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On binary coproducts of frames

Xiangdong Chen

Abstract. The structure of binary coproducts in the category of frames is analyzed, and the
results are then applied widely in the study of compactness, local compactness (continuous
frames), separatedness, pushouts and closed frame homomorphisms.
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Coproducts in the category of frames are usually viewed as counterparts of prod-
ucts in the category of topological spaces. The discrepancy between them has
produced well-known remarkable properties of frames, for instance, the localic Ty-
chonoff Theorem is constructively valid, and paracompactness is preserved under
coproducts of frames. It is certainly worthwhile to study in particular the simplest
type of coproducts — binary coproducts.
Let π be the nucleus, defined on the downset-frame of L1 × L2, determining

the coproduct L1 ⊕ L2. When dealing with L1 ⊕ L2, we often meet the following
problem: Given a downset U of L1 × L2 and (a, b) ∈ π(U), what are the inter-
nal relations between (a, b) and U? Through the analysis of the (pre)nuclei and
their combinations involved in constructing binary coproducts, we obtain a useful
result, Proposition 2.2, which is a generalization of the technique introduced by Ba-
naschewski [1] and Vermeulen [13] to show that strongly Hausdorff compact frame is
regular, from which we gain substantial insight. The great power of Proposition 2.2
is then illustrated by its wide applications in the study of frame counterparts of
classical topological facts related to (local)compactness, Hausdorff space and closed
continuous maps. All discussions, except the last part of Section 4, are construc-
tively valid.

1. Preliminaries.

For general facts concerning frames we refer to Johnstone [10].
Let L be a frame. The top (bottom) element of L will be denoted by e (0). For

any subset A ⊆ L, let ↓A = {x ∈ L | x ≤ a for some a ∈ A}. For a ∈ L, its
pseudocomplement is denoted by a∗. For a frame homomorphism h : L −→ M , its
right adjoint is denoted by hr :M −→ L and is given by hr(b) =

∨

{x ∈ L | h(x) ≤
b}. A frame homomorphism h : L −→ M is called dense if h(x) = 0 implies x = 0;
it is called codense if h(x) = e implies x = e.
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A frame L is called regular if a =
∨

{x ∈ L | x ≺ a} for each a ∈ L, where x ≺ a

means x∗ ∨ a = e.
Given a, b ∈ L, we say a ≪ b (way below) if b ≤

∨

S for some S ⊆ L implies
that a ≤

∨

E for some finite subset E of S. A frame L is called continuous if
a =

∨

{x ∈ L | x ≪ a} for each a ∈ L. In a continuous frame, the ≪-relation
interpolates, that is, a ≪ b implies there exists a c with a ≪ c ≪ b.
Concerning the construction of coproducts in the category Frm, we adopt the

approach introduced by Banaschewski [1], [4] as follows.
Recall that a nucleus on a frame L is a closure operator on L which preserves

binary meets. A prenucleus on L is a map k0 : L −→ L such that, for all x, y ∈ L:
(1) x ≤ k0(x), (2) if x ≤ y then k0(x) ≤ k0(y), (3) k0(x)∧y ≤ k0(x∧y). For each
prenucleus k0 on L, there is a unique nucleus k which has the same fixed points as
k0 and is given by k(x) =

∧

{t | x ≤ t, t ∈ K}. We will call k as the associated
nucleus of k0.
Consider a family (Li)i∈I of frames with a decidable index set I. Let L ⊆

∏

Li

consist of all those a = (ai)i∈I whose support spt(a) = {i ∈ I | ai < ei}, ei the unit
of Li, is finite. Then L is a sublattice of

∏

Li. The maps ki : Li −→ L defined by

ki(x)j =

{

x (j = i)

ej (j 6= i)

preserve arbitrary joins and arbitrary meets.
Let D be the frame of all down-sets in L, and define π0 : D −→ D by

π0(U) = {a ∧ ki(
∨

T ) | a ∈ L, i ∈ I, T ⊆ Li, a ∧ ki(t) ∈ U for all t ∈ T }.

Then π0 is a prenucleus on D. We use π to denote the associated nucleus.

Proposition 1.1. Fix (π0) is the coproduct of (Li)i∈I in Frm, with coproduct
maps qi = π◦ ↓ ◦ki : Li −→ Fix (π0).

Furthermore, Banaschewski [4] introduced prenuclei σ0 and µ0 on D, which are
defined respectively by, for any U ∈ D,

σ0(U) = {
∨

D | updirected D ⊆ U},

and

µ0(U) = {a ∧ ki(
∨

T ) | a ∈ L, i ∈ I, finite T ⊆ Li, a ∧ ki(t) ∈ U for all t ∈ T }.

