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Strong shape of the Stone-Čech compactification

Sibe Mardešić

Abstract. J. Keesling has shown that for connected spaces X the natural inclusion e :
X → βX of X in its Stone-Čech compactification is a shape equivalence if and only if X is
pseudocompact. This paper establishes the analogous result for strong shape. Moreover,
pseudocompact spaces are characterized as spaces which admit compact resolutions, which
improves a result of I. Lončar.
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1. Introduction.

For every completely regular space X , there is a natural embedding e : X → βX

of X in its Stone-Čech compactification βX . In 1975, K. Morita proved that,
for pseudocompact spaces X , the shape sh (X) = sh (βX) [11, Theorem 5.2 and
Corollary 5.3]. In a survey article of J. Keesling, published in 1980, it is stated that,
for connected spaces X , the embedding e is a shape equivalence if and only if X
is pseudocompact [4, Theorem 1.2]. In the present paper we prove the analogous
result for strong shape. Moreover, we improve a result of I. Lončar [8], who in the
class of normal spaces characterized the countably compact spaces as spaces which
admit a resolution consisting of metric compacta. Recall that for normal spaces
countable compactness and pseudocompactness are equivalent properties (see [2,
Theorem 3.10.20 and 3.10.21]).

Theorem 1. For connected Tychonoff spacesX the following statements are equiv-

alent.

(i) The natural embedding e : X → βX is a strong shape equivalence.

(ii) The natural embedding e : X → βX is a shape equivalence.

(iii) X is pseudocompact.
(iv) X admits a resolution p : X → X, which consists of compact polyhedra.

(v) X admits a resolution p : X → X, which consists of compact spaces.

In the sections which follow we will prove the implications (i) ⇒ (ii) ⇒ (iii) ⇒
(iv) ⇒ (v) ⇒ (iii) and (iv) ⇒ (i). Only (ii) ⇒ (iii) uses the assumption that X is
connected. Basic facts about the Stone-Čech compactification can be found in [2]
and [12]. For shape theory we use [10] and for strong shape [6], [7].
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2. Shape-equivalence of e implies pseudocompactness of X.

(i) ⇒ (ii). Recall that in shape theory one defines a shape category Sh and
a shape functor S : HTop → Sh, where HTop denotes the homotopy category.
In particular, this functor assigns to every mapping f : X → Y a shape morphism
S([f ]) : X → Y , which depends only on the homotopy class [f ] of f . When we
say that a mapping f is a shape equivalence, we mean that S([f ]) is an isomor-
phism of Sh. Similarly, in strong shape theory one defines a strong shape category
SSh and a strong shape functor S1 :HTop → SSh. Moreover, there is a functor
S2 : SSh → Sh and S2S1 = S. If we say that a mapping f is a strong shape equiv-
alence, we mean that S1([f ]) is an isomorphism of SSh. Clearly, the implication
(i) ⇒ (ii) is a consequence of the existence of the functor S2.

(ii)⇒ (iii) Assuming that e is a shape equivalence and X is connected, we will show
that every mapping φ : X → R is bounded, i.e. X is pseudocompact. Consider the
mapping exp : R → S1 = {z ∈ C : |z| = 1}, defined by exp(t) = e2πit, t ∈ R. Since
S1 is compact, the mapping exp ◦φ : X → S1 admits an extension g : βX → S1, so
that

(1) ge = exp ◦φ.

By the contractibility of R, φ is homotopic to the constant map 0. Therefore,
ge = exp ◦φ is homotopic to the constant map 1, i.e.

(2) ge ≃ i ◦ 1,

where 1 : X → {1} and i : {1} → S1 is the inclusion mapping. We claim that g, too,
is homotopic to a constant mapping. Since S1 and {1} are polyhedra, it suffices to
show that S(g) factors in Sh through {1}. However, this follows from (2) because

S(g) = S(g)S(e)S(e)−1 = S(ge)S(e)−1 = S(i)S(1)S(e)−1

and S(1)S(e)−1 : βX → {1}. Since exp : R → S1 is a fibration and g is homotopic
to a constant, the homotopy lifting property yields a mapping ψ : βX → R such
that g = exp ◦ψ. It follows that exp ◦φ = ge = exp ◦ψe or exp ◦(φ − ψe) = 1. We
conclude that (φ − ψe)(X) ⊆ Z. Since X is connected and Z is discrete, it follows
that (φ−ψe)(X) is a single point. The set ψ(βX) is compact and therefore bounded
in R. Consequently, (ψe)(X) ⊆ ψ(βX) is also bounded. This implies that φ(X) is
bounded, too.

