
Comment.Math.Univ.Carolin. 33,3 (1992)465–475 465

Order continuous linear functionals

on non-locally convex Orlicz spaces
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Abstract. The space of all order continuous linear functionals on an Orlicz space Lϕ defined
by an arbitrary (not necessarily convex) Orlicz function ϕ is described.
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1. Introduction and preliminaries.

In the theory of duality of function spaces an investigation of the order continuous
dual is of importance. In this paper we examine order continuous dual (Lϕ)∼n of
an Orlicz space Lϕ defined by an arbitrary (not necessarily convex) finite valued
Orlicz function ϕ over a σ-finite measure space. By making use of Kalton’s and
Drewnowski’s results concerning the Mackey topology of Eϕ (= the ideal of Lϕ

of all elements with order continuous F -norm) we describe the Köthe dual (Lϕ)x

of Lϕ. Thus in view of the Riesz isomorphism between (Lϕ)x and (Lϕ)∼n we can
establish the general form of order continuous linear functionals on Lϕ. Moreover,
considering Lϕ (equipped with its usual integral modular mϕ) from the viewpoint
of Nakano’s theory of modular spaces [16] one can define on the topological dual
(Lϕ)∗ of Lϕ the conjugate convex semimodular mϕ, and next by means of mϕ,
we can define two modular norms ‖ · ‖mϕ

and ||| · |||mϕ
. In this paper we obtain

a description of the semimodular mϕ and the modular norms ‖ · ‖mϕ
and ||| · |||mϕ

restricted to (Lϕ)∼n .
We generalize the well-known results concerning the duality of Orlicz spaces

obtained by W.A. Luxemburg and A.C. Zaanen [10], J. Musielak and W. Orlicz [13],
W. Orlicz [20] and B. Gramsch [5] (see Remarks 3.2, 3.3 and Remark 4.1).
For the terminology concerning Riesz spaces we refer to [1], [24].
Let (Ω,Σ, µ) be a σ-finite and atomless measure space, and let L0 denote the

set of equivalence classes of all real valued measurable functions defined and finite
a.e. on Ω. Then L0 is a super Dedekind complete Riesz space under the ordering
x ≤ y, whenever x(t) ≤ y(t) a.e. on Ω. For a subset A of Ω, XA stands for the
characteristic function of A.
Now we recall some notation and terminology concerning Orlicz spaces (see [8],

[9], [23], [24] for more details).
By an Orlicz function we mean a function ϕ : [0,∞) → [0,∞] that is non-

decreasing, left continuous at 0 with ϕ(0) = 0, non identically equal to 0.
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A convex Orlicz function is usually called a Young function.
An Orlicz function ϕ determines a functional mϕ : L

0 → [0,∞] by the formula

mϕ(x) =

∫

Ω
ϕ(|x(t)|) dµ.

The Orlicz space determined by ϕ is the ideal of L0 defined as follows:

Lϕ = {x ∈ L0 : mϕ(λx) < ∞ for some λ > 0}.

The functional mϕ restricted to Lϕ is an orthogonally additive semimodular (see
[13], [15], [16]). The space Lϕ can be equipped with the complete metrizable topo-
logy Tϕ of the Riesz F -norm

|||x|||ϕ = inf{λ > 0 : mϕ(x/λ) ≤ λ}.

Moreover, if ϕ is a Young function, then two norms (equivalent to ||| · |||ϕ) on Lϕ can
be defined by

‖x‖ϕ = inf
λ>0

{
1

λ
(1 +mϕ(λx))},

|||x|||ϕ = inf{λ > 0 : mϕ(x/λ) ≤ 1}

and |||x|||ϕ ≤ ‖x‖ϕ ≤ 2|||x|||ϕ.
Let

Eϕ = {x ∈ L0 : mϕ(λx) < ∞ for all λ > 0}.

It is well known that Eϕ coincides with the ideal of Lϕ of all elements with order
continuous F -norm ‖ · ‖ϕ, that is,

Eϕ = {x ∈ Lϕ : |x| ≥ un ↓ 0 in Lϕ implies |||un|||ϕ ↓ 0}.

Since supp Eϕ = Ω, there exists a sequence (Ωn) of µ-measurable subsets of Ω,
such that Ωn ↑,

⋃∞
n=1Ωn = Ω and XΩn

∈ Eϕ (see [24, Theorem 86.2]).