Let σ and µ denote the associated nuclei. One of the benefits of having σ0 and µ0
is shown by

Proposition 1.2. π = σ ◦ µ.

A constructive proof of this was provided recently by Banaschewski [1]. Based
on it, we are able to study the construction of binary coproducts later on.
We use

⊕

Li to denote the coproduct of (Li)i∈I . The coproduct map qi : Li −→
⊕

Li is given by qi(x) = {a ∈ L | ai ≤ x} ∪ Z for each x ∈ Li, where Z = {a ∈
L | ai = 0 for some i ∈ I} is the bottom of

⊕

Li. Let ai1 ⊕ · · · ⊕ ain denote the
element qi1(ai1) ∩ · · · ∩ qin(ain) of

⊕

Li.
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2. Binary coproducts.

For binary coproducts, we have a more detailed description of the above general
construction. Consider two frames L1 and L2 and let pi : L1 ×L2 −→ Li (i = 1, 2)
be the projection maps.

Let π1, π̂1, π2, π̂2 : D −→ D be defined by

π1(U) = {(
∨

X, y) | X × {y} ⊆ U},

π̂1(U) = {(
∨

X, y) | X is finite and X × {y} ⊆ U},

π2(U) = {(x,
∨

Y ) | {x} × Y ⊆ U},

π̂2(U) = {(x,
∨

Y ) | Y is finite and {x} × Y ⊆ U}.

Lemma 2.1. Let i, j ∈ {1, 2}.

(1) For any U ∈ D, U ⊆ π̂i(U) ⊆ πi(U) ⊆ π(U).
(2) π̂i and πi are nuclei on D.

(3) π̂i ◦ πj ◦ π̂i = πj ◦ π̂i for i 6= j.

(4) π̂i ◦ π̂j ◦ π̂i = π̂j ◦ π̂i for i 6= j.

(5) π̂1 ◦ π̂2 = π̂2 ◦ π̂1.

Proof: We only provide proofs for (2) and (3), other parts are obvious.

(2) We show that π1 is a nucleus. Obviously, π1 preserves the partial order. To
prove that π1 is idempotent, we consider U ∈ D and Z × {y} ⊆ π1(U). For each
z ∈ Z, take Xz = {x ∈ L1 | (x, y) ∈ U and x ≤ z}, which satisfies Xz × {y} =
((↓z)× {y}) ∩ U and z =

∨

Xz. Then,

∨

Z =
∨ ⋃

z∈Z

Xz , and (
⋃

z∈Z

Xz)× {y} ⊆ U,

hence (
∨

Z, y) ∈ π1(U). It follows that π1 ◦ π1(U) = π1(U), therefore π1 is idem-
potent. Finally, if (x, y) ∈ π1(U) ∩ V for some U, V ∈ D then x =

∨

X and
X × {y} ⊆ U with some X ⊆ L1. One has also X × {y} ⊆ V since V is a downset,
hence (x, y) ∈ π1(U ∩ V ). This shows that π1(U) ∩ V ≤ π1(U ∩ V ), hence π1
preserves binary meets.

(3) To see π̂2 ◦ π1 ◦ π̂2 = π1 ◦ π̂2, it suffices to show that π1(U) is fixed by π̂2
whenever U is fixed by π̂2. Suppose U is fixed by π̂2. Then (e, 0) ∈ U ⊆ π1(U).
Further, for any (x, y1), (x, y2) ∈ π1(U), take A, B ⊆ L1 such that x =

∨

A =
∨

B,
A × {y1} ⊆ U and B × {y2} ⊆ U , then (a ∧ b, y1 ∨ y2) ∈ U for any a ∈ A, b ∈ B,
which implies (x, y1∨y2) = (

∨

{a∧b | a ∈ A, b ∈ B}, y1∨y2) ∈ π1(U). Hence π1(U)
is fixed by π̂2. �

Now, we have three nuclei: µ = π̂1 ◦ π̂2 = π̂2 ◦ π̂1, π2 ◦ π̂1, π1 ◦ π̂2. Combining
with Proposition 1.2, it follows easily that
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Proposition 2.1. π = σ ◦ µ = σ ◦ π2 ◦ π̂1 = σ ◦ π1 ◦ π̂2.

Since there are explicit expressions for µ, π2 ◦ π̂1 and π1 ◦ π̂2, the main problem
in analyzing the values of π arises how to deal with σ. Recalling the nature of σ0
(defined via updirected sets), we expect that certain conditions of compactness will
be helpful.
For a frame L, a ∈ L is called i-compact if, for any b ∈ L, a ≪ b implies

a ≪ c ≪ b for some c ∈ L. It is easy to see that any compact element is i-compact;
and in a continuous frame L, a ≪ b implies that a is i-compact by the interpolation
property of ≪. The purpose for this new concept is to unite the study of compact
elements, on the one hand, and the relation≪ in a continuous frame, on the other.