3. Resolutions.

We now recall the notion of resolution (see [9] and [10]). Let X = (Xa, paa′ , A)
be an inverse system. A morphism of pro-Top (also called a mapping of systems)
p = (pa) : X → X is a resolution of X , provided it possesses the following two
properties:

(R1) For any polyhedron P , open covering V of P and mapping f : X → P ,
there exist an a ∈ A and a mapping g : Xa → P , such that the mappings f and
gpa are V-near, which we denote by (f, gpa) ≺ V .
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(R2) For any polyhedron P and open covering V of P , there exists an open
covering V ′ of P such that, for any a ∈ A and mappings g, g′ : Xa → P , which
satisfy (gpa, g

′pa) ≺ V ′, there exists an a′ ≥ a such that (gpaa′ , g′paa′) ≺ V .

A resolution is said to be cofinite provided each element of the index set A has
only finitely many predecessors.

(iii) ⇒ (iv) Let X be pseudocompact. Since βX is compact, there exists a cofinite
inverse system of compact polyhedraX = (Xa, paa′ , A) and a collection of mappings
qa : βX → Xa, a ∈ A, such that q = (qa) is an inverse limit of βX . Note that q

is a resolution and therefore satisfies the conditions (R1) and (R2) (see [10, I, 6.1,
Theorem 1]). We now define mappings pa : X → Xa, a ∈ A, by putting pa = qae.
The desired implication will be established if we prove the following lemma.

Lemma 1. p = (pa) : X → X is a resolution of X .

In order to prove Lemma 1 we need the following simple fact.

Lemma 2. A pseudocompact subspace Q of a polyhedron P is a compact space.

Proof of Lemma 2: Let K be a simplicial complex whose geometric realization
|K| is P . Denote by |K|CW and |K|m the spaces obtained by endowing K with
the CW -topology and the metric topology, respectively. Let j : |K|CW → |K|m
denote the identity mapping, which is known to be continuous. Since the continuous
image of a pseudocompact space is pseudocompact, we see that j(Q) is a pseudo-
compact subspace of the metric space |K|m. Therefore, j(Q) is compact (see [2,
Theorems 3.10.21 and 5.1.20]) and thus a closed subset of |K|m. This implies that
Q = j−1j(Q) is a closed subset of P = |K|CW . Since P is paracompact, Q is also
paracompact. However, paracompact pseudocompact spaces are compact [loc. cit.]
and we conclude that indeed, Q is a compact space. �

Proof of Lemma 1: Clearly, paa′pa′ = pa, for a ≤ a′. Therefore, it remains to
verify the conditions (R1) and (R2).

Verification of (R1): Let P be a polyhedron, V an open covering of P and f : X → P

a mapping. Clearly, f(X) is pseudocompact. By Lemma 1, it follows that f(X)
is even compact. Therefore, there exists a compact subpolyhedron Q ⊆ P such
that f(X) ⊆ Q. If we view f as mapping f : X → Q, it admits an extension

f̃ : βX → Q, f̃e = f . Applying (R1) for q to f̃ and V | Q, we obtain an a ∈ A and

a mapping g : Xa → Q ⊆ P , such that (gqa, f̃) ≺ V | Q. Therefore, we also have
the desired relation (gpa, f) ≺ V .

Verification of (R2): Let P be a polyhedron and V an open covering of P . Choose
a covering V ′ of P , by (R2) applied to q. LetW be a star-refinement of V , i.e. st (W)
refines V ′, where st (W) denotes the covering formed by all the stars st (W,W),
W ∈ W . We claim that W has the properties required by (R2) for p, i.e. that
whenever a ∈ A and g, g′ : Xa → P are mappings, for which

(3) (gpa, g
′pa) ≺ W ,
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then there exists an a′ ≥ a such that

(4) (gpaa′ , g′paa′) ≺ V .

