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A note on splittable spaces

VLADIMIR V. TKACHUK

Abstract. A space X is splittable over a space Y (or splits over Y') if for every A C X
there exists a continuous map f : X — Y with f~1fA = A. We prove that any n-
dimensional polyhedron splits over R2" but not necessarily over R2%~2. It is established
that if a metrizable compact X splits over R™, then dim X < n. An example of n-
dimensional compact space which does not split over R2" is given.
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The notion of splittability was introduced by A.V. Arhangel’skii [1]. A space
X is splittable (or splits) over a space Y if for any A C X there exists a contin-
uous map f : X — Y such that f~'fA = A. Many results were obtained by
A.V. Arhangel’skii and D.B. Shakhmatov ([1]-[3]) on spaces splittable over R“.
The author had also written a paper [4] on this topic.

Recently, A.V. Arhangel’skii had shown that a compact space X splits over R iff
it embeds in R. He also proved that any 1-dimensional polyhedron splits over R?
so that not every compact space splittable over R? embeds in R%. We prove here
that any n-dimensional polyhedron splits over R2" but not necessarily over R2"~2,
We establish also that there exists a compact space X, € R2"*1 with dim X,, = n
and not splittable over R?™. Another result is Corollary 8 answering Question 2
and 3 in [1].

Notations and terminology. All spaces under consideration are Tychonoff ones.
Given two spaces X and Y, denote by C(X,Y") the set of all continuous functions
from X to Y. The space R is the real line with its usual topology and 2 = {0,1}. If
x,y € R™ then [z,y] = {tx+(1—t)y : 0 <t < 1} is the segment connecting x and v,
|x—y] is its length. It is always clear from the context whether |-| denotes cardinality
of some set or length of a segment. Of course, [z,y) = {tz + (1 —t)y: 0 <t < 1}
and (z,y) = {tz+ (1 —t)y : 0 <t < 1}. The simplex in R™ with vertices ay, ..., ag
will be denoted by [ag, .. ., ag], then(T) = {tgag+---+tgag : t; > 0foralli € k+1
and Y% t; =1}. Let # € R” and A C R™. Then con (z, A) = J{[z,a] : a € A}.
Other notations are standard and can be found in [9].

1. Lemma. Given any spaces X andY and an infinite cardinal k with d(X) < k, (d
is the density character), |Y| < 2F, suppose that | J{Xs:s€2F} c X, XsnX; =0
if s # t and no Xg can be continuously injected into Y. Then X does not split
over Y.
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PROOF: Clearly, |C(X,Y)| < 2%, solet C(X,Y) = {fs : s < 2¥}. For any s < 2F
there is an x5 € X such that | f7! fs(25)NXs| > 1 because f | X is not an injection.
Then the set A = {z5 : s < 2F} witnesses non-splittability of X over Y. O

2. Example. For any natural n there exists an n-dimensional metrizable compact
space X,, which does not split over R2™.

PrOOF: Take any metrizable compact space Y, with Y;, < R2" and dimY,, = n.
Then let X, = 2 x Y. It is obvious that the family {{s} x Y}, : s € 2*} satisfies
the conditions of Lemma 1 for X = X, k=w and Y = R2". Hence X,, does not
split over R2". O

3. Example. There exists an n-dimensional compact polyhedron P, which is not
splittable over R2"—2,

PROOF: There exists an (n — 1)-dimensional compact polyhedron Y;, which does
not embed in R?®~2. Then P = Y}, x [0, 1] is what was required, because the family
{Y,, x {t} : t € [0,1]} satisfies the conditions of Lemma 1 for X = P,, k = w and
Y =R¥™2, O