Lemma 2.2. Let U ∈ D. If (a, b) ∈ π(U), c is i-compact and c ≪ a, then

(c, b) ∈ π2 ◦ π̂1(U).

Proof: Let S = π2 ◦ π̂1(U). In the interval [S,π(S)] in D, letW = {V ∈ [S, π(S)] |
(a, b) ∈ V and c ≪ a implies (c, b) ∈ S}.

(1) W is σ0-stable: Take V ∈ W. Consider any (a, b) ∈ σ0(V ) and c ≪ a.
Suppose (a, b) =

∨

D for updirected D ⊆ V . We can find m such that c ≪ m ≪ a,
and get (x0, y0) ∈ D such that m ≤ x0. For any (x, y) ∈ D with (x, y) ≥ (x0, y0),
by c ≪ m ≤ x0 ≤ x we get (c, y) ∈ S. Since b =

∨

{y | (x, y) ∈ D, (x, y) ≥ (x0, y0)},
we get (c, b) ∈ S. Hence σ0(V ) ∈W.

(2) It is trivial that S, W =
⋃

W ∈ W. Hence σ(W ) = W , and σ(S) ⊆ W ,
which implies σ(S) ∈W.

Finally, by Proposition 2.1, π(U) = σ(S) ∈W. �

Applying this, we immediately get a key result as follows.

Proposition 2.2. Consider U ∈ D.

(1) If a ∈ L1 is compact and a ⊕ b ≤ π(U), then (a, b) ∈ π2 ◦ π̂1(U).
(2) If L1 is continuous, a ⊕ b ≤ π(U) and c ≪ a, then (c, b) ∈ π2 ◦ π̂1(U).
(3) If a ∈ L1 is an atom and a ⊕ b ≤ π(U), then (a, b) ∈ π2(U).

For the convenience of further study, we make the following general observation
on the values of π1 and π2 ◦ π̂1.

Lemma 2.3. For any A ⊆ L1 × L2, π1(↓A) =↓{(
∨

p1[K],
∧

p2[K]) | K ⊆ A}.

Proof: Suppose (x, y) ∈ π1(↓A). Then there is a Z ⊆ L1 such that Z × {y} ⊆↓A
and x =

∨

Z. Put

K = {(a, b) ∈ A | (z, y) ≤ (a, b) for some z ∈ Z}.

Then

(x, y) = (
∨

Z, y) ≤ (
∨

p1[K],
∧

p2[K]).

The other inclusion is trivial. �
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Lemma 2.4. For any A ⊆ L1 × L2, (x, y) ∈ π2 ◦ π̂1(↓A) if and only if

y ≤
∨

{
∧

p2[K] | finite K ⊆ A and
∨

p1[K] ≥ x}.

Proof: Let U =↓A. We have π̂1(U) =↓ {(
∨

p1[K],
∧

p2[K])] finite K ⊆ A}.
(x, y) ∈ π2(π̂1(U)) means that there exists a subset Y ⊆ L2 such that {x} × Y ⊆
π̂1(U) and

∨

Y = y. However, {x} × Y ⊆ π̂1(U) is equivalent to

Y ⊆↓{
∧

p2[K] | finite K ⊆ A and
∨

p1[K] ≥ x}.

Therefore, (x, y) ∈ π2 ◦ π̂1(U) if and only if

y =
∨

Y ≤
∨

{
∧

p2[K] | finite K ⊆ A and
∨

p1[K] ≥ x}.

�

Due to Proposition 2.2 and Lemma 2.4, the following result becomes apparent.
Kř́ıž and Pultr [11] proved it in a different way, employing the Axiom of Choice.

Proposition 2.3. Suppose L is compact and M is an arbitrary frame. If

eL⊕M =
∨

{a ⊕ b | (a, b) ∈ A} for some A ⊆ L × M,

then

e =
∨

{
∧

p2[K] | K ⊆ A is finite and
∨

p1[K] = e}.