It suffices to show that (3) implies

(5) (gqa, g
′qa) ≺ V ′,

because (4) follows from (5), by the choice of V ′. To verify (5), consider any point
y ∈ βX . Choose members W1,W2 of W so that

(6) gqa(y) ∈ W1, g
′qa(y) ∈ W2.

Choose an open neighborhood U of y in βX so small that

(7) gqa(U) ⊆W1, g
′qa(U) ⊆W2.

Since e(X) is dense in βX , there exists a point x ∈ X such that e(x) ∈ U . By (3),
there exists a W ∈ W such that

(8) gpa(x), g
′pa(x) ∈W.

Since e(x), y ∈ U , (7) implies

(9) gqa(y), gpa(x) = gqae(x) ∈ W1, g
′qa(y), g

′pa(x) = g
′qae(x) ∈W2.

Now, (8) and (9) yield

(10) gqa(y), g
′qa(y) ∈ st (W,W).

Since W is a star-refinement of V ′, there exists a V ′ ∈ V ′ such that st (W,W) ⊆ V ′

and therefore, gqa(y), g
′qa(y) ∈ V ′ ∈ V ′, which proves (5). �

(iv) ⇒ (v) is obvious.

(v) ⇒ (iii). Let p : X → X be a resolution, which consists of compact Hausdorff
spaces Xa. We must show that each mapping f : X → R is bounded. Let V be the
open covering of R, which consists of all intervals of length 1. By (R1), there exist
an a ∈ A and a mapping g : Xa → R such that

(11) (f, gpa) ≺ V .

Since g(Xa) is compact, it is contained in a segment [b, c] ⊆ R. However, gpa(X) ⊆
g(X)a. Therefore, also gpa(X) ⊆ [b, c]. Now (11) shows that

(12) f(X) ⊆ [b − 1, c+ 1].
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4. Strong shape.

If p : X → X and q : Y → Y are cofinite polyhedral resolutions, then there is
a functorial one-to-one correspondence between strong shape morphisms F : X → Y

and morphism [f ] : X → Y of the category CPHTop of coherent prohomotopy.
Here f : X → Y is a coherent mapping and [f ] is its homotopy class. Therefore,
F is an isomorphism of SSh if and only if [f ] is an isomorphism of CPHTop.
For a given mapping f : X → Y , there exists a unique morphism [f ] : X → Y of
CPHTop such that

(13) [f ][p] = [q][f ].

By definition, S1([f ]) is given by [f ]. Therefore, in order to prove that a mapping
f : X → Y is a strong shape equivalence, it suffices to find cofinite polyhedral
resolutions p, q and an isomorphism [f ] of CPHTop such that (13) holds. Also
recall that there is a functor C : pro-Top → CPHTop. It takes mappings of
systems into morphisms of CPHTop. Now, it is clear that the following assertion
holds.

Lemma 3. Let f : X → Y be a mapping and let p : X → X and q : Y → Y be

cofinite polyhedral resolutions. If f : X → Y is an isomorphism of pro-Top and

(14) fp = qf,

then f is a strong shape equivalence.

(iv) ⇒ (i). Let X admit a cofinal resolution p = (pa) : X → X, where each Xa,
a ∈ A, is a compact polyhedron. We want to prove that e : X → βX is a strong
shape equivalence by applying Lemma 3. Therefore, we first define a suitable poly-
hedral resolution for βX . It is of the form q : βX → X, i.e. it uses the same inverse
system X. For each a ∈ A, we take for qa : βX → Xa, a ∈ A, the unique extension
of pa : X → Xa to βX , so that

(15) pa = qae, a ∈ A.

The extension qa exists because Xa is compact. Uniqueness of qa follows from
the density of e(X) in βX . This is also the reason why paa′pa′ = pa implies
paa′qa′ = qa, for a ≤ a′. Consequently, the mappings qa, a ∈ A, form a mapping of
systems q : βX → X.

Lemma 4. q : βX → X is a cofinite polyhedral resolution of βX .

Once Lemma 4 is proved, we can apply Lemma 3 to the mapping e : X → βX ,
to the polyhedral resolutions p and q and to the identity isomorphism 1 :X → X

of pro-Top. In this case (14) becomes

(16) 1p = qe.

