
Comment.Math.Univ.Carolin. 33,3 (1992)477–484 477

On uniformly nonsquare points and

nonsquare points of Orlicz spaces*

Tingfu Wang, Zhongrui Shi, Yanhong Li

Abstract. For Orlicz spaces endowed with the Orlicz norm and the Luxemburg norm, the
criteria for uniformly nonsquare points and nonsquare points are given.
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R. James in [1] and J. Schäffer in [2] introduced conceptions of uniformly non-
square, locally uniformly nonsquare and nonsquare Banach spaces, respectively. In
this paper, we introduce the notions of uniformly nonsquare point and nonsquare
point, and give criteria for them in Orlicz spaces.
Let S(X) be the unit sphere of Banach space X . x ∈ S(X) is called a uniformly

nonsquare point in the sense of Schäffer (we write S-UNSP, for simplicity) provided
that there is δx > 0 such that for every y ∈ S(X),

Max{‖x+ y‖, ‖x− y‖} ≥ 1 + δx;

x ∈ S(X) is called a (S)-nonsquare point (S-NSP) if for every y ∈ S(X)

Max{‖x+ y‖, ‖x− y‖} > 1;

x ∈ S(X) is called a uniformly nonsquare point in the sense of James (J-UNSP)
provided that there is δx > 0 such that for every y ∈ S(X),

Min{‖x+ y‖, ‖x − y‖} ≤ 2− δx;

x ∈ S(X) is called a (J)-nonsquare point (J-NSP) if for every y ∈ S(X),

Min{‖x+ y‖, ‖x− y‖} < 2.

Let M(u) and N(v) be a pair of complemented N -functions, we use LM to
express the Orlicz space generated by M(u),

LM = {x(t) : ∃λ > 0, RM (λx) < ∞},
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and its subspace EM ,

EM = {x(t) : ∀λ > 0, RM (λx) < ∞},

where RM (x) =
∫

G M(x(t)) dµ is called the modulo of x over a finite nonatomic
measure space (G,Σ, µ).
We denote by LM = [LM (G), ‖. ‖M ] and LM = [LM (G), ‖. ‖(M)] (see [3], [6]) the

Orlicz spaces endowed with the Orlicz norm and the Luxemburg norm, respectively.
M ∈ ∆2 means thatM(u) satisfies the ∆2-condition for large u, andM ∈ ∇2 means
that N ∈ ∆2.
S. Chen and Y. Wang testified in [4] that LM always is (S)-locally uniformly

nonsquare, so every point on S(LM ) is an S-UNSP, and so S-NSP. S. Chen verified
in [5] that a point on S(L(M)) is an S-UNSP iff M ∈ ∆2. We give the criteria for

the five other cases and list them as follows:

‖x‖ = 1 S-UNSP S-NSP J-UNSP J-NSP

LM always [4] always [4] M ∈ ∇2 always

L(M) M ∈ ∆2 [5] RM (x) = 1 ∃ λ>1, RM (λx)<∞ ∃λ>1, RM (λx)<∞

Replacing LM and L(M) by lM and l(M) in the table, we have the same results in

Orlicz sequence spaces as in Orlicz function spaces, and so we omit them here.

Theorem 1. For x ∈ S(L(M)), TFAE:

(1) x is a (S)-nonsquare point,
(2) RM (x) = 1.

Proof: (1) ⇒ (2). Suppose RM (x) < 1. Then we know that M /∈ ∆2, i.e., there

exist un ր +∞, such that M((1 + 1n )un) > 2nM((1 + 1
2n )un).

Take c > 0 such that µGc > 0, where Gc = {t ∈ G : |x(t)| ≤ c}. Passing
to a subsequence, if necessary, we can assume that c ≤ un/2n for every n. Take
disjoint subsets {Gn}n ⊂ Gc such that

M((1 +
1

2n
)un)µGn =

1

2n
, (n = 1, 2, . . . ).