Sometimes, it is convenient to use the one-one correspondence between elements
of L1 ⊕ L2 and Galois connections between L1 and L2. Recall that a pair [g, g′]
of mappings g : L1 −→ L2, g

′ : L2 −→ L1 is a Galois connection between L1 and
L2 if (i) g, g′ are antitone; (ii) g′ ◦ g ≥ idL1 and g ◦ g′ ≥ idL2 . Given an element
T ∈ L1⊕L2, let gT : L1 −→ L2 be defined by gT (x) =

∨

{y ∈ L2 | (x, y) ∈ T }, and
g′T : L2 −→ L1 defined by g′T (y) =

∨

{x ∈ L1 | (x, y) ∈ T }, then [gT , g′T ] is a Galois

connection between L1 and L2. Conversely, for a Galois connection [g, g′] between
L1 and L2, we make T[g,g′] = {(x, y) | g(x) ≥ y}, which is a downset and closed
under π1 and π2, hence T[g,g′] ∈ L1 ⊕ L2. In particular, for the pseudocomplement

operator ∗ of L, the Galois connection [∗, ∗] between L and itself corresponds to the
element S = {(x, y) ∈ L × L | x ∧ y = 0} of L ⊕ L.
In the following context, regarding the Galois connection [gT , g′T ] determined by

some T ∈ L1⊕L2, we shall simply write xT to denote gT (x) and also yT for g′T (y).
Hence

(
∨

X)T =
∧

{xT | x ∈ X} for any X ⊆ L1, or any X ⊆ L2.

As an immediate application of above facts, we show that
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Proposition 2.4. Consider frames L1, L2 and the coproduct maps qi : Li −→
L1 ⊕ L2 (i = 1, 2). For any a ∈ L1 and T ∈ L1 ⊕ L2, we have

qr
2(q1(a) ∨ T ) =

∨

{b ∈ L2 | e = a ∨ bT }

if one of the following conditions is satisfied:

(1) L2 is continuous.

(2) L1 is compact.

(3) a ∨
∧

X =
∧

{a ∨ x | x ∈ X} holds for any X ⊆ L1.

Proof: For any b ∈ L2 with e = a ∨ bT , (a, b) ∈ q1(a) and (b
T , b) ∈ T imply

(e, b) ∈ q1(a) ∨ T , it follows that

qr
2(q1(a) ∨ T ) ≥

∨

{b ∈ L2 | e = a ∨ bT }.

On the other hand, put
U = q1(a) ∪ T,

then π1(U) = {(x, y) | x ≤ a ∨ yT }, which is fixed by π̂2.
Let c = qr

2(q1(a) ∨ T ), then (e, c) ∈ q1(a) ∨ T .

(1) Assume L2 is continuous. For any b ≪ c, (e, c) ∈ π(U) implies (e, b) ∈ π1(U)

by Proposition 2.2, which means e = a ∨ bT . Thus

c ≤
∨

{b ∈ L2 | e = a ∨ bT }.

(2) Suppose L1 is compact. Acting π2 on π1(U), we get

π2(π1(U)) = {(x, z) | z ≤
∨

{y | x ≤ a ∨ yT }}.

By Proposition 2.2, (e, c) ∈ π2(π1(U)), which means

c ≤
∨

{y ∈ L2 | e = a ∨ yT }.

(3) If a ∨
∧

X =
∧

{a ∨ x | x ∈ X} holds for any X ⊆ L1, then π1(U) is also
fixed by π2. It follows that

π1(U) = q1(a) ∨ T,

hence c satisfies e = a ∨ cT .
Therefore, in each of the three cases,

qr
2(q1(a) ∨ T ) =

∨

{b ∈ L2 | e = a ∨ bT }.

�
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3. Separated frames.

Consider a frame L and its coproduct maps q1, q2 : L −→ L ⊕ L. The codiagonal
map ∇ : L⊕L −→ L, given by x⊕ y  x∧ y, is the coequalizer of q1, q2. As usual,

∇ has a dense factorization: ∇ : L ⊕ L
(.)∨s
−→↑s −→ L, where s =

∨

{a ⊕ b | a, b ∈
L, a ∧ b = 0}, called the separator of L.
We shall call a frame L separated if the codiagonal map ∇ is closed, that is,

∇ ∼= (.) ∨ s for s =
∨

{a ⊕ b | a, b ∈ L, a ∧ b = 0} (such L is also called strongly
Hausdorff by Isbell [9]).

Proposition 3.1. The following are equivalent for any frame L:

(1) L is separated.

(2) In L⊕L, (e⊕a)∨s = (a⊕ e)∨s for all a ∈ L, where s is the separator of L.

(3) For any h1, h2 : L −→ M , (.) ∨ t : M −→↑ t is the coequalizer, where

t =
∨

{h1(a) ∧ h2(b) | a, b ∈ L, a ∧ b = 0}.
(4) For any h1, h2 : L −→ M , h1(a) ∨ t = h2(a) ∨ t for all a ∈ L.