It holds, because it reduces to (15).
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Proof of Lemma 4: We need only to verify the conditions (R1) and (R2).

Verification of (R1): Let P be a polyhedron, V an open covering of P and f : βX →
P a mapping. Choose a covering U of P , which is a star-refinement of V . By (R1)
for p, there exist an index a ∈ A and a mapping g : Xa → P , such that

(17) (fe, gpa) ≺ U .

We claim that

(18) (f, gqa) ≺ V .

Indeed, consider any point y ∈ βX . Choose members U1, U2 of U so that

(19) f(y) ∈ U1, gqa(y) ∈ U2.

Choose an open neighborhood W of y in βX so small that

(20) f(W ) ⊆ U1, gqa(W ) ⊆ U2.

Since e(X) is dense in βX , there exists a point x ∈ X such that e(x) ∈ W . By (17),
there exists a U ∈ U such that

(21) fe(x), gpa(x) ∈ U.

Since y, e(x) ∈ W , (20) implies

(22) f(y), fe(x) ∈ U1, gqa(y), gpa(x) = gqae(x) ∈ U2.

Now, (21) and (22) imply

(23) f(y), gqa(y) ∈ st (U,U).

Since U is a star-refinement of V , there exists a V ∈ V such that st (U,U) ⊆ V and
therefore, f(y), gqa(y) ∈ V ∈ V , which proves (18).

Verification of (R2): Let P be a polyhedron and V an open covering of P . We
choose a covering V ′ of P , by (R2) applied to p. We claim that this covering also
fulfills the requirements of the condition (R2) for q. Indeed, let a ∈ A and let
g, g′ : Xa → P be mappings such that

(24) (gqa, g
′qa) ≺ V ′.

Then also

(25) (gpa, g
′pa) ≺ V ′.

Therefore, there exists an a′ ≥ a such that

(26) (gpaa′ , g′paa′) ≺ V ,

which is the desired conclusion. �
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Remark 1. In our theorem one cannot replace the Stone-Čech compactification
e : X → βX by an arbitrary compactification i : X → X̃. E.g., if X = (0, 1) ⊆ R

and X̃ = [0, 1] ⊆ R, then the inclusion i : X → X̃ is a homotopy equivalence and
therefore, also a (strong) shape equivalence. However, X is not pseudocompact.
K. Morita showed [11, Corollary 5.3] that every pseudocompact space has the shape
of a compact space. This also follows from our theorem. The converse does not hold
because R has compact shape, i.e. the shape of a point, but is not pseudocompact.

Remark 2. Two spaces X and Y can have the same strong shape, SSh(X) =
SSh(Y ), but the strong shape of their Stone-Čech compactifications can be dif-
ferent, SSh(βX) 6= SSh(βY ). E.g., if X = R and Y = {∗} is a point, then X
and Y are of the same homotopy type and therefore have the same strong shape.
On the other hand, already C.H. Dowker showed in [2] that the first Čech co-
homology group with integer coefficients Ȟ1(βR,Z) is an uncountable group (see
also [5]). Since the Čech cohomology groups are (strong) shape invariants and
Ȟ1({∗},Z) = 0, it follows that SSh(βX) 6= SSh(βY ). There exist spaces X,Y
with SSh(X) 6= SSh(Y ), but SSh(βX) = SSh(βY ). Such an example is given
by X = R and Y = βR.
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[4] Keesling J., Shape theory and the Stone-Čech compactification, in Proc. Internat. Conference
on Geometric Topology, Polish Sci. Publ., Warsaw, 1980, pp. 236–243.

[5] Keesling K., Sher R.B., Shape properties of the Stone-Čech compactification, General Topol-
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[6] Lisica Ju.T., Mardešić S., Coherent prohomotopy and a strong shape category of topological
spaces, in Proc. Internat. Topological Conference (Leningrad 1982), Lecture Notes in Math.
1060, Springer-Verlag, Berlin, 1984, pp. 164–173.

[7] , Coherent prohomotopy and strong shape theory, Glasnik Mat. 19 (39) (1984), 335–
399.

[8] Lončar I., Some results on resolution of spaces, Rad Jugoslav. Akad. Znan. Umjetn. Matem.
Znan. 428 (6) (1987), 37–49.
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