Take an integer n′ such that
∑∞

n=n′
1
2n < 1− RM (x). Set

y(t) =

{

un, t ∈ Gn, n = n′, n′ + 1, n′ + 2, . . .

0, otherwise.

Then RM (y) =
∑∞

n=n′ M(un)µGn ≤
∑∞

n=n′
1
2n ≤ 1.

For an arbitrary λ > 1, denote m =
[

1
λ−1

]

+ n′. Then we have

RM (λy) =

∞
∑

n=n′

M(λun)µGn ≥

∞
∑

n=m

M((1 +
1

n
)un)µGn =∞,
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i.e., ‖y‖(M) = 1.

Notice that for ε = 1 or ε = −1, we have

RM (x+ εy) = RM (xχG\
S

∞

n=n′ Gn
) +RM ((x + εy)χS∞

n=n′ Gn
)

≤ RM (x) +RM ((|x| + |y|)χS∞

n=n′ Gn
)

≤ RM (x) +
∞
∑

n=n′

M((1 +
1

2n
)un)µGn ≤ 1.

On the other hand, for an arbitrary λ > 1, denoting m =
[

n′ + 3λ
2(λ−1)

]

, we have

RM (λ(x + εy)) ≥ RM (λ(x + εy)S∞

n=n′ Gn
)

≥ RM (λ(|y| − |x|)χS∞

n=n′ Gn
)

≥

∞
∑

n=n′

M(λ(1 −
1

2n
)un)µGn

≥
∞
∑

n=m′

M((1 +
1

n
)un)µGn =∞,

whence ‖x + y‖(M) = 1, ‖x − y‖(M) = 1, which contradicts the fact that x is an

(S)-nonsquare point.

(2) ⇒ (1). Suppose that x is not an (S)-nonsquare point, i.e., there is y ∈
S(L(M)) such that ‖x+ y‖(M) = 1 and ‖x − y‖(M) = 1. Then

RM (x+ y) +RM (x − y) ≤ 2 = 2RM (x),

i.e.,

RM (x)−
1

2
(RM (x+ y) +RM (x − y)) ≥ 0.

Since x = x+y+x−y
2 , from the convexity of M(u), we have

RM (x)−
1

2
(RM (x+ y) +RM (x − y)) ≤ 0.

Thus

RM

(x+ y + x − y

2

)

=
1

2
(RM (x+ y) +RM (x − y)),

soM(u) is affine on the segments 〈x(t)+y(t), x(t)−y(t)〉 (t ∈ G, µ-a.e.). SinceM(u)
is an N -function, we deduce that |x(t)| ≥ |y(t)| (t ∈ G, µ-a.e.). So 2|y(t)| ≤ |x(t) +
y(t)|, or 2|y(t)| ≤ |x(t)− y(t)|. Therefore, RM (2y) ≤ RM (x+ y) +RM (x − y) ≤ 2,
and from ‖y‖(M) = 1 we get RM (y) = 1.

Replace x by y in the preceding, we get that M(u) is affine on the segments
〈y(t) + x(t), y(t)− x(t)〉 (t ∈ G, µ-a.e.). Hence, for µ-a.e. t ∈ G, M(u) is affine on
〈x(t) − y(t), x(t) + y(t)〉 and 〈x(t) + y(t), y(t)− x(t)〉, which contradicts
‖x − y‖(M) = 1. �
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Corollary 1. Any point x ∈ S(E(M)) is an (S)-nonsquare one.

Corollary 2. L(M) is (S)-nonsquare iff M ∈ ∆2.

Theorem 2. For x ∈ S(L(M)), TFAE:

(1) x is a (J)-uniformly nonsquare point,
(2) x is a (J)-nonsquare point,
(3) RM (λx) < ∞ for some λ > 1.

