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A note on splittable spaces

Vladimir V. Tkachuk

Abstract. A space X is splittable over a space Y (or splits over Y ) if for every A ⊂ X

there exists a continuous map f : X → Y with f−1fA = A. We prove that any n-
dimensional polyhedron splits over R2n but not necessarily over R2n−2. It is established
that if a metrizable compact X splits over Rn, then dimX ≤ n. An example of n-
dimensional compact space which does not split over R2n is given.
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The notion of splittability was introduced by A.V. Arhangel’skii [1]. A space
X is splittable (or splits) over a space Y if for any A ⊂ X there exists a contin-
uous map f : X → Y such that f−1fA = A. Many results were obtained by
A.V. Arhangel’skii and D.B. Shakhmatov ([1]–[3]) on spaces splittable over Rω.
The author had also written a paper [4] on this topic.
Recently, A.V. Arhangel’skii had shown that a compact space X splits over R iff

it embeds in R. He also proved that any 1-dimensional polyhedron splits over R2

so that not every compact space splittable over R2 embeds in R2. We prove here
that any n-dimensional polyhedron splits over R2n but not necessarily over R2n−2.
We establish also that there exists a compact space Xn ⊂ R2n+1 with dimXn = n
and not splittable over R2n. Another result is Corollary 8 answering Question 2
and 3 in [1].

Notations and terminology. All spaces under consideration are Tychonoff ones.
Given two spaces X and Y , denote by C(X, Y ) the set of all continuous functions
from X to Y . The space R is the real line with its usual topology and 2 = {0, 1}. If
x, y ∈ Rn then [x, y] = {tx+(1−t)y : 0 ≤ t ≤ 1} is the segment connecting x and y,
|x−y| is its length. It is always clear from the context whether |·| denotes cardinality
of some set or length of a segment. Of course, [x, y) = {tx + (1 − t)y : 0 < t ≤ 1}
and (x, y) = {tx+(1− t)y : 0 < t < 1}. The simplex in Rn with vertices a0, . . . , ak

will be denoted by [a0, . . . , ak], then〈T 〉 = {t0a0+ · · ·+ tkak : ti > 0 for all i ∈ k+1

and
∑k

i=0 ti = 1}. Let x ∈ Rn and A ⊂ Rn. Then con (x, A) =
⋃
{[x, a] : a ∈ A}.

Other notations are standard and can be found in [9].

1. Lemma. Given any spacesX and Y and an infinite cardinal k with d(X) ≤ k, (d

is the density character), |Y | ≤ 2k, suppose that
⋃
{Xs : s ∈ 2k} ⊂ X , Xs ∩Xt = ∅

if s 6= t and no Xs can be continuously injected into Y . Then X does not split
over Y .
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Proof: Clearly, |C(X, Y )| ≤ 2k, so let C(X, Y ) = {fs : s < 2k}. For any s < 2k

there is an xs ∈ X such that |f−1
s fs(xs)∩Xs| > 1 because f ↾ X is not an injection.

Then the set A = {xs : s < 2k} witnesses non-splittability of X over Y . �

2. Example. For any natural n there exists an n-dimensional metrizable compact
space Xn which does not split over R

2n.

Proof: Take any metrizable compact space Yn with Yn 6 →֒ R2n and dimYn = n.
Then let Xn = 2

ω × Y . It is obvious that the family {{s} × Yn : s ∈ 2ω} satisfies
the conditions of Lemma 1 for X = Xn, k = ω and Y = R2n. Hence Xn does not
split over R2n. �

3. Example. There exists an n-dimensional compact polyhedron Pn which is not

splittable over R2n−2.

Proof: There exists an (n − 1)-dimensional compact polyhedron Yn which does
not embed in R2n−2. Then P = Yn× [0, 1] is what was required, because the family
{Yn × {t} : t ∈ [0, 1]} satisfies the conditions of Lemma 1 for X = Pn, k = ω and
Y = R2n−2. �

4. Theorem. Let P be an n-dimensional compact polyhedron. Then P splits
over R2n.

Proof: Denote by a1, . . . , ak the vertices of P . Let {S1, . . . , Sr} be the set of
all (n − 1)-dimensional simplexes from P nd let µ = {T1, . . . , Tm} be some set
of its n-dimensional ones. Take any hyperplane H ⊂ R2n and let b1, . . . , bk be
some points generally positioned in H . Define a polyhedron Qn−1 in the following
way: the vertices of Qn−1 are b1, . . . , bk and a simplex [bi1 , . . . , bil ], l ≤ n belongs
to Qn−1 iff the simplex [ai1 , . . . , ail ] belongs to P . If Pn−1 is the union of all
≤ (n−1)-dimensional simplexes, then the simplicial map f : Pn−1 → Qn−1 defined
by f(ai) = bi is a homeomorphism because H is isomorphic to R2n−1. Pick any
D ∈ R2n \ H . �

5. Lemma. There exist m sets L1, . . . , Lm and a continuous map

g = g(f, D) : Pn−1 ∪ T1 ∪ · · · ∪ Tm → R2n

with the following properties:

(1) Li is a subset of R
2n
D , where the last set is the component of R

2n \ H
containing D, i = 1, . . . , m;

(2) Li is homeomorphic to 〈Ti〉, i = 1, . . . , m;
(3) Li ∩ Lj = {D} if i 6= j;
(4) g ↾ Pn−1 = f ;
(5) g ↾ (Pn−1 ∪ Ti) is a homeomorphism onto Qn−1 ∪ Li.

Proof of the lemma: Let R = con (D, Qn−1), Ri = con (D, f(Si)), i = 1, . . . , r.
The setR being compact, there is a sphere (inR2n) containing it. Pick any E ∈ R2nD
outside this sphere and not belonging to any of (2n−1)-dimensional planes, spanned
in R2n by some 2n points from the set {b1, . . . , bk, D}.
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We are going to construct a continuous function q : R → [0, 1) such that

q−1(0) = Qn−1 ∪ {D};(6)

if x ∈ R \ (Qn−1 ∪ {D}) and y ∈ (x, E) ∩ R, then q(x) <
|x − y|

|y − E|
.(7)

To do that let Wi = {x ∈ R : (x, E) ∩ Ri 6= ∅}. For each x ∈ R and each i, there is
at most one point in (x, E)∩Ri, for otherwise E would belong to the n-dimensional
plane spanned by Ri. Put for x ∈ Ri:

ri(x) =
|x − y|

|y − E|
where y ∈ (x, E) ∩ Ri, and ri(D) = 0.

Let us prove that dom ri = Wi ∪ {D} is a closed subset of R. It suffices to show
that dom ri ∩ Rj is closed for each j. If Ri ∩Rj ∩H 6= ∅ then, owing to the choice
of E, dom ri ∩ Rj = {D}. Suppose Ri ∩ Rj ∩ H = ∅, hence Ri ∩ Rj = {D}. Let
x ∈ Rj \ dom ri. Then (x, E) ∩ Ri = ∅ and [x, E] ∩ Ri = ∅ as well. Since [x, E]
is compact and Ri is closed, the distance between these sets is positive, say ε, and
whenever |z−x| < ε then clearly [z, E]∩Ri = ∅. Since ri is continuous, there exists
a continuous qi : R → [0, 1) with q−1(0) = Qn−1 ∪ {D} and qi(x) < ri(x) for all
x ∈ Wi \ (Qn−1 ∪ {D}). Now it suffices to put

q(x) = min{qi(x) : i = 1, . . . , r}.

Let Mi = con (D, f(Ti \ 〈Ti〉), i = 1, . . . , m. It is clear that Mi is homeomorphic
to Ti. Define an injective continuous map si : Mi → R

2n
D in the following way: if

x ∈ Mi then find the point y ∈ [x, E) with

|x − y|

|y − E|
=

q(x)

i+ 1

and put si(x) = y.
Evidently, si is a homeomorphism. Let Li = si(Mi \ f(Ti \ 〈Ti〉)). We are

going to define the map g = g(f, D) and verify (1)–(5). Take any homeomorphism
ui : Ti → Mi with ui ↾ (Ti \ 〈Ti〉) = f . Then let g(x) be equal to f(x) if x ∈ Pn−1

and to si(ui(x)) for x ∈ Ti \ Pn−1, i = 1, . . . , m.
Only (3) needs to be verified.
Let x ∈ Mi \ ({D}∪Qn−1), y ∈ Mj \ ({D}∪Qn−1). If g(x) = g(y) then x, y and

E are linearly dependent. We may assume without loss of generality that y ∈ [x, E].
There are two possibilities: x = y, and x 6= y.
If x = y then

|x − g(x)|

|g(x) − E|
=

q(x)

i+ 1
and

|x − g(y)|

|g(y)− E|
=

q(y)

j + 1
=

q(x)

j + 1
6=

q(x)

i+ 1
,

so that g(x) 6= g(y), which is a contradiction.
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If x 6= y and x ∈ Rt1 , y ∈ Rt2 , Rt1 ∩ Rt2 ∩ Qn−1 6= ∅ then it is impossible that
y ∈ [x, E] — a contradiction.
If Rt1 ∩ Rt2 ∩ Qn−1 = ∅ then

|x − g(x)|

|g(x)− E|
<

|x − y|

|y − E|

and therefore g(x) ∈ [x, y) while g(y) ∈ [y, E) and g(x) 6= g(y) — a contradiction
again and we established (3) together with our lemma. �

We have all we need to split P over R2n. Let A ⊂ P . Pick a point D1 ∈
R2n \ (H ∪ R2nD ). Let T1, . . . , Tm, Tm+1, . . . , Tm1 be all n-dimensional simplexes
of P numerated in such a way that A ∩ 〈Ti〉 6= ∅, i = 1, . . . , m, (P \ A) ∩ 〈Ti〉 6= ∅,
i = m+1, . . . , m1. Using Lemma 5 find the sets L1, . . . , Lm1 and maps g = g(f, D)
and g1 = g(f, D1) such that

Li ⊂ R
2n
D , i = 1, . . . , m, Li ⊂ R

2n
D , i = m+ 1, . . . , m1;(8)

Li is homeomorphic to 〈Ti〉, i = 1, . . . , m1;(9)

Li ∩ Lj = {D}, i 6= j, j ∈ 1, . . . , m;(10)

Li ∩ Lj = {D}, i = j, i, j ∈ m+ 1, . . . , m1;(11)

g ↾ Pn−1 = g1 ↾ Pn−1 = f ;(12)

g ↾ (Pn−1 ∪ Ti) is a homeomorphism onto Qn−1 ∪ Li, i = 1, . . . , m;(13)

g ↾ (Pn−1 ∪ Ti) is a homeomorphism onto Qn−1 ∪ Li, i = m+ 1, . . . , m1;(14)

Pick some points c1, . . . , cm1 with ci ∈ A∩〈Ti〉, i = 1, . . . , m, ci ∈ (P \A)∩〈Ti〉, i =
m+1, . . . , m1 and the points d1, . . . , dm1 with g(di) = D, i = 1, . . . , m, g1(di) = D1,
i = m+1, . . . , m1 (observe that automatically di ∈ 〈Ti〉 for each i). Let G = g∪g1.
Then G is a continuous map, G : P → R2n. There exists a homeomorphism
h : P → P with h ↾ Pn−1 = id Pn−1

and h(ci) = di, i = 1, . . . , m1. The map

F = G ◦ h separates A from P \ A, because |F−1(x)| = 1 if x /∈ {D, D1} and
F−1(D) = {c1, . . . , cm} ⊂ A, F−1(D1) = {cm+1, . . . , cm1} ⊂ P \ A, and our
theorem is proved. �

6. Proposition. Let X be a compact space and X = X1 ∪X2 where X1 ∩X2 = ∅
and any compact K ⊂ Xi is scattered (i = 1, 2). Assume that X splits over a space
Y with dimY ≤ n. Then dimX ≤ n.

Proof: Take a continuous f : X → Y with f−1f(X1) = X1. If y ∈ Y then
f−1(y) is a compact subset of some Xi (i = 1, 2) and is thus scattered. Hence
dim f−1(y) = 0 for every y ∈ f(X). But dimX ≤ dim f(X) + dim f ≤ n [10] and
the proof is over. �

7. Corollary. If a compact space X is splittable over Rn, then dimX ≤ n.

Proof: The space X must be metrizable [3]. It is widely known (see e.g. [5]) that
metrizable compact spaces satisfy the assumptions of Proposition 6, so our proof is
over. �

This corollary answers Questions 2 and 3 in [1].



A note on splittable spaces 555

8. Corollary (ACP#). If X is a compact space splittable over a space Y then

dimX ≤ dim Y . (The definition of ACP# can be found in [5]).

9. Corollary. If X is a metrizable compact space splittable over a space Y then
dimX ≤ dim Y .

10. Example. Compactness is essential in 7–9, for there exist infinite-dimensional
second countable spaces which can be injectively mapped in R [6].

11. Proposition. If X is an infinite extremally disconnected compact space split-
table over a space Y then βω →֒ Y .

Proof: It is true in ZFC (see [7]) that X = X1 ∪ X2, X1 ∩ X2 = ∅ and every
compact K ⊂ X is finite (i = 1, 2). Pick a continuous map f : X → Y with
f−1f(Xi) = Xi. The space βω embeds in X and f ↾ βω has finite point-inverses,
so that βω →֒ f(βω) [8] and our proposition is proved.

12. Corollary. If βω splits over a space Y then βω embeds in Y .
�
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