \{x \in \Omega : u(x) \in \partial K\}, \\ |b(\cdot,u,Du)| \leq \tilde{a} \cdot |Du|^p \,, \quad \tilde{a} = \tilde{a}(n,p,N,\partial K). \end{array} \right.$$

Remark. It is easy to check that the functions u_t and v_t defined in the proof of [1, Theorem 2.1] belong to the class \mathbb{K} and are admissible in (3.1) provided the support of the cut-off function η occurring in the definitions of u_t and v_t is disjoint to Σ .

Let $\psi \in C_0^1(\Omega, \mathbb{R}^N)$ denote an arbitrary test vector; since $\operatorname{cap}_p(\Sigma) = 0$ we find a sequence $\eta_{\nu} \in C^{\infty}(\mathbb{R}^n, [0,1])$ such that spt $\eta_{\nu} \cap \Sigma = \emptyset$, $\eta_{\nu} \to 1$ a.e. and $\int_{\mathbb{R}^n} |D\eta_{\nu}|^p dx \to 0$. Inserting $\eta_{\nu}\psi$ into (3.2) and passing to the limit $\nu \to \infty$ we get (3.2) for all $\psi \in C_0^1(\Omega, \mathbb{R}^N)$ and, by approximation, for all $\psi \in \mathring{H}^{1,p}(\Omega, \mathbb{R}^N) \cap L^{\infty}$. We apply this result to $\psi := v - u$ where $v \in \mathbb{K}$ is arbitrary. Observing

$$(v-u)\cdot N(u) \ge 0$$
 a.e. on $[u\in \partial K]$

(by the convexity of K) we have shown that u is a solution of the variational inequality (V) having the regularity properties stated in our Theorem.

4. Applications to nonlinear elliptic systems: existence of small solutions.

We here consider the problem of finding a solution $u \in H^{1,p}(\Omega,\mathbb{R}^N)$ of the nonlinear Dirichlet problem

$$\begin{cases} -D_{\alpha} \Big(|Du|^{p-2} D_{\alpha} u \Big) = f(\cdot, u, Du) & \text{on } \Omega, \\ u = u_0 & \text{on } \partial \Omega \end{cases}$$

where f satisfies the hypotheses stated in Section 1, especially the estimate (1.1), and u_0 is given in the space $H^{1,p}(\Omega, \mathbb{R}^N)$.

Theorem. Suppose $u_0 \in L^{\infty}(\Omega, \mathbb{R}^N)$ and in addition let the smallness condition

$$(4.2) a < \left(2 \cdot \|u_0\|_{\infty}\right)^{-1}$$

hold. Then problem (4.1) admits at least one solution $u \in H^{1,p}(\Omega, \mathbb{R}^N)$ being of class $C^{1,\varepsilon}$ on $\Omega - \Sigma$ where Σ is a relatively closed subset of Ω such that $\mathcal{H}^{n-p}(\Sigma) = 0$. In case $p \geq n$ we have $\Sigma = \emptyset$.

Remarks. 1) For p=2 it is possible to replace (4.2) by the weaker condition $a < ||u_0||_{\infty}^{-1}$. We do not know how to obtain this result for general p.

- 2) Under certain assumptions on f it can be shown that there are no interior singularities, some ideas will be given after the proof of the Theorem.
- 3) It turns out that the above solution satisfies the maximum principle $||u||_{\infty} \le ||u_0||_{\infty}$ by the way staying in the convex hull of the boundary values u_0 . This corresponds to our results in [2] where we constructed "small" p-harmonic maps of Riemannian manifolds.

PROOF OF THE THEOREM: Let $M := ||u_0||_{\infty}$ and consider the ball $K := \{z \in \mathbb{R}^N : |z| \le M + \varepsilon\}$. For ε sufficiently small (4.2) implies

$$a < (\operatorname{diam} K)^{-1}$$

so that there exists a solution $u \in H^{1,p}(\Omega,K)$ of the variational inequality

$$\begin{cases} \int_{\Omega} |Du|^{p-2} Du \cdot D(v-u) dx \ge \int_{\Omega} f(\cdot, u, Du) \cdot (v-u) dx \\ \text{for all } v \in \mathbb{K} \end{cases}$$

with \mathbb{K} being defined in Section 1.

For $\eta \in C_0^1(\Omega, [0, 1])$ we let $v := (1 - \eta) \cdot u$ which is admissible in (4.3) so that

$$\int_{\Omega} |Du|^{p-2} Du \cdot D(-\eta u) dx \ge \int_{\Omega} (-\eta u) \cdot f(\cdot, u, Du) dx,$$

hence

and

$$\int_{\Omega} \eta \left[1 - a \cdot \|u\|_{\infty} \right] |Du|^p dx + \int_{\Omega} |Du|^{p-2} \frac{1}{2} \nabla |u|^2 \cdot \nabla \eta dx \le 0$$

and we arrive at

$$\int_{\Omega} |Du|^{p-2} \, \nabla |u|^2 \cdot \nabla \eta \, dx \le 0.$$

By approximation this inequality extends to all $\eta \in \mathring{H}^{1,p}(\Omega), \eta \geq 0$, especially we may choose