Proof: (3) ⇒ (1). Take c > 1 large enough such that RM (xχG1) ≥
7
8RM (x),

where G1 = {t ∈ G : 1c ≤ |x(t)| ≤ c}. Choose d, d > 2c, in such way that
M(c)
M(d)

≤ 1
8RM (x). Set σ = Sup1/c≤u≤d(2M(

u
2 )/M(u)), 0 < σ < 1. Denoting

δ = 38 (1− σ)RM (x) and taking ε > 0 small enough, we get

RM ((1 + ε)x) ≤ RM (x) +
3

8
(1− σ)RM (x) = RM (x) + δ.

In the following, we shall show that for any y ∈ S(L(M)), it holds

(∗) Min{‖
x+ y

2
‖(M), ‖

x − y

2
‖(M)} ≤ 1−

ε

2(1 + ε)
.

Denote G2 = {t ∈ G : |y(t)| ≤ d}. Then

M(d)µ(G \ G2) ≤ RM (yχG\G2) ≤ RM (y) ≤ 1, i.e., µ(G \ G2) ≤
1

M(d)
.

Thus

RM (xχG1\G2) ≤ M(c)µ(G1 \ G2) ≤ M(c)µ(G \ G2) ≤
M(c)

M(d)
≤
1

8
RM (x).

Defining D = G1 ∩ G2, we get

7

8
RM (x) ≤ RM (xχG1) = RM (xχG1\G2) +RM (xχD) ≤

1

8
RM (x) +RM (xχD),

i.e.,

(1) RM (xχD) ≥
3

4
RM (x).

Hence

(2)

2 + δ − RM

( (1 + ε)x+ y

2

)

− RM

( (1 + ε)x − y

2

)

≥ RM (x) + δ + RM (y)− RM

( (1 + ε)x+ y

2

)

− RM

( (1 + ε)x − y

2

)

≥ RM ((1 + ε)x) +RM (y)−
[

RM

( (1 + ε)x+ y

2

)

+RM

( (1 + ε)x − y

2

)]

≥ RM ((1 + ε)xχD) +RM (yχD)

−
[

RM

( (1 + ε)x+ y

2
χD

)

+RM

( (1 + ε)x − y

2
χD

)]

.
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Denote D1 = {t ∈ D : x(t) y(t) ≥ 0} and D2 = D \ D1. Then

RM

( (1 + ε)x+ y

2
χD

)

+RM

( (1 + ε)x − y

2
χD

)

= RM

( (1 + ε)x+ y

2
χD1

)

+RM

( (1 + ε)x+ y

2
χD2

)

+RM

( (1 + ε)x − y

2
χD1

)

+RM

( (1 + ε)x − y

2
χD2

)

≤
RM ((1 + ε)xχD1) +RM (yχD1)

2
+RM

(max(|(1 + ε)x|, |y|)

2
χD2

)

+RM

(max(|(1 + ε)x|, |y|)

2
χD1

)

+
RM ((1 + ε)xχD2) +RM (yχD2)

2

=
RM ((1 + ε)xχD) +RM (yχD)

2
+RM

(max(|(1 + ε)x|, |y|)

2
χD

)

.

While t ∈ D, 1c ≤ 1+ε
c ≤ max(|(1 + ε)x|, |y|) ≤ d, we have

RM

( (1 + ε)x+ y

2
χD

)

+RM

( (1 + ε)x − y

2
χD

)

≤
1

2
(RM ((1 + ε)xχD) +RM (yχD)) +

σ

2
RM (max(|(1 + ε)x|, |y|)χD)

≤
(1 + σ)

2
(RM ((1 + ε)xχD) +RM (yχD)).

Combining (1) and (2), we get

2 + δ − RM

( (1 + ε)x+ y

2

)

− RM

( (1 + ε)x − y

2

)

≥
1− σ

2
(RM ((1 + ε)xχD) +RM (yχD))

≥
1− σ

2
RM ((1 + ε)xχD) ≥

3

8
(1− σ)RM (x) = δ,

i.e.,

2− RM

( (1 + ε)x+ y

2

)

− RM

( (1 + ε)x − y

2

)

≥ 0.

Thus

Min{RM

( (1 + ε)x+ y

2

)

, RM

( (1 + ε)x − y

2

)

} ≤ 1.