Throughout the paper, for a given x ∈ Lϕ, we will denote by x(n) (n = 1, 2, . . . )
the functions defined on Ω as follows:

x(n)(t) =

{
x(t) if |x(t)| ≤ n and t ∈ Ωn,

0 elsewhere.

By (Lϕ)∗ we will denote the dual of Lϕ with respect to Tϕ. Since Tϕ is a complete,
metrizable locally solid topology, we have (see [1, Theorem 16.9]):

(Lϕ)∗ = (Lϕ)∼,

where (Lϕ)∼ stands, as usual, for the space of all order bounded linear functionals
on Lϕ.
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A linear functional f on Lϕ is said to be order continuous whenever xσ
0
−→ 0 in

Lϕ implies f(xσ) → 0 for a net (xσ) in Lϕ. Since the measure space is σ-finite,

a linear functional f is order continuous iff f is σ-order continuous (i.e., xn
0
−→ 0 in

Lϕ implies f(xn)→ 0 for a sequence (xn)). As usual, let (L
ϕ)∼n stand for the space

of all order continuous linear functionals on Lϕ. It is known that (Lϕ)∼n ⊂ (Lϕ)∼

and (Lϕ)∼n is a band of (L
ϕ)∼ (see [22, Proposition 5.22]). Moreover, it is known

that (Lϕ)∼n = (L
ϕ)∼ whenever ϕ satisfies the so-called ∆2-condition, that is

lim sup
ϕ(2u)

ϕ(u)
< ∞ as u → 0 and u → ∞.

In view of [20] the dual (Lϕ)∗ is a Banach space under the norm

Pmϕ(f) = sup{|f(x)| : x ∈ Lϕ, mϕ(x) ≤ 1},

which is called, due to Nakano [16], a polar of the semimodular mϕ.
In general, given a linear topological space (X, ξ), by (X, ξ)∗ we will denote its

topological dual.

2. The convex minorant of an Orlicz function.

Throughout the remainder of the paper we will assume that an Orlicz function
ϕ takes only finite values.
For an Orlicz function ϕ satisfying the condition

(+) lim inf
u→∞

ϕ(u)

u
> 0

let

ϕ∗(v) = sup{uv − ϕ(u) : u ≥ 0} for v ≥ 0.

Then ϕ∗ is a Young function, complementary to ϕ in the sense of Young. The
function

ϕ(u) = (ϕ∗)∗(u) for u ≥ 0

is called a convex minorant of ϕ, because it is the largest Young function that is
smaller than ϕ on [0,∞).
In this section we give more details about ϕ∗ and ϕ that will be useful in the

sections 3 and 4. To the end of this section we will assume that the condition (+)
is satisfied.
We start with the following

Lemma 2.1. (i) If lim infu→0
ϕ(u)

u = 0, then ϕ∗ vanishes only at zero.

(ii) If lim infu→0
ϕ(u)

u > 0, then ϕ∗ vanishes in some neighbourhood of zero.

Proof: (i) For every u > 0 and v > 0, there exists 0 < u1 < u such that
ϕ(u1) < u1v. Hence ϕ∗(v) ≥ u1v − ϕ(u1) > 0.
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(ii) There exist u1 > 0 and v1 > 0 such that ϕ(u) > uv1 for all u ≥ u1, and
there exist u2 > 0 and v2 > 0 such that ϕ(u) ≥ uv2 for all 0 < u ≤ u2. We can
assume that u2 < u1 and let us take v3 > 0 such that 1/v3 = sup{u/ϕ(u) : u2 ≤
u ≤ u1}. Then putting v′ = max(v1, v2, v3) we have uv′ ≤ ϕ(u) for all u ≥ 0.
Hence ϕ∗(v′) = 0. Since the function ϕ∗ is convex and left continuous, there exists
a number v0 > 0 such that ϕ∗(v0) = 0 for 0 ≤ v ≤ v0 and ϕ∗(v) > 0 for v ≥ v0. �

In case of ϕ satisfying the condition lim infu→∞
ϕ(u)

u =∞, the functions ϕ∗ and
ϕ were examined by Z. Birnbaum and W. Orlicz [2], W. Orlicz [20] and W. Ma-
tuszewska, W. Orlicz [12], and the main properties of ϕ∗ and ϕ can be summarized
in the following

Lemma 2.2. Let lim infu→∞
ϕ(u)

u =∞. Then the following hold:

(i) For every v > 0 there exists the least number uv > 0 such that

ϕ∗(v) + ϕ(uv) = uvv.

