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Relative block semigroups and
their arithmetical applications

FrANZ HALTER-KOCH

Abstract. We introduce relative block semigroups as an appropriate tool for the study
of certain phenomena of non-unique factorizations in residue classes. Thereby the main
interest lies in rings of integers of algebraic number fields, where certain asymptotic results
are obtained.
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In a series of papers A. Geroldinger, W. Narkiewicz and myself investigated
phenomena of non-unique factorizations in an abstract context but mainly with
emphasis to rings of integers of algebraic number fields. If we are merely interested
in the different lengths of factorizations of a given integer, the concept of block
semigroups turned out to be the appropriate combinatorial tool for this question.
It was introduced in [8] and investigated in a systematical way in [1], [2] and [3].
In this paper we shall refine this tool: we introduce relative blocks; with the aid of
them we shall study lengths of factorizations of elements in given residue classes.

In § 1 we introduce relative block semigroups and determine their algebraic struc-
ture; in §2 we apply them to the arithmetic of arbitrary Krull semigroups. In §3
we recall some abstract analytic number theory in the context of arithmetical for-
mations, and we determine an asymptotic formula for the number of elements with
a given block. Finally, in §4 we give some arithmetical applications for algebraic
number fields.

§1. RELATIVE BLOCK SEMIGROUPS

Throughout this paper, a semigroup is a multiplicatively written commutative
and cancellative monoid. We shall use the concept of divisor theories and Krull
semigroups, cf. [4] and [3]. For a set P, we denote by F(P) the free abelian
monoid with basis P, and we write the elements of F(P) in the form

a = H pvp(a)

peEP

with (uniquely determined) exponents vp(a) € Np, vp(a) = 0 for all but finitely
many p € P.
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374 F. Halter-Koch

Definition 1. Let G be an (additively written) abelian group. For an element

S=]] ¢ € F(G)
geG

we call

a(S) = Z vg(S) € Ng the size of S,

geG
u(S) = Z vg(S)g € G the content of S and
geG
x(S) = gl;{; vg(lS)! the characteristic of S.

For a subgroup G* < G, we set
B(G,G") ={S € F(G) | u(S) € G}

the elements of B(G,G*) are called relative blocks over G with respect to G*. In
particular, B(G, G) = F(G), and

B(G) = B(G,{0})

is the ordinary block semigroup investigated in [2] and [3].

Proposition 1. Let G be an abelian group and G* < G a subgroup.

i) B(G,G*) is a Krull semigroup.

ii) Suppose that either G* # {0} or #G > 2. Then the injection B(G,G*) —
F(G) is a divisor theory; the divisor class group C = F(G)/B(G,G*) is
isomorphic to G/G*. If [S] € C' denotes the divisor class of an element S €
F(G), then an isomorphism *: C — G/G* is given by *([S]) = ¢(S)+ G*.
For every g € G, the set g+ G* C [g] = v*"1(g + G*) is the set of prime
elements contained in [g] € C.

Proor: If G* = {0}, all this is well known, cf. [4, Beispiel 5. If G* # {0},
we consider the unique semigroup homomorphism ¢: F(G) — G/G* satisfying
©(g9) = g+ G* for all g € G, and apply [4, Satz 4]. O

Definition 2. Let G be an abelian group and G* < G a subgroup. Then
0: F(G) — F(G/G")

denotes the unique semigroup epimorphism satisfying 6(g) = g+ G* for all g € G,

- o(T] @) = [[ o+ G

geG geqG
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Proposition 2. Let G be an abelian group and G* < G a subgroup.
i) If S € F(G), then

1(0(8)) =u(S) + G* € G/G*;

in particular: S € B(G,G*) if and only if 6(S) € B(G/G*).

ii) Given S* € F(G/G*) and g € G such that o(S*) > 0 and ((S*) = g+ G,
there exists some S € F(G) satisfying 0(S) = S* and ((S) = g.

iii) Let G be finite, S* € F(G/G*) and g € G such that o(S*) > 0 and
1(S*) = g+ G*; then

Yoo x(S) = a7 (s,
SeF(G)
0(S)=S5*, «(S)=g
where d = #G*.