4. Theorem. Let P be an n-dimensional compact polyhedron. Then P splits
over R?".

PRrOOF: Denote by ay,...,a; the vertices of P. Let {S1,...,Sr} be the set of
all (n — 1)-dimensional simplexes from P nd let p = {T71,...,T,} be some set
of its n-dimensional ones. Take any hyperplane H C R2" and let by,...,b; be
some points generally positioned in H. Define a polyhedron @,,—1 in the following
way: the vertices of Q,—1 are by,...,b; and a simplex [b;,,...,b;], I < n belongs
to Qp—1 iff the simplex [a;,,...,a;] belongs to P. If P,_1 is the union of all
< (n—1)-dimensional simplexes, then the simplicial map f : P,—1 — @y —1 defined
by f(a;) = b; is a homeomorphism because H is isomorphic to R2"~1. Pick any
D e R?>"\ H. O

5. Lemma. There exist m sets L1,..., Ly and a continuous map
g—g(f, D): P, 1UTy U-- UTm_’R2n

with the following properties:

(1) L; is a subset of R, where the last set is the component of R?" \ H
containing D, 1 =1,...,m;

(2) L; is homeomorplnc to (T;),i=1,...,m;

(3) L; ﬂL ={D} ifi # j;

(4) Pn_1 = fa

(5) g ( w—1 UT;) is a homeomorphism onto Q1 U L;.

PROOF OF THE LEMMA: Let R = con(D,Qn—1), R; =con(D, f(S;)),i=1,...,r

The set R being compact, there is a sphere (in RQ") containing it. Pick any E € R%"

outside this sphere and not belonging to any of (2n—1)-dimensional planes, spanned

in R2" by some 2n points from the set {b1, ..., by, D}.
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We are going to construct a continuous function ¢ : R — [0,1) such that

(6) g 10) = Qu_1U{D};

(7) ifxe R\ (Qn-1U{D}) and y € (z, E) N R, then ¢(z) < 2 =yl

ly — E|

To do that let W; = {z € R: (z, E) N R; # (0}. For each x € R and each i, there is
at most one point in (z, E) N R;, for otherwise E would belong to the n-dimensional
plane spanned by R;. Put for z € R;:

ri(z) = ||;__é|| where y € (z, E) N R;, and r;(D) = 0.

Let us prove that dom r; = W; U {D} is a closed subset of R. It suffices to show
that dom r; N R; is closed for each j. If R; N R; N H # () then, owing to the choice
of E, dom r; N R; = {D}. Suppose R; N Rj N H = (), hence R; N R; = {D}. Let
x € R;j \ dom r;. Then (2, E)NR; = 0 and [z, E]N R; = () as well. Since [z, E]
is compact and R; is closed, the distance between these sets is positive, say €, and
whenever |z — z| < € then clearly [z, E]|NR; = (). Since r; is continuous, there exists
a continuous ¢; : R — [0,1) with ¢71(0) = Q,_1 U {D} and ¢;(z) < ri(z) for all
x € Wi\ (Qn—1 U{D}). Now it suffices to put

q(z) = min{g;(z) :i=1,...,r}.

Let M; = con (D, f(T; \ {(T3)), it = 1,...,m. It is clear that M; is homeomorphic
to T;. Define an injective continuous map s; : M; — R2D” in the following way: if
x € M; then find the point y € [z, F) with

lz—yl _ a(@)
ly—FE] i+1

and put s;(z) = y.

Evidently, s; is a homeomorphism. Let L; = s;(M; \ f(T; \ (T;))). We are
going to define the map g = ¢g(f, D) and verify (1)—(5). Take any homeomorphism
u; » Ty — M; with u; | (T3 \ (T;)) = f. Then let g(z) be equal to f(z) if z € P,
and to s;(u;(z)) for x € T; \ Pp—1,i=1,...,m.

Ouly (3) needs to be verified.

Let # € M\ ({D}UQn-1), y € M;\({D}UQn-1). If g(x) = g(y) then z,y and
E are linearly dependent. We may assume without loss of generality that y € [z, F].
There are two possibilities: * = y, and = # y.