(ii) The set {uv : v ∈ A ⊂ [0,∞)} is bounded if the set A is bounded.
(iii) uv → 0 as v → 0.
(iv) ϕ(uv) = ϕ(uv) for v > 0.

(v) limv→0
ϕ∗(v)

v = 0.

(vi) ϕ∗ takes only finite values and limv→∞
ϕ∗(v)

v =∞.

Now we are going to extend the results of the previous lemma to the case of

Orlicz function ϕ satisfying the condition lim infu→∞
ϕ(u)

u < ∞.

Lemma 2.3. Let lim infu→∞
ϕ(u)

u = a < ∞. Then the following statements hold:

(i) For every 0 < v < a there exists the least number uv > 0 such that

ϕ∗(v) + ϕ(uv) = uvv.

(ii) The set {uv : 0 < v < a} is bounded.
(iii) uv → 0 as v → 0 (0 < v < a).
(iv) ϕ(uv) = ϕ(uv) for 0 < v < a.

(v) limv→0
ϕ∗(v)

v = 0.
(vi) ϕ∗ jumps to infinity, more precisely: ϕ∗(v) < ∞ for v ≤ a, ϕ∗(v) = ∞ for

v > a.

Proof: (i) For every 0 < v < a there exists cv > 0 such that ϕ(u)/u > v for
u > cv. Hence ϕ∗(v) = sup{uv − ϕ(u) : 0 ≤ u ≤ cv} and for every 0 < v < a there
exists the least number uv > 0 such that ϕ∗(v) = uvv − ϕ(uv).

(ii) Assume that the set {uv : 0 < v < a} is not bounded. Then there would
exist a sequence (vn) such that 0 < vn < a and uvn > max(n, cvn). Hence
ϕ(uvn) > uvnvn, so ϕ∗(vn) = uvnvn − ϕ(uvn) < 0. This contradiction establishes
the boundedness of our set.
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(iii) Let vn → 0 (0 < vn < a) and assume by way of contradiction that uvn 9 0.
Then there would exist a number α > 0 and an increasing sequence (kn) of natural
numbers such that uvkn

> α. On the other hand, in view of (ii) there exists β > 0
such that uvkn

≤ β. Choose an index n0 such that vkn
< ϕ(α)/β for n ≥ n0. Then,

by (i), for n ≥ n0 we have

ϕ∗(vkn
) = uvkn

(vkn
− (ϕ(uvkn

)/uvkn
)) ≤ uvkn

(vkn
−

ϕ(α)

β
) < 0.

This contradiction establishes that vn → 0 implies uvn → 0.

(iv) In view of (i), for 0 < v < a, the equality ϕ(uv) + ϕ∗(v) = uvv holds.
On the other hand, from the definition of ϕ we get uvv ≤ ϕ(uv) + ϕ∗(v). Hence
ϕ(uv) ≤ ϕ(uv), so ϕ(uv) = ϕ(uv) because ϕ(u) ≤ ϕ(u) for u ≥ 0.

(v) Let vn → 0. Without loss of generality we can assume that vn < a. Thus,
by (i) and (ii) we get

0 ≤ ϕ∗(vn)/vn = uvn − (ϕ(uvn)/vn) ≤ uvn → 0.

(vi) Let v > a. Then v > a+ ε for some ε > 0, and since lim infu→∞ ϕ(u)/u <
a + ε, there exists a sequence (un) such that 0 < un ↑ ∞ and ϕ(un) < (a + ε)un.
Hence

ϕ∗(v) = sup{u(v − (a+ ε)) + u(a+ ε)− ϕ(u) : u ≥ 0}

≥ un(v − (a+ ε)) + un(a+ ε)− ϕ(un)→ ∞,

so ϕ∗(v) = ∞ for v > a. Moreover, it follows from (i) that ϕ∗(v) < ∞ for v < a,
and, by the left-hand continuity of ϕ∗ we get ϕ∗(a) < ∞. �

The following lemma will be of importance in the proof of Theorem 4.2.