If RM

( (1+ε)x+y
2

)

≤ 1, we have
∥

∥

(1+ε)x+y
2

∥

∥

(M) ≤ 1, i.e.,
∥

∥

x+ y

1+ε

2

∥

∥

(M) ≤ 1
1+ε .

Notice that

∣

∣

∣

∥

∥

x+ y

2

∥

∥

(M)
−

∥

∥

x+ y
1+ε

2

∥

∥

(M)

∣

∣

∣
≤

∥

∥

x+ y

2
−

x+ y
1+ε

2

∥

∥

(M)
=
1

2

(

1−
1

1 + ε

)

=
ε

2(1 + ε)
.
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Therefore we get

∥

∥

x+ y

2

∥

∥

(M) ≤
1

1 + ε
+

ε

2(1 + ε)
=
2 + ε

2(1 + ε)
= 1−

ε

2(1 + ε)
.

If RM

( (1+ε)x−y
2

)

≤ 1, we have similarly

∥

∥

x − y

2

∥

∥

(M)
≤ 1−

ε

2(1 + ε)
.

(1) ⇒ (2). Trivial.

(2) ⇒ (3). Suppose that RM (λx) = ∞ for any λ > 1. Take ξ1 > ξ2 > . . . with
ξn → 1.
Since RM (ξ1x) =∞, ∃ c1 > 0, RM (ξ1xχG1) ≥ 1 where G1 = {t ∈ G : |x(t)| ≤ c1},
since RM (ξ1xχG\G1) = ∞, ∃ c′1 > 0, RM (ξ1xχG′

1
) ≥ 1 where G′

1 = {t ∈ G \ G1 :

|x(t)| ≤ c′1}, since RM (ξ2xχG\G1\G′

1
) = ∞, ∃ c2 > 0, RM (ξ2xχG2) ≥ 1 where

G2 = {t ∈ G \ G1 \ G′
1 : |x(t)| ≤ c2}, since RM (ξ2xχG\G1\G′

1\G2
) = ∞, ∃ c′2 > 0,

RM (ξ2xχG′

2
) ≥ 1 where G′

2 = {t ∈ G \ G1 \ G′
1 \ G2 : |x(t)| ≤ c′2} . . .

Continuing this process in such a way, we get the disjoint subsets G1, G
′
1, G2, G

′
2, . . .

satisfying

RM (ξnxχGn
) ≥ 1, RM (ξnxχG′

n
) ≥ 1 (n = 1, 2, . . . ).

Set

y = xχG1∪G2∪... , z = xχG′

1∪G′

2∪... .

Then x = y + z, yz = 0, RM (y) ≤ RM (x) ≤ 1, RM (z) ≤ RM (x) ≤ 1. But for any
integer m,

RM (ξmy) =

∞
∑

n=1

RM (ξmxχGn
) ≥

∞
∑

n=m

RM (ξnxχGn
) =∞,

so ‖y‖(M) = 1. Similarly, ‖z‖(M) = 1. Set x′ = y − z. From |x(t)| = |x′(t)|, we get

‖x′‖(M) = ‖x‖(M) = 1. On the other hand

∥

∥

x+ x′

2

∥

∥

(M) = ‖y‖(M) =
∥

∥

x − x′

2

∥

∥

(M) = ‖z‖(M) = 1,

which contradicts the fact that x is a (J)-nonsquare point. �

Corollary 1. Every point x ∈ S(E(M)) is a (J)-uniformly nonsquare one, and so

also a (J)-nonsquare.
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Corollary 2. L(M) is (J)-locally uniformly nonsquare ((J)-nonsquare) iff M ∈ ∆2.

Proof: When M ∈ ∆2, L(M) = E(M), it is Corollary 1. When M /∈ ∆2, take y as

in the proof of Theorem 1, (1) ⇒ (2), which is also not a (J)-uniformly nonsquare
point. From ‖y‖(M) = 1, we get that L(M) is not (J)-locally uniformly nonsquare.