$$\eta := \max(0, |u|^2 - M^2)$$

since u has boundary values u_0 and $||u_0||_{\infty} = M$. We then get

$$\int_{[|u| > M]} |Du|^{p-2} |\nabla \eta|^2 \, dx = 0$$

so that $|Du|^{p-2}|\nabla\eta|^2=0$ a.e. on the set [|u|>M]. Since Du(x)=0 implies $\nabla \eta(x) = 0$ we deduce $\nabla \eta = 0$ a.e. on Ω by the way $\eta = 0$ a.e. on Ω , which gives $\|u\|_{\infty} \leq \|u_0\|_{\infty}$. For $\psi \in C_0^1(\Omega, \mathbb{R}^N)$ and $0 < t \leq \varepsilon \cdot \|\psi\|_{\infty}^{-1}$, the function $v := u + t \cdot \psi$ belongs to the class \mathbb{K} so that

$$\int_{\Omega} |Du|^{p-2} Du \cdot D\psi \, dx \ge \int_{\Omega} f(\cdot, u, Du) \cdot \psi \, dx$$

which proves that u is a solution of (4.1) satisfying the (partial) regularity properties stated in Theorem.

Let us add a final comment concerning removable singularities. First of all it is easy to check that

and
$$|Du|^{\frac{p}{2}-1} Du \in H^{1,2}_{loc}(\Omega - \Sigma)$$

$$|Du|^{p-2} Du \in H^{1,\frac{p}{p-1}}_{loc}(\Omega - \Sigma)$$
so that
$$-D_{\alpha}(|Du|^{p-2} D_{\alpha}u) = f(\cdot, u, Du)$$

holds almost everywhere on $\Omega - \Sigma$. This implies

$$\int_{\Omega - \Sigma} \left(|Du|^p \cdot \operatorname{div} X - p \cdot |Du|^{p-2} D_{\alpha} u \cdot D_{\beta} u D_{\alpha} X^{\beta} \right) dx$$
$$= \int_{\Omega - \Sigma} p \left(f(\cdot, u, Du) \cdot D_{\beta} u \right) X^{\beta} dx$$

for all $X \in C_0^1(\Omega - \Sigma, \mathbb{R}^n)$. If we impose the structural condition

(4.4)
$$\begin{cases} f(x, y, Q) \cdot Q^{\alpha} = 0, & \alpha = 1, \dots, n, \\ \text{for all } x \in \Omega, y \in \mathbb{R}^{N}, \ Q \in \mathbb{R}^{nN} \end{cases}$$

then

(4.5)
$$\int_{\Omega - \Sigma} \left(|Du|^p \operatorname{div} X - p \cdot |Du|^{p-2} D_{\alpha} u \cdot D_{\beta} u D_{\alpha} X^{\beta} \right) dx = 0,$$

$$X \in C_0^1(\Omega - \Sigma, \mathbb{R}^n).$$

Suppose now that Σ is discrete. W.l.o.g. we may assume $0 \in \Sigma$ and that 0 is the only singular point in the ball $B_r(0) =: B$. Then it is easy to check that (4.5) implies the standard monotonicity formula

(4.6)
$$s^{p-n} \int_{B_s} |Du|^p dx - t^{p-n} \int_{B_t} |Du|^p dx = p \int_{B_s - B_t} |Du|^{p-2} |D_r u|^2 \cdot |x|^{p-n} dx$$

for all balls $B_t \subset B_s \subset B_r$. (In order to justify this, one has to multiply the radial vectorfield X occurring in the proof of (4.6) by a sequence of cut-off functions.) Now, just as in the proof of [3, Theorem 1.2], a blow-up argument relying on (4.6) gives

$$\lim_{\rho \downarrow 0} \rho^{p-n} \int_{B_{\rho}(0)} |Du|^p dx = 0$$

so that 0 is a removable singular point.

Remark. For general singular sets Σ , i.e. $\operatorname{cap}_p(\Sigma) = 0$, it is not obvious if (4.5) is sufficient to prove the monotonicity formula for balls with center $x_0 \in \Sigma$. In the positive case the singular set will be removable.

What is the meaning of the structural condition (4.4)? In the codimension 1 case, i.e. N = n + 1, a class of functions f satisfying (4.4) is given by

$$f(x,y,Q) := f_0(x,y,Q) \cdot *Q_1 \wedge \ldots \wedge Q_n / |Q_1 \wedge \ldots \wedge Q_n|$$

where $f_0: \Omega \times \mathbb{R}^N \times \mathbb{R}^{nN} \to \mathbb{R}$ is a scalar function growing of order p in Q and $*: \Lambda_n \mathbb{R}^{n+1} \to \mathbb{R}^{n+1}$ denotes the isomorphism between the space of n-vectors in \mathbb{R}^{n+1} and \mathbb{R}^{n+1} .

References

- Fuchs M., p-harmonic obstacle problems. Part I: Partial regularity theory, Annali Mat. Pura Applicata 156 (1990), 127–158.
- [2] _____, p-harmonic obstacle problems. Part III: Boundary regularity, Annali Mat. Pura Applicata 156 (1990), 159–180.
- [3] ______, Smoothness for systems of degenerate variational inequalities with natural growth, Comment. Math. Univ. Carolinae 33 (1992), 33–41.
- [4] Gilbarg D., Trudinger N.S., Elliptic partial differential equations of second order, Springer Verlag, 1977.
- [5] Hildebrandt S., Widman K.-O., Variational inequalities for vector-valued functions, J. Reine Angew. Math. 309 (1979), 181–220.

Fachbereich Mathematik, Arbeitsgruppe 6, Technische Hochschule, Schlossgartenstrasse 7, D–6100 Darmstadt, FRG

(Received February 20, 1992)