Lemma 2.4. (i) If limu→∞
ϕ(u)

u =∞, then for every measurable bounded function
y ≥ 0 there exists a measurable bounded function z ≥ 0 such that

ϕ(z(t)) + ϕ∗(y(t)) = z(t)y(t) for all t ∈ Ω.

(ii) If lim infu→∞
ϕ(u)

u = a < ∞, then for every measurable function y such that
0 ≤ y(t) ≤ a for t ∈ Ω, there exists a measurable bounded function z ≥ 0 such that

ϕ(z(t)) + ϕ∗(y(t)) = z(t)y(t) for all t ∈ Ω.

Proof: (i) By Lemma 2.2 for every v > 0 there is uv > 0 such that

(+) ϕ(uv) + ϕ∗(v) = uvv.

It is well known that ϕ∗ is of the form ϕ∗(v) =
∫ v
0 q(s) ds, where the function

q : [0,∞) → [0,∞) is non-decreasing with q(0) = 0 and left continuous (see [9,
p. 37]). By Theorem 1 of [9, Ch. II, § 1], the equality (+) holds if uv = q(v) for
v > 0. Putting z(t) = q(y(t)) for t ∈ Ω, by Lemma 2.2 we get that z ≥ 0 is
a measurable bounded function on Ω and ϕ(z(t)) + ϕ∗(y(t)) = z(t)y(t) for t ∈ Ω.

(ii) Proceeding as in (i) and making use of Lemma 2.3 we get (ii). �
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3. Order continuous linear functionals on Lϕ.

In this section we will find the general form of order continuous linear functionals
on an Orlicz space Lϕ.
Let us recall that the Köthe dual Xx of a function space X ⊂ L0 (with supp X

= Ω) is defined as follows:

Xx = {y ∈ L0 :

∫

Ω
|x(t)y(t)| dµ < ∞ for all x ∈ X}.

It is well known that (Lϕ)x = Lϕ∗

, whenever ϕ is a Young function (see [9], [24]).
It was originally proved by Z. Birnbaum and W. Orlicz [2].
Putting

fy(x) =

∫

Ω
x(t)y(t) dµ for all x ∈ X,

we have the following important equality

(3.1) X∼
n = {fy : y ∈ Xx}

where the mapping Xx ∋ y → fy ∈ X∼
n is a Riesz isomorphism (see [7, Ch. 6, § 1,

Theorem 1]).
Next, let us recall that the Mackey topology of a linear topological space (X, ξ) is

the finest locally convex topology τ on X that produces the same continuous linear
functionals as the original topology ξ.
The following result due to N.J. Kalton [6] and L. Drewnowski [4, Corollary 1,

Corollary 2] will be of importance in this section.

Theorem 3.1. (i) There exists a nonzero continuous linear functional on (Eϕ, Tϕ|Eϕ )

iff lim infu→∞
ϕ(u)

u > 0.
(ii) The Mackey topology τEϕ of (Eϕ, Tϕ|Eϕ ) coincides with the seminormed

topology Tϕ|Eϕ , i.e., τEϕ = Tϕ|Eϕ .

Now we are ready to give a description of the Köthe dual (Lϕ)x.

Theorem 3.2. (i) If lim infu→∞
ϕ(u)

u = 0, then (Lϕ)x = (Eϕ)x = {0}.

(ii) If lim infu→∞
ϕ(u)

u > 0, then (Lϕ)x = (Eϕ)x = (Eϕ)x = Lϕ∗

.

Proof: (i) We have (Eϕ)∼n ⊂ (Eϕ)∼ = (Eϕ, Tϕ|Eϕ )
∗ (see [1, Proposition 16.9]), so

by Theorem 3.1, (Eϕ)∼n = {0}. Hence, by (3.1), (Eϕ)x = {0}, and since (Lϕ)x ⊂
(Eϕ)x, the proof is completed.

(ii) First, we shall show that (Lϕ)x = (Eϕ)x = (Eϕ)x. It suffices to show that
(Eϕ)x ⊂ (Lϕ)x and (Eϕ)x ⊂ (Eϕ)x. Indeed, let y ∈ (Eϕ)x, i.e.,

∫
Ω |x(t)y(t)| dµ <

∞ for all x ∈ Eϕ. Putting

gy(z) =

∫

Ω
z(t)y(t) dµ for z ∈ Eϕ,
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we get gy ∈ (Eϕ)∼n by (3.1). But according to Theorem 3.1 we have (E
ϕ)∼n ⊂

(Eϕ)∼ = (Eϕ, Tϕ|Eϕ )
∗ = (Eϕ, Tϕ|Eϕ )

∗, so we can put

‖gy‖ϕ = sup
{∣∣

∫

Ω
z(t)y(t) dµ

∣∣ : z ∈ Eϕ, |||z|||ϕ ≤ 1
}
.