PROOF: i) Let m: G — G/G* be the canonical epimorphism. Then 7o¢: F(G) —
G/G* and 100: F(G) — G/G* are semigroup homomorphisms which coincide on
G this implies mor =106, i.e. 1(S)+G*=100(S) for all S € F(G).

ii) Since ¢(S*) > 0, we have S* = (g1 +G)S, where S € F(G/G*) and g1 € G,
which implies ¢(S) = g — g1 + G* € G/G*. Let S’ € F(G) be arbitrary such
that 6(S') = S. By i), «(S') = g — g1 + g* for some g* € G*, and the element
S = (g1 — ¢g*)S" € F(G) fulfills our requirements.

iii) Suppose that G* = {g1,...,94}.- We use induction on ¢(S*) and consider
first the case where

S*=(¢"+G")" € F(G/G")
for some ¢g* € G and n € N. In this case we have g+ G* = +(S*) = ng* + G*, and

{seF(@G)|0(9) =57, ()=9}
d

:{H(g*_'—gl)nl‘(nlaa 61\107 an_n Zn’lg +g’l _g}

=1
If §=g—ng* € G*, this implies
1
yDIRTCEIND S S )
SeF(G) (n1,...;nq) ENG

0(S)=5*, «(S)=g ni+otng=n
ni1g1+--+niga=g

Let G* be a multiplicative abelian group isomorphic to G*, fix an isomorphism
{ G =G

9 — 95
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and consider the group ring Z[é\*]; here the multinomial formula yields

R R n! R R
Gr+-+a)" = Y g gt gg

(n17...7nd)€Ng
n1+...+nd:n

Writing the right-hand side in the canonical form

> N(9)j, where N(j)€Z,
GeG*

and comparing the coefficient of g, yields
N(g) =n!N*.

On the other hand, induction on n gives

(14 +ga)" =d" g+ + §a),

and consequently

dn—l .
N* — _ do‘(S )_IX(S*)-

n!

For the general case, let hi,...,h;, € G be a system of representatives for
G/G*; then
m
§* =T+ G,
J=1

where n; € Ng, and since 0(5*) = ny+---+nm > 0, we may assume that ny, > 0.
We set

m—
Sy = H (hj +G*)™
and obtain

{5 e F(@) 10(5) = 57, 1(9) = g}
={S08" | So, §' € F(G), 6(So) = S5, 0(S") = (hm + G*)"™™, 1(S") = g — 1(So)}.

If So, §' € F(G), 0(So) = S5 and 0(S") = (hm + G*)"», then So and S are
relatively prime, and therefore x(S) = x(So)x(S’). This implies

Yo x= > xS > xS
SEF(Q) SoeF(G) S'eF (@)
0(S)=S5*, «(S)=g 6(S0)=Sg 0(S")=(hm+G*)"m
1(S")=g—(So)
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by the special case considered above we obtain

S'eF(Q)
0(S")=(hm+C*)"m
U(S")=g—1(So)

By induction hypothesis,

Y x(So) = d-d7E)TIx(S5) = a7 x ()

So€F(G)
8(S0)=5;

since x(S*) = x(55)/nm! and o(S*) = o(S;) + nm, the assertion follows. O

§2. RELATIVE BLOCKS AND KRULL SEMIGROUPS

If H is a Krull semigroup and 9: H — F(P) is a divisor theory, then 9 induces
an injective divisor theory 0: H/H* — F(P) (where H* denotes the group of
invertible elements of H). If H is reduced (i.e., H* = {1}), then we may assume
that H C F(P) and H — F(P) is a divisor theory. We shall adopt this viewpoint
in the sequel.

Definition 3. Let H be a reduced Krull semigroup, H — F(P) a divisor theory
and G its divisor class group. We write G additively, and for a € F(P) we
denote by [a] € G the class containing a. The unique semigroup homomorphism
BH: F(P) — F(G) satisfying B8 (p) = [p] for all p € P is called the H-block
homomorphism. For a € F(P), the element B (a) € F(G) is called the H-block
of a.

Clearly, t(3" (a)) = [a] € G; in particular, a € H if and only if 39 (a) € B(G).
The significance of the block homomorphism @ for the arithmetic of H is given
as follows (cf. [1, Prop. 1]):

An clement a € H is irreducible in H if and only if B8 (a) is irreducible in
B(G). If a € H and a = ujp - ... up is a factorization of a into irreducible
elements u; € H, then 8 (a) = BH (u1) - ...  BH (u,) is a factorization of B (a)
into irreducible elements of B(G), and every factorization of 8% (a) into irreducible
elements of B(G) arises in this way. In particular, if £(a) denotes the set of all
lengths of factorizations of a in H, i.e.,

L(a)={reN|a=wuy-... -u, with irreducible u; € H},

then L(a) = L(B"(a)). If every class g € G contains at least one prime p € P,
then BH (H) = B(G) and B (F(P)) = F(G).