Remark. In general, even if a pair of homomorphisms h1, h2 : L −→ M has
its coequalizer of the form (.) ∨ t for some t ∈ M , this does not guarantee that
t =

∨

{h1(a) ∧ h2(b) | a, b ∈ L, a ∧ b = 0}, as it is shown by the following example:
Take L = 3 = the chain of 3 elements {0, 1, 2} and M = the Boolean algebra of
4 elements {0, a, a′, e}. Let h1 : L −→ M be defined by (0  0, 1  a, 2  e),
h2 : L −→ M be defined by (0  0, 1  a′, 2  e). The coequalizer of h1, h2 is
(.) ∨ e :M −→ {e} but

∨

{h1(a) ∧ h2(b) | a, b ∈ L, a ∧ b = 0} = 0.
From Isbell [9], we know that regularity is strictly stronger than separatedness.

In the following, we shall see that the separatedness is a well behaved property.
The next result was first proved constructively by Vermeulen [13].

Proposition 3.2.

(1) Compact separated frames are regular.
(2) Continuous separated frames are regular.

Proof: Apply Proposition 2.4 in the case L = L1 = L2 and T = {(x, y) | x, y ∈
L, x ∧ y = 0}, the separator of L.
If a ∈ L with q1(a) ∨ T = q2(a) ∨ T , then a ≤ qr

2(q1(a) ∨ T ), and it follows that
a ≤

∨

{b ∈ L | e = a∨b∗} =
∨

{b ∈ L | b ≺ a} if L is compact, or continuous. When
L is separated, every element of L has the property of a just assumed. Therefore
every compact (or, continuous) separated frame is regular. �

Proposition 3.3. A frame L is a Boolean algebra if and only if it is separated and

satisfies the law: x ∨
∧

S =
∧

{x ∨ s | s ∈ S} for any S ⊆ L.

Proof: Only the “ if ” part needs proof.
In the proof of Proposition 2.4, we have seen that

a ∨ cT = e if c = qr
2(q1(a) ∨ T ).

Consider T = {(x, y) | x, y ∈ L, x ∧ y = 0}. If L is separated, which gives a ≤ c =
qr
2(q1(a) ∨ T ) for all a ∈ L, therefore a ∨ a∗ = e for all a ∈ L. �
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Proposition 3.4. Suppose we have a pushout square in Frm:

AN P

L M
v

v̄

u ū

with separated L. Then:

(1) If M is compact, then v̄ is dense whenever v is codense.

(2) If N is compact, then v̄ is codense whenever v is codense.

(3) If N is continuous, then v̄ is monic whenever v is codense.

Proof: Considering the standard construction of pushouts, we can get the pushout
square as follows:

BN ↑s

L M
v

v̄

u ūN ⊕ M

q1
p

q2

where q1, q2 are the coproduct injections, p = (.)∨s : N⊕M −→↑s is the coequalizer
of q1 ◦ u, q2 ◦ v, and s =

∨

{u(a)⊕ v(b) | a ∧ b = 0} =
∨

{u(a)⊕ v(a∗) | a ∈ L}.
Put A = {(u(a), v(a∗)) | a ∈ L}, thus s = π(↓A) and ↓A is fixed by µ.

(1) Consider any x ∈ N such that v̄(x) = 0. Then x ⊕ e ≤ s = π(↓A), hence
(x, e) ∈ π1(↓A) by the compactness of M and Proposition 2.2. Now there exists
some K ⊆ A such that

x ≤
∨

p1[K] and e =
∧

p2[K].

For each (u(a), v(a∗)) ∈ K, v(a∗) = e implies a∗ = e since v is codense, hence a = 0.
Therefore x = 0. This proves v̄ is dense.

(2) Suppose v̄(x) = (x ⊕ e) ∨ s = eN⊕M , that is,

(x ⊕ e) ∨ (
∨

{u(a)⊕ v(a∗) | a ∈ L}) = eN⊕M .

By Proposition 2.3, we get
∨

{v(a∗) | x ∨ u(a) = e} = e in M . Hence
∨

{a∗ |
x∨u(a) = e} = e in L since v is codense, which implies

∨

{u(a∗) | x∨u(a) = e} = e

in N . But x = x ∨ u(a ∧ a∗) = (x ∨ u(a)) ∧ (x ∨ u(a∗)) = x ∨ u(a∗), which implies
x ≥ u(a∗), and therefore x = e. Hence v̄ is codense, as claimed.
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(3) Suppose v̄(x) = v̄(y). For any z ≪ x, from x ⊕ e ≤ (y ⊕ e) ∨ π(↓A) and
Proposition 2.2, we get (z, e) ∈ π2 ◦ π̂1(↓(y, e)∪ ↓A). Then, by Lemma 2.4,

e =
∨

{
∧

p2[K] |
∨

p1[K] ≥ z for some finite K ⊆ {(y, e)} ∪ A}

≤
∨

{v(a∗) | y ∨ u(a) ≥ z},

implying e =
∨

{a∗ | y∨u(a) ≥ z} since v is codense, hence e =
∨

{u(a∗) | y∨u(a) ≥
z}, which implies z ≤ y. This shows x ≤ y, hence x = y by symmetry. �

Corollary. If L is separated and N is spatial, then the pushout along every u :
L −→ N preserves monomorphisms.