To prove that y ∈ (Lϕ)x (resp. y ∈ (Eϕ)x), let now x ∈ Lϕ (resp. x ∈ Eϕ),

x 6= 0. Then |x(n)(t)y(t)| ↑n |x(t)y(t)| on Ω, so by applying Fatou’s lemma we get

1

|||x|||ϕ

∫

Ω
|x(t)y(t)| dµ ≤

1

|||x|||ϕ
sup
n

∫

Ω
(|x(n)(t)| sign y(t))y(t) dµ

≤ sup
{∣∣

∫

Ω
z(t)y(t) dµ

∣∣ : z ∈ Eϕ, |||z|||ϕ ≤ 1
}
= ‖gy‖ϕ.

Hence y ∈ (Lϕ)x (resp. y ∈ (Eϕ)x), so (Lϕ)x = (Eϕ)x = (Eϕ)x.
Since the topology Tϕ|

Eϕ
is locally convex and satisfies the Lebesgue property,

we have (Eϕ, Tϕ|
Eϕ
)∗ ⊂ (Eϕ)∼n ⊂ (Eϕ)∼ (see [1, Theorem 9.1]). On the other

hand (Eϕ, Tϕ|
Eϕ
)∗ = (Eϕ)∼, because Tϕ|Eϕ is metrizable and complete (see [1,

Theorem 16.9]). Thus (Eϕ)∼n = (E
ϕ, Tϕ|

Eϕ
)∗. By the mapping (y 7→ gy) the space

(Eϕ)x can be identified with (Eϕ)∼n (see (3.1)) and the space Lϕ∗

with (Eϕ, Tϕ|
Eϕ
)∗

(see [10, Ch. II, § 3, Theorem 2]). Thus (Eϕ)x = Lϕ∗

, so (Eϕ)x = Lϕ∗

, because
ϕ∗ = ϕ∗. �

As an application of Theorem 3.2 and the equality (3.1) we obtain a condition
for the existence of non-zero order continuous linear functionals on Lϕ.

Theorem 3.3. The following statements are equivalent:

(i) lim infu→∞
ϕ(u)

u > 0.
(ii) (Lϕ)∼n 6= {0}.

Finally, by making use of Theorem 3.2 and (3.1) we can establish the general
form of order continuous linear functionals on Lϕ.

Theorem 3.4. Let lim infu→∞
ϕ(u)

u > 0. Then for a linear functional f on Lϕ the

following statements are equivalent:

(i) f is order continuous, i.e., f ∈ (Lϕ)∼n .

(ii) There exists a unique y ∈ Lϕ∗

such that

f(x) = fy(x) =

∫

Ω
x(t)y(t) dµ for x ∈ Lϕ.

Moreover, the map Lϕ∗

∋ y 7→ fy ∈ (Lϕ)∼n is a Riesz isomorphism.
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Remark 3.1. The equality (Lϕ)x = Lϕ∗

from Theorem 3.2 has been recently
proved in a different way by L. Maligranda and W. Wnuk ([11, Theorem 2]).

Remark 3.2. In the theory of Orlicz spaces the class of modular continuous linear
functionals is considered. Let us recall that a linear functional f on Lϕ is called
modular continuous ifmϕ(xn)→ 0 implies f(xn)→ 0 for a sequence (xn) in Lϕ [21].
In some special cases the class of all modular continuous linear functional on Lϕ

was investigated by J. Musielak and W. Orlicz [13], W. Orlicz [20] and J. Musielak
and A. Waszak [14]. On the other hand, from [18, Theorem 5.4] it follows that
the class of all modular continuous linear functionals on Lϕ coincides with (Lϕ)∼n ,
and one can see that the well known results concerning modular continuous linear
functionals on Lϕ follow immediately from Theorems 3.3 and 3.4.