If x = y then

lz—g9@)| _ al@) . l2—9@l _ ay) _ 4(@) y q(x)
lg(z) — Bl i+1 lg(y) = E|  j+1 j+17 i+1’

so that g(z) # g(y), which is a contradiction.
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If £ #yand o € Ryy, y € Ryy, Ry N Ry, N Qr—1 # 0 then it is impossible that
y € [z, E] — a contradiction.
If R, N Rey, N Qp—1 =0 then

2 —g(@)| _ o~y

l9(x) = E| |y - E|
and therefore g(z) € [z,y) while ¢g(y) € [y, F) and g(z) # g(y) — a contradiction
again and we established (3) together with our lemma. O

We have all we need to split P over R?”. Let A C P. Pick a point D; €
R2"\ (H U R%;‘) Let T1,...,Tm, Tm+1,-- -, Tm, be all n-dimensional simplexes
of P numerated in such a way that AN{(T;) #0,i=1,...,m, (P\ A) N {T;) # 0,
i=m++1,...,my. Using Lemma 5 find the sets L1, ..., Ly, and maps g = g(f, D)
and g1 = g(f, D1) such that

(8) LicR¥® i=1,....m L;CRZ, i=m+1,....,mq;

9) L; is homeomorphic to (T}), i =1,...,mz;

(10) LinL;={D}, i#j, jel,...,m;

(11) LinL;={D}, i=j, i,jem+1,. .. mi;

(12) gl Ph1=9g1 Poo1 = f;

(13) g (Pp—1UT;) is a homeomorphism onto Qp—1 U L;, i=1,...,m;
(14) g | (Pp—1 UT;) is a homeomorphism onto Q-1 U L;, i =m+1,...,my;

Pick some points c1,...,¢m, withe; € AN(T),i=1,...,m,¢; € (P\A)N(T;),i=
m+1,...,m1 and the points dy, ..., dp, with g(d;) = D,i=1,...,m, g1(d;) = D1,
i=m++1,...,my (observe that automatically d; € (T;) for each i). Let G = gUgj.
Then G is a continuous map, G : P — R2". There exists a homeomorphism
h:P — Pwith h [ P,_1 =1id p, , and h(¢;) = d;, i = 1,...,m1. The map
F = G o h separates A from P\ A, because |[F~1(z)] = 1if 2 ¢ {D,D;} and
F~YD) = {c1,...,cm} € A, F7Y(D1) = {¢ma1,---r¢my} C P\ A, and our
theorem is proved. O
6. Proposition. Let X be a compact space and X = X1 U Xy where X1 N Xy =10

and any compact K C X; is scattered (i = 1,2). Assume that X splits over a space
Y withdimY <n. Then dim X <n.

PrOOF: Take a continuous f : X — Y with f~1f(X1) = X;. If y € Y then
f~1(y) is a compact subset of some X; (i = 1,2) and is thus scattered. Hence
dim f~1(y) = 0 for every y € f(X). But dim X < dim f(X) + dim f < n [10] and
the proof is over. 0

7. Corollary. If a compact space X is splittable over R™, then dim X < n.

PROOF: The space X must be metrizable [3]. It is widely known (see e.g. [5]) that
metrizable compact spaces satisfy the assumptions of Proposition 6, so our proof is
over. g

This corollary answers Questions 2 and 3 in [1].
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8. Corollary (AC’P#). If X is a compact space splittable over a space Y then
dim X < dimY. (The definition of ACP# can be found in [5]).

9. Corollary. If X is a metrizable compact space splittable over a space Y then
dim X <dimY.

10.

Example. Compactness is essential in 7-9, for there exist infinite-dimensional

second countable spaces which can be injectively mapped in R [6].

11.

Proposition. If X is an infinite extremally disconnected compact space split-

table over a space Y then fw — Y.

PRrROOF: It is true in ZFC (see [7]) that X = X7 U Xa, X3 N X3 = @ and every
compact K C X is finite (¢ = 1,2). Pick a continuous map f : X — Y with
f_lf(Xi) = X;. The space Sw embeds in X and f [ Sw has finite point-inverses,
so that fw — f(Bw) [8] and our proposition is proved.

12.

Corollary. If fw splits over a space Y then Sw embeds inY .
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