Proof: From Proposition 3.4, we know that pushouts along every u : L −→ 2
preserve monomorphisms, which leads to the claimed fact. �

Moreover, Proposition 3.4 provides a constructive proof of the following:

Proposition 3.5. Pushouts preserve monomorphisms in the category KRegFrm
of compact regular frames and also in the category RegConFrm of regular contin-
uous frames and frame homomorphisms.

4. Closed frame homomorphisms.

Definition 4.1. A frame homomorphism h : L −→ M is called closed if

hr(h(x) ∨ y) = x ∨ hr(y) for any x ∈ L, y ∈ M.

Among various properties of closed homomorphisms, we only present those in-
volving binary coproducts.

Proposition 4.1. For frames L1 and L2, the coproduct injection q2 : L2 −→
L1

⊕

L2 is closed when one of the following conditions is satisfied:

(1) L1 is compact.

(2) L2 satisfies the law x ∨
∧

S =
∧

{x ∨ s | s ∈ S} for any S ⊆ L2.

Proof: That q2 : L2 −→ L1
⊕

L2 is closed means, for any T ∈ L1
⊕

L2, a ∈ L2,

(1) qr
2(q2(a) ∨ T ) = a ∨ qr

2(T ).

Because qr
2(T ) = eT for the unit e ∈ L1, the equality (1) holds if and only if

(e, y) ∈ q2(a) ∨ T implies y ≤ a ∨ eT .
To analyze (1), it is natural to start with

U = q2(a) ∪ T.

We have π2(U) = {(x, y) | y ≤ a ∨ xT }, which is a downset fixed by µ.

Obviously, (e, y) ∈ π2(U) if and only if y ≤ a ∨ eT . Therefore, (1) holds if and
only if

(2) (e, y) ∈ π(U) implies (e, y) ∈ π2(U).
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(1) By Proposition 2.2, (e, y) ∈ π(U) = π(π2(U)) implies (e, y) ∈ π2(U) since
L1 is compact.

(2) Now π(U) = π2(U). �

Furthermore, as a counterpart of Kuratowski-Mrówka theorem of general topol-
ogy, the following fact has been obtained by Pultr and Tozzi [12]. By applying the
results of binary coproducts developed in this paper, we can present a constructive
proof.

Proposition 4.2 (Pultr and Tozzi). The frame M is compact if and only if q2 :
L −→ M ⊕ L is closed for any frame L.

Proof: One direction is actually Proposition 4.1 (1). Another direction can be
shown by the following modification of the corresponding proof in [12].
Suppose U is an updirected cover of M . TakeM as an underlying set and define

O(M) = {S ⊆ M | e ∈ S implies ↑u ⊆ S for some u ∈ U},

then O(M) is a topology on M .
Let L = O(M), q2 : L −→ M ⊕ L is closed means that

qr
2((e ⊕ a) ∨ A) = a ∨ qr

2(A) for any a ∈ L, A ∈ M ⊕ L.

Now consider a =M − {e} and A =
∨

{u⊕ ↑u | u ∈ U}.

(e ⊕ a) ∨ A =
∨

{u ⊕ a | u ∈ U} ∨
∨

{u⊕ ↑u | u ∈ U}

=
∨

{u ⊕ (a∪ ↑u) | u ∈ U}

=
∨

{u ⊕ eL | u ∈ U}

= eM⊕L.

Hence a∨qr
2(A) = eL since q2 is closed, which implies e ∈ qr

2(A). Therefore there
exists an element v ∈ U such that ↑v ⊆ qr

2(A), that is

e⊕ ↑v ≤
∨

{u⊕ ↑u | u ∈ U}.

By taking the meet with e⊕ ↓v on both sides, we obtain

e ⊕ {v} ≤
∨

{u ⊕ [u, v] | u ∈ U}.

where [u, v] = {x ∈ M | u ≤ x ≤ v}. Notice that [x, v] ∈ O(M) for any x ∈ M .
Put W = {

∨

K | K ⊆ U} and S =↓{(w, [w, v]) | w ∈ W}. Then S is fixed by
π1 and e ⊕ {v} ≤ π(S). Since {v} ∈ L is an atom, by Proposition 2.2, (e, {v}) ∈ S,
which means e = w, and {v} ⊆ [w, v], for some w ∈ W , therefore v must be e. �

The following result is more general than Proposition 4.1 (1).
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Proposition 4.3. If h : L −→ M is closed and L has a basis B such that h(B)
consists of some compact elements ofM , then h⊕ idN : L⊕N −→ M ⊕N is closed

for every frame N .