Remark 3.3. B. Gramsch [5] examined the topological dual of Lϕ when ϕ is
a concave Orlicz function. Gramsch’s result contains the classical result of M.M. Day
[3] on the triviality of the duals of Lp for 0 < p < 1. But for ϕ being concave, the
topological dual (Lϕ)∗ coincides with (Lϕ)∼n and the Gramsch’s result follows easily
from Theorems 3.3 and 3.4.

Remark 3.4. The order continuous dual of Orlicz sequence spaces lϕ (without
local convexity) was described by the present author [19].

4. The conjugate semimodular and modular norms on (Lϕ)∼n .

In view of [16], the conjugate mϕ of the semimodular mϕ can be defined on the

algebraic dual L̃ϕ of Lϕ as follows:

mϕ(f) = sup{|f(x)| − mϕ(x) : x ∈ Lϕ}.

According to [17, Theorem 3.1] we have the following

Theorem 4.1. (i) (Lϕ)∗ = {f ∈ L̃ϕ : mϕ(λ f) < ∞ for some λ > 0}.
(ii) The conjugate mϕ restricted to (L

ϕ)∗ is a convex orthogonally additive semi-
modular. Moreover, if f ≥ 0, then

mϕ(f) = sup{f(x)− mϕ(x) : 0 ≤ x ∈ Lϕ, mϕ(x) < ∞}.

By means of the conjugate semimodular mϕ, one can define on the dual (L
ϕ)∗

two Riesz norms (see [21]):

‖f‖mϕ
= inf

λ>0

{ 1
λ
(1 +mϕ(λ f))

}
,

|||f |||mϕ
= inf

{
λ > 0 : mϕ

(f

λ

)}
.

In view of the general fact (see [21, 1.51]), for any f ∈ (Lϕ)∗,

|||f |||mϕ
≤ ‖f‖mϕ

≤ 2|||f |||mϕ
and |||f |||mϕ

≤ 1 iff mϕ(f) ≤ 1.
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Since ((Lϕ)∗, Pmϕ) is a Banach lattice, in view of the above inequalities and by
applying the Open Mapping Theorem, the dual (Lϕ)∗ endowed with the modular
norms ‖ · ‖mϕ

and ||| · |||mϕ
is also a Banach lattice. Further, since (Lϕ)∼n is a band

of (Lϕ)∗ (see [1, Theorem 3.7]), (Lϕ)∼n is closed with respect to Pmϕ (resp. ‖ · ‖mϕ
,

||| · |||mϕ
) restricted to (Lϕ)∼n by [1, Theorem 5.6]. Thus (L

ϕ)∼n is a Banach lattice
with respect to the norms Pmϕ (resp. ‖ · ‖mϕ

, ||| · |||mϕ
) restricted to (Lϕ)∼n .

Remark 4.1. In 1956, W.A. Luxemburg and A.C. Zaanen [10, Theorem 1] showed

that if ϕ is a Young function, then for any y ∈ Lϕ∗

,

mϕ∗(y) = sup
{∣∣

∫

Ω
x(t)y(t) dµ

∣∣ − mϕ(x) : x ∈ Lϕ
}
.

Now we will extend the above equality over an arbitrary finite valued Orlicz
function. Moreover, using this equality we will obtain a description of the modular
norms ‖ · ‖mϕ

and ||| · |||mϕ
and the polar Pmϕ restricted to (L

ϕ)∼n . The details
follow.

Theorem 4.2. Let lim infu→∞
ϕ(u)

u > 0. Then for every y ∈ Lϕ∗

the following

equalities hold:

(i) mϕ(fy) = mϕ∗(y).

(ii) ‖fy‖mϕ
= ‖y‖ϕ∗ = sup

{∣∣∫
Ω x(t)y(t) dµ

∣∣ : x ∈ Eϕ, mϕ(x) ≤ 1
}
.

(iii) |||fy |||mϕ
= |||y|||ϕ∗ .

(iv) Pmϕ(fy) = sup
{∣∣∫
Ω x(t)y(t) dµ

∣∣ : x ∈ Eϕ, mϕ(x) ≤ 1
}
.

Proof: (i) From the definition of ϕ∗ it easily follows that

mϕ(fy) ≤ mϕ∗(y).

Now we shall show that mϕ(fy) ≥ mϕ∗(y).