�

Theorem 3. For x ∈ S(LM ), TFAE:

(1) x is a (J)-uniformly nonsquare point,
(2) M ∈ ∇2.

Proof: (2) ⇒ (1). See [4].

(1) ⇒ (2). Take d > 0, µGd > 0, where Gd = {t ∈ G : |x(t)| ≤ d}. For any

integer n, choose yn ∈ EM , ‖yn‖(M) = 1 and
∫

G x(t)yn(t) dµ > 1− 1n . If supposing

M /∈ ∇2 (equivalently N /∈ ∆2), there exists vn > 0 large enough such that

(i) N(vn)µGd > 1
n ,

(ii) when e ⊂ G, µe ≤ 1
nN(vn)

, then
∫

G\e x(t)yn(t) dµ > 1− 1
n ,

(iii) N((1 + 1n )vn) > nN(vn).

By (i), there isGn ⊂ Gd such thatN(vn)µGn =
1
n . By (ii), we get

∫

G\Gn
xyn dµ >

1− 1
n . Notice that RN (vnχGn

) = N(vn)µGn =
1
n ,

RN

((

1 +
1

n

)

vnχGn

)

= N
((

1 +
1

n

)

vn
)

µGn > 1,

whence we have 1 ≥ ‖vnχGn
‖(N) ≥

1
1+ 1

n

.

Since vnχGn
is a simple function of L(N), there exists unχGn

∈ LM , satisfying

‖unχGn
‖M = 1 and such that

∫

G
unχGn

· vnχGn
dµ = unvnµGn = ‖vnχGn

‖(N) ≥
1

1 + 1n
.

Set y′N (t) =
1
1+ 1

n

(vnχGn
(t) + yn(t)χG\Gn

(t)). Then

RN (y
′
n) ≤

1

1 + 1n
(N(vn)µGn +Rm(yn)) = 1.

So, we have

‖unχGn
+ x‖M ≥

∫

G
(unχGn

(t) + x(t))y′n(t) dµ

≥
1

1 + 1n

(

∫

Gn

(un + x(t))vn dµ+

∫

G\Gn

x(t)yn(t) dµ
)

≥
1

1 + 1n

(

unvnµGn − dvnµGn +

∫

G\Gn

x(t)yn(t) dµ
)

≥
1

1 + 1n

( 1

1 + 1n
−

d

n
+ 1−

1

n

)

,
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whence limn→∞ ‖unχGn
+ x‖M = 2.

Replace y′n(t) by y′′n(t) =
1
1+ 1

n

(vnχGn
(t)− yn(t)χG\Gn

(t)). We get

limn→∞ ‖unχGn
− x‖M = 2, which is a contradiction with the fact that x is a (J)-

uniformly nonsquare point.
�

Corollary 1. LM is (J)-locally uniformly nonsquare iff M ∈ ∇2.

Theorem 4. Every point x ∈ S(LM ) is a (J)-nonsquare point.

Proof: For x, y,∈ S(LM ). There are k, h > 0 such that

‖x‖M =
1

k
(1 +RM (kx)), ‖y‖M =

1

h
(1 +RM (hy)).

Assume that ‖x ± y‖M = 2. Then

2 =
1

k
(1 +RM (kx)) +

1

h
(1 +RM (hy)) ≥

≥
k + h

k · h

(

1 +RM

( h

k + h
kx ±

k

k + h

))

≥ ‖x ± y‖M = 2,

i.e.,

M
( h

k + h
kx(t)±

k

k + h
hy(t)

)

=
h

k + h
M(kx(t))+

k

k + h
M(hy(t)) (t ∈ G, µ-a.e.),

so M(u) is affine on 〈hy(t), kx(t)〉 and 〈kx(t),−hy(t)〉 (t ∈ G, µ-a.e.), which contra-
dicts the fact that M(u) is an N -function.

�

Corollary. LM is always (J)-nonsquare.

References

[1] James R.C., Uniformly nonsquare Banach spaces, Ann. Math. 80:3 (1964), 542–550.
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