We need the following relative construction.
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Proposition 3. Let H be a reduced Krull semigroup, H — F(P) a divisor
theory, G its divisor class group and G* < G a subgroup. We assume that gNP # ()
for every g € G, and we set

H*={a € F(P)|[a € G}

where [a] € G denotes the divisor class of an element a € F(P) under H — F(P).

i) H* — F(P) is a divisor theory with divisor class group G/G*. If a €

F(P), then [a] + G* € G/G* is the divisor class of a under H* —

F(P), (B (a)) = B (a), and a € H* if and only if 3" (a) € B(G,G™).

ii) Given S* € B(G/G*) such that o(S*) > 0 and ¢g* € G*, there exists an
element a € H* such that 37" (a) = S* and [a] = g*.

PROOF: i) It suffices to consider the case G* # {0}. If ¢: F(P) — G/G* is defined
by ¢(a) = [a] + G*, then H* = p~1(G*) and #P Ny g+ G*) > #G* > 2 for
every g € G. Therefore H* — F(P) is a divisor theory by [4, Satz 4]. Clearly,
G/G* is the associated divisor class group, and [a] + G* € G/G* is the divisor
class of an element a € F(P). The mappings 6 o B and pH " are semigroup
homomorphisms F(P) — F(G/G*); for p € P, we have 6 o 31 (p) = 0([p]) =
[p] + G* = B (p), which implies 0o 87 = 8", Since (B8 (a)) = [a] € G, we
have a € H* if and only if B8 (a) € B(G,G*).

ii) By Proposition 2, there exists an element S € F(G) satisfying 6(S) = S*
and «(S) = ¢g*, whence S € B(G,G*). Since gN P # 0 for every g € G, there
exists an element a € H* such that 89 (a) = S; this implies 87" (a) = 6(S) = S*
and [a] = (5) = g*. O

Main Example. Let R be a Dedekind domain and f a non-zero ideal of R (more
generally, f may be a cycle; see [5]). Let H be the semigroup of all principal ideals
aR of R generated by elements a =1 mod f, and let H* be the semigroup of all
principal ideals of R which are relatively prime to f. If P denotes the set of all
maximal ideals p of R not containing f, then D = F(P) is the semigroup of all
ideals of R which are relatively prime to f, and

H— H* — D =F(P)
satisfies the assumption of Proposition 3; here G is the ray class group modulo
f in R, and G* is the subgroup of all ray classes represented by principal ideals.

Consequently, C = G/G* is isomorphic to the ideal class group of R (we identify!),
and there is a canonical isomorphism

G* = (R/D)*/U(),

where U(f) denotes the subgroup of all prime residue classes modulo § which are
represented by elements of R*.



Relative block semigroups and their arithmetical applications 379

With an element a € R\ (R* U{0}) we associate its block
Bla) =B (aR) € B(C);

then we have L(a) = L£(B(a)) € N. Therefore Proposition 3, ii) describes the
distribution of the elements a € R having the same block in B(C) in the various
prime residue classes modulo f, provided that each ray class modulo f contains at
least one prime ideal of R. In fact, it is sufficient to assume that every ideal class
of R which contains a prime ideal splits into ray classes each of which contains
a prime ideal; details are left to the reader.

§3. FORMATIONS

We develop the quantitative theory in an abstract setting following [6]. Let A be
the set of all complex functions which are regular in the closed half-plane $s > 1.
We denote by log that branch of the complex logarithm which is real for positive
arguments, and we set z° = exp (zlogs).

Definition 4. An arithmetical formation ® consists of

1) a reduced Krull monoid H, together with a divisor theory H — D = F(P)
such that the divisor class group G = D/H is of finite order N € N;

2) a completely multiplicative function |- |: D — Ny satisfying |a| > 1 for all
a # 1 such that, for every g € G,

1 1
s 1
> bl = v o8 -7 +h(s)
pePNg

holds in the half-plane $s > 1 for some function h € A.