I. Assume first that lim infu→∞
ϕ(u)

u = a < ∞. Then, by Theorem 2.2, ϕ∗(v) <

∞ for 0 ≤ v ≤ a and ϕ∗(v) = ∞ for v > a. Hence the inclusion Lϕ∗

⊂ L∞ holds
and we can consider two subcases:

1◦. ‖y‖∞ ≤ a (‖ · ‖∞ — the norm in L∞), i.e., |y(t)| ≤ a a.e. on Ω. Let

yn(t) = y(n)(t) for t ∈ Ω (n = 1, 2, . . . ). Then by Lemma 2.4, there exists a sequence
(zn) of bounded, measurable functions such that zn ≥ 0, supp zn ⊂ Ωn and

ϕ(zn(t)) + ϕ∗(|yn(t)|) = |zn(t)yn(t)|

for n = 1, 2, . . . and t ∈ Ω. Putting xn(t) = (sign yn(t))zn(t) for n = 1, 2, . . . , we
have xn ∈ Lϕ. Since ϕ∗(|yn(t)|) ↑n ϕ∗(|y(t)|) for t ∈ Ω, by applying Fatou’s lemma
we get

mϕ∗(y) ≤ sup
n

∫

Ω
ϕ∗(|yn(t)|) dµ

= sup
n

{∫

Ω
|zn(t)yn(t)| dµ −

∫

Ω
ϕ(zn(t)) dµ

}

= sup
{∣∣

∫

Ω
xn(t)y(t) dµ

∣∣ − mϕ(xn)
}
≤ mϕ(fy).
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Thus the equality mϕ(fy) = mϕ∗(y) holds.

2◦. ‖y‖∞ > a. Then mϕ∗(y) = ∞. Let us take 0 < λ < 1 and 0 < δ < a such
that ‖λ y‖∞ = a and λ(a + δ)/(a − δ) < 1. Let F = {t ∈ Ω : |λ y(t)| > a − δ} and
choose a measurable subset E of F such that 0 < µ(E) < ∞.
There exists a sequence (un) of positive numbers such that un ↑ ∞ and ϕ(un) <

(a+ δ)un.
Putting xn = un · XE (n = 1, 2, . . . ) we can easily show that

∫

Ω
ϕ(|xn(t)|) dµ ≤

λ(a+ δ)

a − δ

∫

Ω
xn(t)|y(t)| dµ.

Hence

mϕ(fy) ≥

∫

Ω
xn(t)|y(t)| dµ −

∫

Ω
ϕ(|xn(t)|) dµ

≥
(
1−

λ(a+ δ)

a − δ

)∫

Ω
xn(t)|y(t)| dµ

≥
(
1−

λ(a+ δ)

a − δ

)a − δ

λ
unµ(E).

Thus mϕ(fy) =∞ and mϕ(fy) = mϕ∗(y).

II. Next assume that lim infu→∞
ϕ(u)

u = ∞. Then in view of Lemma 2.4 the
same proof as in 1◦ works.

(ii) Since λfy = fλ y, by making use of (i) and (1.1) we get

‖f‖mϕ
= inf

λ>0

{
1

λ
(1 +mϕ(λ fy))

}

= inf

{
1

λ
(1 +mϕ∗(λ y))

}
= ‖y‖ϕ∗ .

It is well known that (see [10]) that

‖y‖ϕ∗ = sup
{∣∣

∫

Ω
z(t)y(t) dµ

∣∣ : z ∈ Lϕ, mϕ(z) ≤ 1
}
.

Let z ∈ Lϕ with mϕ(z) ≤ 1. Putting xn(t) = |z(n)(t)| sign y(t) for t ∈ Ω (n =

1, 2, . . . ), we have that xn ∈ Eϕ, mϕ(xn) ≤ 1 and |z(n)(t)y(t)| ↑n |z(t)y(t)| for
t ∈ Ω. Hence by applying Fatou’s lemma we easily get

∣∣
∫

Ω
z(t)y(t) dµ

∣∣ ≤ sup
n

∣∣
∫

Ω
xn(t)y(t) dµ

∣∣.

Thus ‖y‖ϕ∗ = sup{|
∫
Ω x(t)y(t) dµ| : x ∈ Eϕ, mϕ(x) ≤ 1}.

(iii) Using (i) and (1.2) we get

|||fy |||mϕ
= inf{λ > 0 : mϕ(fy/λ) ≤ 1}

= inf{λ > 0 : mϕ∗(y/λ) ≤ 1} = |||y|||ϕ∗ .

(iv) Similarly as in (ii). �
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