Proof: We need to show, for any T ∈ L ⊕ N , S ∈ M ⊕ N ,

(h ⊕ idN )
r((h ⊕ idN )(T ) ∨ S) ≤ T ∨ (h ⊕ idN )

r(S).

We assume T =
∨

{a ⊕ b | (a, b) ∈ A} for some A ⊆ L × N and S =
∨

{u ⊕ v |
(u, v) ∈ B} for some B ⊆ M × N such that p1[A] and p1[B] are updirected. Then
(h ⊕ idN )(T ) =

∨

{h(a)⊕ b | (a, b) ∈ A}.
Consider any

x ⊕ y ≤ (h ⊕ idN )
r((h ⊕ idN )(T ) ∨ S) with x ∈ B.

Then h(x) ⊕ y ≤ (h ⊕ idN )(T ) ∨ S. By the compactness of h(x), Proposition 2.2
and Lemma 2.4, we have

y ≤
∨

{b ∧ v | h(a) ∨ u ≥ h(x) with (a, b) ∈ A and (u, v) ∈ B}

=
∨

{b ∧ v | a ∨ hr(u) ≥ x with (a, b) ∈ A and (u, v) ∈ B},

which implies

x ⊕ y ≤
∨

{a ⊕ b | (a, b) ∈ A} ∨
∨

{hr(u)⊕ v | (u, v) ∈ B} ≤ T ∨ (h ⊕ idN )
r(S).
�

Remark. Recall that a continuous mapping f : X −→ Y is called perfect if the
map f × idZ : X × Z −→ Y × Z is closed for every space Z. We know that
f : X −→ Y is perfect if and only if f is closed and the fibre f−1(y) is compact
for each y ∈ Y . To some extent, the above proposition can be regarded as a frame
counterpart of this topological fact.
For any homomorphism h : L −→ M , there exists uniquely an onto homomor-

phism G(h) : L ⊕ M −→ M such that G(h) ◦ q1 = h and G(h) ◦ q2 = idM . G(h) is
given by x ⊕ y  h(x) ∧ y and is the coequalizer of

q1 : L −→ L ⊕ M and q2 ◦ h : L −→ M −→ L ⊕ M.

Consider the factorization h : L
q1
−→ L⊕M

G(h)
−→ M . If L is separated, then G(h)

is closed by Proposition 3.1. If M is compact, then q1 is closed by Proposition 4.1.
Therefore, we have proved

Proposition 4.4. For separated L and compact M , any frame homomorphism

h : L −→ M is closed.

Finally, let us allow the Axiom of Choice, so we can talk about cardinalities.
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Let κ be a regular cardinal. A frame L is called a D(κ)-frame if it satisfies the
following law:

D(κ) : a ∨
∧

S =
∧

{a ∨ s | s ∈ S} for |S| < κ.

In the definitions for compact elements and updirected sets, replacing “a finite
subset” by “a subset with cardinality strictly smaller than κ”, we get the definitions
for κ-compact elements and κ-updirected sets.
Now we continue the observation launched by Proposition 4.1.

Proposition 4.5. The coproduct map q2 : L2 −→ L1 ⊕ L2 is closed if one of the

following holds:

(1) L1 is κ-compact and regular, L2 is a D(κ)-frame.

(2) L1 has a basis B with | B |< κ, L2 is a D(κ)-frame.

Proof: Continue to consider the implication (2) in the proof of Proposition 4.1.

(1) SupposeX×{y} ⊆ π2(U) for someX ⊆ L1 with |X | < κ. Then y ≤ a∨xT for

each x ∈ X , which implies y ≤
∧

{a∨xT | x ∈ X} = a∨
∧

{xT | x ∈ X} = a∨(
∨

X)T

since L2 satisfies the law of D(κ). It follows that (
∨

X, y) ∈ π2(U). It turns out

π1(π2(U)) = {(
∨

D, y) | κ − updirected D and D × {y} ⊆ π2(U)}.

We claim that π1(π2(U)) is also fixed by π2: Consider {x}×Y ⊆ π1(π2(U)). For
each y ∈ Y , suppose x =

∨

Dy with Dy × {y} ⊆ π2(U). Then

(
∧

y∈Y

dy ,
∨

Y ) ∈ π2(U) for d = (dy)y∈Y ∈
∏

y∈Y

Dy,

so
(
∨

d

∧

y∈Y

dy ,
∨

Y ) ∈ π1(π2(U)).