Whenever we deal with an arithmetical formation %, we use all notations as
introduced above. We write G additively, and for a € D we denote by [a] € G
the divisor class containing a. By 2), ¢ N P is infinite for every ¢ € G.

Main Example (continued). We pick up again the main example discussed in
§2 and let now R be the ring of integers of an algebraic number field. For a € D
(an ideal of R which is relatively prime to f), we set |a] = (R: a); then |-]: D — N
is completely multiplicative and defines on D the structure of an arithmetical
formation (with respect to H* as well as with respect to H), see [10, Ch. VII, §2].
For 0 # a € R, we have |aR| = |N(a)|, where AN/ denotes the ordinary norm to Q.

Proposition 4. Let © be an arithmetical formation as in Definition 4 and S €
F(G) such that o(S) > 0. Then we have, as x — 00,

H(y_ o(S)x(S) = o(8)—1
#lae D|8(a) = 5} ~ To0G o (logloga)TS) .
PRrROOF: It is sufficient to prove that
. —s _ x(5) L o(s) 1

aeD
B (a)=5
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for Rs > 1, where P € A[X] is a polynomial of degree less than o(S). Then we
apply the Tauberian Theorem of Ikehara and Delange, see [9, Ch. III, §3]. The
proof of (*) can be given in two different ways: one may either follow the arguments
in the proof of [10, Theorem 9.4] or those in the proof of [6, Proposition 4]; details
are left to the reader. O

Theorem. Let ® be an arithmetical formation as in Definition 4, G* < G a sub-
group and H* = {a € D | [a] € G*}. Let S* € B(G/G*) be a block satistying
o(S*) >0, and ¢g* € G*. Then we have, as © — 00,

x 1 o(SH)x(S*) = *)_
* < H _ gFL o(S*) 1
#la€ g™ | la| <z, B (a) =57} FG (G- G5 logx(loglog:r)
PRrooF: Since
{acg" |87 (a) = 5%} = O, {ae D|B"(a) =5}
SEF(G)
0(5)=5", «(S)=g"
(disjoint union), Proposition 4 implies, observing o(6(S)) = o(5),
* < H* _ gFL T o(S*)—1
#acg" | fal <o, B (@) = 5"} ~ e (logloga) (),
where (5)
o .
c= NS Z x(8%);
SEF(G)
0(5)=5", «(S)=g"
now the assertion follows from Proposition 2, iii). O

§4. ARITHMETICAL APPLICATIONS

Proposition 5. Let R be the ring of integers of an algebraic number field with
class group C and B € B(C) such that o(B) > 0. Let f be a cycle of R, and
ag € R an element relatively prime to f. Then we have, as © — oo,

#{aR|a € R, a=ag mod f, |N(a)| <z, B(a)= B}~
o(B)x(B)

log'l o(B)—-1
> ()he @) gz (8108 7) :
where h = #C and ¢*(f) = #(R/1)* JU(j).
PRrROOF: Obvious by Proposition 4, applied to the Main Example. 0

Remark. The case B = 0 in Proposition 5 yields the prime ideal theorem for
principal primes in residue classes modulo f.
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Corollary. Let R be the ring of integers of an algebraic number field with class
group C and L C N such that there exists a block B € B(C') satisfying L£L(B) = L.
Let § be a cycle of R and ag € R an element relatively prime to f. Then we have,
as r — 09,

#{aR|a € R, a=ag mod f, |N(a)| <=z, L(a)=L}~
o x

“6*()h7 logz

where ¢*(f) = #(R/§)* JU(f), h = #C, and ¢ € Qsq, 0 € N are given as follows:

)

(loglog )7t

o= max {¢(B) | Be B(C), L(B) =L}, c¢= > x(B);

BeB(C)
L(B)=L, o(B)=0c

in particular, ¢ and o depend only on C and L.

ProoF: Theset £={B € B(C) | L(B) = L} is finite, and for a € R\ (R* U{0})
we have L(a) = L if and only if B(a) € £. Now the assertion follows from
Proposition 5. O

Remarks. 1) Using the methods of J. Kaczorowski [7], it is possible to obtain
more precise asymptotic formulas, from which we presented only the main term.

2) Using the methods developed in [6], it is possible to derive analogous results
for algebraic function fields.
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