Now,

x =
∧

y∈Y

∨

Dy =
∨

d

∧

y∈Y

dy

since the κ-compact regular frame L1 must satisfy this distributive law. Therefore
(x,

∨

Y ) ∈ π1(π2(U)), as expected. This shows π(U) = π1(π2(U)).
Thus, when (e, y) ∈ π(U), there is a κ-updirected D such that e ≤

∨

D and
(d, y) ∈ π2(U) for d ∈ D. That e is κ-compact implies e ∈ D, hence (e, y) ∈ π2(U).

(2) Consider any X ⊆ L1 and y ∈ L2 satisfying X × {y} ⊆ π2(U). Take
B1 = {b ∈ B | b ≤ x for some x ∈ X}, then

∨

B1 =
∨

X . We have

y ≤
∧

{a ∨ bT | b ∈ B1} = a ∨ (
∨

B1)
T = a ∨ (

∨

X)T ,

which means (
∨

X, y) ∈ π2(U). Therefore π(U) = π2(U). �
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5. Homomorphisms from separated to continuous frames.

Lemma 5.1. Let L be separated and M continuous. If h : L −→ M is dense onto,

then the set {x ∈ L | h(x) = e} has a least element.

Proof: Put m =
∨

{hr(c) | c ≪ e in M}.
First, h(m) =

∨

{hhr(c) | c ≪ e} =
∨

{c | c ≪ e} = e.
Second, since M is regular continuous, c ≪ e means that ↑c∗ is compact. The

composite L −→ M −→↑c∗ is closed by Proposition 4.4, hence hr(h(a) ∨ c∗) =
a ∨ hr(c∗) for any a ∈ L. Consider any x ∈ L with h(x) = e. We get e =
hr(h(x) ∨ c∗) = x ∨ hr(c∗), thus hr(c) = (x ∧ hr(c)) ∨ (hr(c∗) ∧ hr(c)) = x ∧ hr(c),
that is hr(c) ≤ x. This shows m ≤ x. Therefore m is the required least element.

�

Lemma 5.2. Let L be separated and M continuous. If h : L −→ M is dense,

codense and onto, then h is an isomorphism.

Proof: Let k = idL ⊕h : L⊕L −→ L⊕M , and s =
∨

{x⊕ y | x∧y = 0} in L⊕L.
Then, since L is separated, for a, b ∈ L,

a ⊕ e ≤ (e ⊕ a) ∨ s, and e ⊕ b ≤ (b ⊕ e) ∨ s in L ⊕ L.

Now, suppose h(a) = h(b).
Acting k on the above two inequalities, we obtain

a ⊕ e ≤ (e ⊕ h(a)) ∨ k(s) = (e ⊕ h(b)) ∨ k(s) ≤ (b ⊕ e) ∨ k(s).

Since h is dense onto, h(x∗) = h(x)∗ for any x ∈ L. Thus h(y) = z implies
y∗ ≤ hr(z∗). Therefore

a ⊕ e ≤
∨

{x ⊕ h(y) | x ≤ b or x ∧ y = 0}

≤
∨

{x ⊕ h(y) | x ≤ b ∨ y∗}

≤
∨

{x ⊕ z | x ≤ b ∨ hr(z∗)}.

Let
T = {(x, z) | x ≤ b ∨ hr(z∗)},

which is closed under π1 and π̂2. By Proposition 2.2, (a, e) ∈ π(T ) and c ≪ e imply
(a, c) ∈ T , that is a ≤ b∨hr(c∗), then hr(c)∧a ≤ b. Thus (

∨

{hr(c) | c ≪ e})∧a ≤ b.
On the other hand, h(

∨

{hr(c) | c ≪ e}) =
∨

{c | c ≪ e} = e, which implies
∨

{hr(c) | c ≪ e} = e by h codense, hence a ≤ b. By symmetry, we also have b ≤ a.
Thus h is one-one. �

Proposition 5.1. For separated L and continuous M , if M is an image of L, then

there exist two elements s, m ∈ L such that [s ∧ m, m] ∼=M .

Proof: Given an onto homomorphism h : L −→ M , let m ∈ L be the least element
such that h(m) = e by Lemma 5.1, and s ∈ L the largest element such that h(s) = 0.
Then h can be factored as

h :
(((.)∨s)∧m)
−−−−−−−−→ [s ∧ m, m]

h̄
−→ M.

Now h̄ is dense, codense and onto, therefore h̄ is an isomorphism. �



712 Chen, Xiangdong

Remark. This is the frame version of the topological fact that, in a T2 space X ,

every locally compact subspace A is locally closed, that is, A is the intersection of

an open subset and a a closed subset of X (see [5]).
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[11] Kř́ıž I., Pultr A., Peculiar behaviour of connected locales, Cahiers de Top. et Géom. Diff. Cat.
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